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We study the interplay between the electron-electron (e-e) and the electron-phonon (e-ph) interac-
tions in the two-orbital Hubbard-Holstein model at half filling using the dynamical mean field theory.
We find that the e-ph interaction, even at weak couplings, strongly modifies the phase diagram of
this model and introduces an orbital-selective Peierls insulating phase (OSPI) that is analogous to
the widely studied orbital-selective Mott phase (OSMP). At small e-e and e-ph couplings, we find
a competition between the OSMP and the OSPI, while at large couplings, a competition occurs
between Mott and charge-density-wave (CDW) insulating phases. We further demonstrate that the
Hund’s coupling influences the OSPI transition by lowering the energy associated with the CDW.
Our results explicitly show that one must be cautious when neglecting the e-ph interaction in multi-
orbital systems, where multiple electronic interactions create states that are readily influenced by
perturbing interactions.

PACS numbers: 71.27.+a, 71.30.+h, 71.38.-k, 71.45.lr

Introduction — In recent years many researchers have
focused on studying electron-electron (e-e) interactions in
multiorbital systems such as the iron-based superconduc-
tors (FeSCs). In doing so, they have discovered numer-
ous new phenomena, including the Hund’s metal1–3 and
the orbital-selective Mott phase (OSMP)4–8, which arise
from the competing action of the electronic interactions.
These concepts have helped shape our understanding of
the enigmatic properties of these materials. Despite this
success, however, surprisingly little is currently known
about how competition/cooperation with other factors
such as impurities or the electron-phonon (e-ph) interac-
tion influences these phenomena. This question is impor-
tant for our microscopic understanding of these materi-
als, as subtle multiorbital correlation effects can produce
states that are readily affected by small perturbations.

In the case of the FeSCs, the e-ph interaction was
ruled out as a possible pairing mediator by early ab initio
calculations9 indicating that the total coupling strength
was small, with a dimensionless e-ph coupling λ ≤ 0.2.
Because of this, many researchers have assumed that this
interaction plays a secondary role in these materials with
regards to other aspects as well. However, there is grow-
ing evidence that this outlook may have been prema-
ture. For example, more recent calculations find that
taking into account the possible magnetism10–13 or or-
bital fluctuations14,15 can increase the total e-ph coupling
strength compared to the original estimates. This find-
ing is consistent with the general notion that electron
correlations can enhance e-ph interactions16. Moreover,
the discovery of the FeSe films on oxide substrates17 has
implicated new possible lattice interactions, either across
the interface18,19 or within the FeSe film20. Since bulk
FeSe is believed to be in the OSMP regime21,22, these ex-
periments naturally raise questions about when and how
e-ph interactions can influence such multi-orbital phe-

nomena.
Hubbard-Holstein models are the simplest models cap-

turing the interplay between e-e and e-ph interactions.
The single-band variant has been extensively studied,
particularly at half-filling, where a direct competition
occurs between antiferromagnetic Mott insulating (MI)
and charge-density-wave (CDW) phases23–32. In com-
parison, far fewer studies exist for multiband generaliza-
tions of the model14,33. Motivated by this, we carried
out a dynamical mean field theory (DMFT)34 study of a
degenerate two-orbital Hubbard-Holstein model with in-
equivalent bandwidths. Here, we focus on the half-filled
case and construct low-temperature phase diagrams in
the λ-U and λ-J planes, where U and J are the Hub-
bard and Hund’s interaction strengths, respectively. Sim-
ilarly to the single-band case, we observe a competi-
tion between CDW and MI phases when the e-ph and
e-e interactions are large. When the interactions are
weak to intermediate in strength, however, we find addi-
tional phases displaying orbital-selective behavior. The
first is the now well-studied OSMP driven by the elec-
tronic interactions35. The second is a lattice-driven ana-
log of the OSMP, which we refer to as an orbital-selective
Peierls insulator (OSPI). The phase boundaries of the
model are also significantly influenced by the e-ph inter-
action, even for relatively weak values of λ < 0.3. This
result clearly demonstrates that one cannot rule out the
influence of the e-ph in correlated multiorbital systems a
priori based on DFT-based estimates for the total cou-
pling strength.
Methods — The Hamiltonian for the degenerate two-

orbital Hubbard-Holstein model33 is H = Hkin + Hlat +
He−ph +He−e, where

Hkin = −
∑
〈i,j〉,γ,σ

tγc
†
i,γ,σcj,γ,σ − µ

∑
i,γ,σ

n̂i,γ,σ,
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FIG. 1: (color online) The phase diagram for the two-orbital
Hubbard-Holstein model in the e-ph interaction strength (λ)
- Hubbard U plane at charge density n = 2 and temperature
β = 200/W . (a) and (b) show density plots of quasiparticle
weights Z1 and Z2 on a logarithmic scale, respectively. The
different phases are labeled as follows: metal (M), orbital-
selective Mott phase (OSMP), Mott insulater (MI), charge
density wave (CDW), and orbital-selective Peierls insulator
(OSPI). The white dots indicate points where the calcula-
tions were performed, and we plotted them to show phases
boundaries. The color scale is plotted using a linear interpo-
lation.

He−ph +Hlat = g
∑
i,γ,σ

(
b†i + bi

)(
n̂i,γ,σ −

1

2

)
+ Ω

∑
i

b†i bi ,

He−e = U
∑
i,γ

n̂i,γ,↑n̂i,γ,↓ + J
∑
i,γ,γ′

Si,γ · Si,γ′

+(U ′ − J

2
)
∑

i,γ<γ′,
σ,σ′

n̂i,γ,σn̂i,γ′,σ′ .

Here, 〈· · · 〉 denotes a summation over nearest neighbors;

c†i,γ,σ creates an electron with spin σ in orbital γ = 1, 2

on site i; b†i creates a phonon on site i; Si,γ is the spin

operator; n̂i,γ,σ = c†i,γ,σci,γ,σ is the particle number op-
erator; tγ is the nearest neighbor hopping integral for
orbital γ; U and U ′ are the intra- and inter-orbital Hub-
bard interactions, respectively. Throughout, we choose
U ′ = U − 2J due to rotational symmetry2,36. J is the
Hund’s coupling, which is fixed to J = U/5 unless oth-
erwise stated; g is the e-ph interaction strength; Ω is the
phonon energy; and µ is the chemical potential, which is
adjusted to fix the average particle per site to 〈n̂〉 = 2.

We studied the model using single-site DMFT34, with
exact diagonalization (ED)37 as the impurity solver.
DMFT maps the full lattice model with local inter-
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FIG. 2: (color online) The quasiparticle weights (a) Z1 and
(b) Z2 as a function of the e-ph interaction strength (λ) at
different Hubbard U values. Mean values of the local magnetic
moments m2

1z, m
2
2z and phonon numbers (Nph) are shown in

(c), (d), and (e), respectively.

actions onto an impurity model embedded in a self-
consistently determined host. In this case, the host is
approximated using a set of Nb = 4 discrete energy
levels (results for Nb = 6 are shown in the supple-
mentary materials38, where we find good convergence).
We work in infinite dimensions (where DMFT is ex-
act) by adopting a Bethe lattice with a semi-circular

density of states ργ(ε) = 8
π

√
(Wγ/2)

2 − ε2/W 2
γ , where

Wγ = 4tγ is the bandwidth. Throughout the paper, we
set W1 = 5W2 ≡ W = 2 eV, fix the temperature at
T = 1

β = 0.01 eV, unless otherwise stated, and set the

phonon energy to Ω = 0.15 eV. (Results for smaller val-
ues of Ω are qualitatively similar and can be found in
Ref.38.) The bandwidth and Hund’s coupling J are cho-
sen so that we can obtain a robust OSMP without the
e-ph coupling. The dimensionless e-ph coupling constant

is defined as λ = 2g2

WΩ . The infinite phonon Hilbert space
for the impurity model is limited by only allowing up to
Nph phonons, where Nph ∼ 40 is typical, depending on
the parameters used. We have checked that all of our
results are well converged for increasing values of Nph.
Results — The λ-U phase diagram for the model is
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shown in Fig. 1. Here, we plot the orbitally resolved

Matsubara quasiparticle weight Zγ =
(

1− ImΣ(iπT )
πT

)−1

on a logarithmic scale. Five distinct phases can be iden-
tified from the values of Zγ , the local magnetic mo-

ment m2
γz = 〈(nγ↑ − nγ↓)2〉, and the average number

of phonon quanta Nph = 〈b†b〉 (all shown in Fig. 2),
and their boundaries are indicated by the white lines.
Three of these phases are similar to those found in the
single-band Hubbard-Holstein model. The first phase is a
metallic phase (M) at small (λ,U), where both Z1 and Z2

are large. The second is a Mott insulating (MI) phase,
which appears at large U . It is identified by a situa-
tion where Zγ = 0, the magnetic moments are large
m2

1,z ≈ m2
2,z ≈ 1, and Nph is nearly zero. The third

phase is a CDW insulating phase where Z1 = Z2 = 0,
while Nph is large (Nph � 1) and no local moments
have formed (i.e. m2

1,z ≈ m2
2,z ≈ 0). An examination

of the wavefunctions reveals that the CDW phase corre-
sponds to a state where the impurity site is either fully
occupied or entirely empty with equal probability, consis-
tent with a checkerboard-type ordering common to the
single-band model23,24,26. This phase is likely to be a
(π, π, ...) CDW order (sometimes referred to as a strong
coupling bi-polaronic insulating phase in the single-band
case). Alternatively, this phase could also reflect phase
separation, although delocalization effects should favor
the CDW. Further studies on extended clusters will be
needed to address this issue.

In addition to the “standard” phases, we also observe
two distinct phases with orbital selective characteristics.
The first is the widely studied OSMP, which appears
between the M and MI phases. It resembles the same
OSMP found in the model without e-ph interactions35.
Here, the orbital with the narrower bandwidth becomes
insulating with Z2 = 0 and m2

2z ≈ 1, while the orbital
with the wider bandwidth remains itinerant with a non-
zero quasiparticle weight. Interestingly, we also observe
a second region of orbital selective behavior, located in a
small portion of parameter space between the M/OSMP
phases and the fully insulating CDW phase, denoted as
OSPI in Fig. 1. As with the OSMP, in this region, the
narrow band becomes insulating while the wide band re-
mains itinerant with Z1 6= 0 and Z2 = 0. But unlike
the OSMP, here we find tiny local moments on orbital 2
with m2

2z ≤ 0.05, and a large Nph (Nph > 1). The lat-
ter indicates the presence of a sizable lattice distortion.
The e-ph interaction drives the orbital-selective insulat-
ing properties in this case rather than the Hubbard and
Hund’s interaction. We label this state an orbital selec-
tive Peierls insulator (OSPI), in analogy to the OSMP.

For reference, Fig. 2 shows the evolution of the quanti-
ties used to identify the five regions of the phase diagram
as a function of λ for different values of U . When U ≤ 0.4
eV, m2

γz and Nph vary smoothly near the phase transi-
tion, while for U > 0.4 eV, these quantities vary quickly
in the transition region, but are nevertheless continuous.
This behavior is consistent with a previous DMFT study
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FIG. 3: (color online) (a) The quasiparticle weight Zγ as a
function of U at a fixed λ = 0. (b) The quasiparticle weight
Zγ as a function of λ at a fixed U = 0. Zγ are results at T =
0.002 eV and Z̄γ are results at T = 0.01 eV. The solid lines
and the dashed lines are results of increasing and decreasing
U or λ, respectively.

of the single band Hubbard-Holstein model24, where a
smooth transition occurs at weak coupling that becomes
increasingly sharp as U/W increases.

To study the analogy between the OSMP and the OSPI
further, we examine the classification of the phase transi-
tions and their possible hysteresis behavior39. Fig. 3(a)
and 3(b) plot the evolution of Zγ at T = 0.002 eV along
the (U, λ = 0) and (U = 0, λ) axes, respectively. Al-
though there are two Mott transitions in the two-orbital
system, we observe a single hysteresis loop near the
OSMP boundary, which indicates a coexistence region,
as discussed in Ref.39. The critical U values for increas-
ing and decreasing interaction strengths are Uc,1 = 0.6
eV and Uc,2 = 0.5 eV, respectively. Similarly, along the
(U = 0, λ) line we also find a single coexistence region,
consistent with DMFT studies for the single band Hol-
stein model40,41. As with the Mott transition, the hys-
teresis loop appears close to the first Peierls transition
and the critical λ values for increasing and decreasing in-
teractions are λc,1 = 0.08 and λc,2 = 0.066, respectively.
Thus, the OSMP and OSPI transitions phenomena ap-
pear to be analogous to one another. The appearance
of hysteresis indicates a first order transition out of the
metallic phase while the other transitions are continuous.
Finally, we note that the hysteresis behavior disappears
at T = 0.01 eV, where we performed most of our calcu-
lations.

The Hund’s coupling plays a major role in establishing
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FIG. 4: (color online) The phase diagram in the λ-J/U plane
at filling n = 2. (a) and (b) plot quasiparticle weights Z1 and
Z2, respectively. The labels used in this graph are the same
as in Fig. 1. The Coulomb interaction is fixed at U = 0.8 eV
and U ′ = U − 2J . The white dots indicate points where the
calculations were performed, and we plotted them to show
phases boundaries. The color scale is plotted using a linear
interpolation.

the boundaries of the OSMP5,42. Therefore, we explored
its role in determining the CDW and OSPI phases ob-
served here. Fig. 4 shows the phase diagram in the λ -
J/U plane for a fixed U = 0.8 eV. For λ < 0.3, the metal-
lic phase survives to larger values of J/U as λ increases.
This result is consistent with the notion that the e-ph in-
teraction mediates an effective attractive interaction that
competes with the onsite Hubbard interactions. When
0.3 < λ < 0.4, the OSMP disappears and is replaced by
the OSPI and CDW phases and the critical λ value for
both phases is decreased as J/U increases. For larger
λ, the CDW phase persists for all J/U values. Thus, the
Hund’s coupling not only favors the OSMP transition but
also has a stabilizing effect for the lattice-driven phases.

In the single band Hubbard-Holstein model, the action
of the repulsive Hubbard interaction and the effective at-
tractive interaction mediated by the phonons gives rise
to the competition between CDW and MI phases. Here,
in the multi-orbital case, the stabilization of the CDW
phase with increasing J/U is due to the reduction of the
interorbital Hubbard interaction, imposed by the condi-

tion that U ′ = U − 2J . In short, increasing J reduces U ′

and therefore also reduces the total potential energy cost
for a double occupation of a given site. The cost for cre-
ating a charge ordered phase, where each site alternates
between fully occupied and empty, is therefore lowered.
This interpretation can be confirmed explicitly by hold-
ing U and U ′ fixed while varying J . The corresponding
phase diagram does not show the same stabilization of
the CDW phase with increasing J38.

We have studied the interplay between the e-e and
e-ph interactions in a degenerate two-orbital Hubbard-
Holstein model. A Competition between the onsite e-e
and e-ph interactions leads to many competing phases in-
cluding the OSMP and OSPI at small couplings and the
MI and CDW at large couplings. We also find that the
Hund’s coupling J has nontrivial effects on the phases
driven by the e-ph interactions. Importantly, our results
demonstrate that weak to intermediate e-ph interaction
strengths can have a significant impact on the phase di-
agram of this model. As such, one cannot rule out an
important role for phonons a priori in multi-orbital sys-
tems, where multiple electronic interactions are already
competing with one another.

We close with a short note and some speculation.
Ref.43 has also used the term OSPI in the context
of a two-orbital dimer model, where superexchange is
stronger between a particular subset of orbitals, creating
a preferential dimerization. An entirely different mech-
anism drives our OSPI, where we start from a metallic
state and obtain the OSPI through the e-ph interaction.
To the best of our the knowledge, this is the first time
that theoretical calculations have produced such a mech-
anism. As with OSMP, the OSPI, in this case, is induced
by the different bandwidths for the two orbitals. Finally,
although the OSPI discovered here was derived from a
Holstein coupling, we believe bond-stretching phonons
that modulate interatomic hopping integrals could induce
a similar phenomenon. In such cases, these interactions
could have a significant impact on nematic phases ob-
served in some FeSCs44,45.
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