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We identify a topological Z index for three dimensional chiral insulators with P ∗ T symmetry where two

Hamiltonian terms define a nodal loop. Such systems may belong in the AIII or DIII symmetry class. The Z

invariant is a winding number assigned to the nodal loop and has a correspondence to the geometric relation

between the nodal loop and the zeroes of the gap terms. Dirac cone edge states under open boundary conditions

are in correspondence with the winding numbers assigned to the nodal loops. We verify our method with the

low-energy effective Hamiltonian of a three-dimensional material of topological insulators in the Bi2Te3 family.

PACS numbers: 03.65.Vf, 71.20.-b, 71.10.Fd

Introduction.- Topological insulators (TIs) in three dimen-

sions (3D) having time-reversal symmetry can be character-

ized by Z2 numbers defined on some discrete momenta1–5,

which is equivalent to a quantized invariant expressed as an

integral over the entire Brillouin Zone (BZ)6. There are then

two types of TI’s, strong and weak, according to whether

there is an odd or even number of Dirac cone surface states,

respectively5. Besides the time-reversal TIs, there is a class

of chiral TIs which are described by a Z-type topological

invariant7. The geometrical representation of a topological

invariant in some vector spaces provides an intuitive way to

analyze the topological nature of many systems8–12.

On the other hand, a transition point between topologically

different insulating phases can be viewed as a semimetal phase

with nontrivial topology in its gap closing points13,14. Topo-

logical semimetals (TSMs)15–21 have a Fermi surface (FS)

with reduced dimension. While a 3D normal metal has a two-

dimensional (2D) FS, a TSM has a one-dimensional (1D) or

zero-dimensional (0D) FS at half-filling. 3D systems with 0D

FS are known as the Weyl15 or Dirac16 semimetals. In these

systems, the two bands touch linearly at discrete gap clos-

ing points in the BZ, and hold topologically protected edge

states under open boundary conditions (OBC), for instance,

the Fermi arcs. More recently, 3D nodal line semimetals22–28

have attracted growing attention. In such systems, the linear

band touching points form one or several 1D lines in the BZ.

One of the most interesting cases is when the nodal lines

form closed, nodal loops (NLs). A NL can be classified in

two classes, according to whether it carries a Z2 monopole

charge or not. The one without a monopole charge can shrink

into a point and disappear, and is topologically trivial in this

sense. NLs are protected by the combination of inversion and

time-reversal symmetries, P ∗ T , for spinless systems, while

additional symmetries are required to protect NLs in 3D sys-

tems with spin-orbital coupling27,28. On the other hand, NL

semimetals have also been studied in 2D29,30. In this case, al-

though the NL itself does not carry topological charge, the ad-

dition of some chiral gap terms can make the system become

topological and insulating, where the topological invariant is

given by a winding number defined along the NL30. An inter-

esting question to address is, what effect can gap terms have

on a 3D NL semimetal?

In this paper, we study a spin-1/2 system with P ∗ T sym-

metry, and show that anticommuting mass gap terms can drive

a 3D NL semimetal into a chiral TI, which can be character-

ized by an integer winding number defined along each NL.

This winding number is determined by the geometric relation

between the NL and the zeroes of the gap terms. Although

the gap terms may be initially considered small, our results

only depend on their zeroes, so that it holds valid for any fi-

nite terms that gap out the NLs. The system’s surface states

may hold an odd or even number of Dirac cones, and their ex-

istence has a correspondence to the NL winding number. In

this sense, the NL can serve as an indicator of the topological

properties of a 3D insulator. In order to show the utility of our

theory, we apply it to a 3D material of the Bi2Te3 family and

give a brief discussion.

Minimal model.- We begin our discussion with a simplest

two band model for P∗T symmetry-protected NL semimetals:

H0 = (m − k2
x − k2

y)σx + kzσz, (1)

with σ the Pauli matrices acting on an orbital space. For spin-

less system, the P ∗ T symmetry is simply given by the com-

plex conjugation and a unitary matrix, P, such that the Hamil-

tonian satisfies PH∗
0
(k)P−1 = H0(k). In this case P = 1 and

the P ∗ T symmetry ensures the absence of the second Pauli

matrix. The nodes of H0 yield a 1D solution, a NL with kz = 0

and k2
x + k2

y = m. Introducing a σy term, H = H0 + hyσy, not

only breaks P ∗ T symmetry but hy also serves as an effective

mass term, which can be either k-independent or related with

k. In the former case, it opens a stable gap in the BZ, which

drives the system into a trivial insulator. If hy is a function of

k, the nodes of H may be pairs of points, and the system is a

Weyl semimetal.

We extend this model by including the spin degree of free-

dom and write the Hamiltonian with P ∗ T symmetry as

H = H0 + hyxσy sx + hyyσysy + hyzσysz, (2)
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where the Pauli matrices s j act in spin space. P ∗ T symmetry

now reads PsyH∗
0
(k)syP−1 = H0(k), with P = 1 and satisfies

(P ∗T )2 = −1, Here we use the labels hi j to represent the term

of σi and s j, with i = 0 or j = 0 for the identity matrix in the

corresponding subspace. These five terms form an anticom-

muting set of Dirac matrices, but we note that there are also

other equivalent choices31. The spectrum of (1)-(2) is simply

given by E± = ±

√

h2
x0
+ h2

z0
+ h2

yx + h2
yy + h2

yz. The effective

mass gapping out the NL is now |hy|, where hy = (hyx, hyy, hyz).

Requiring hy = 0 may give a solution of points (0D), lines

(1D) or surfaces (2D), depending on the number of non-zero

k-dependent terms it has.

If |hy| contains two non-zero k-dependent terms, hy = 0

shall give one or several 1D lines. Thus the system is generally

an insulator, as the gap closing condition requires the crossing

of the NL and these 1D lines, which is accidental. Such a four-

component Dirac Hamiltonian describes a chiral topological

insulator7, as the model satisfies S H(k)S −1 = −H(k), with the

chiral operator S given by the absent fifth Dirac matrix. In

the absence of time-reversal symmetry, the system belongs to

the AIII class and can be characterized by a Z invariant3. We

define a winding number of hy along the NL30,

νNL =

∮

NL

h2dh1 − h1dh2

|hy|
2

, (3)

which can be shown to be equivalent to a Berry phase of the

occupied Bloch bands at half filling32. Here, h1 and h2 denote

the two k-dependent terms of hy. If we consider the kx − ky

plane that contains the NL, the intersection of the 1D lines and

the plane produces a series of singularities, and the winding

number (3) of the NL is simply the summation of the wind-

ings around the singularities within the NL, as shown in Fig.1.

This winding number may take on any integer value, as it is

only associated with the number of lines going through the

NL. We also note that this model would fall into the CII class

in the presence of time-reversal symmetry. In such case, the

winding number (3) can only take even integer values, as the

symmetry ensures that the NL always encloses pairs of sin-

gularities. However, such class is actually described by a Z2

topological index instead3.

Finally, if all the three terms of hy are depended on k, hy = 0

shall give one or several 0D points. In this case, the intersec-

tion of these points and the plane of the NL is also accidental.

From the symmetry classification point of view, the presence

of the fifth Dirac matrix breaks the chiral symmetry, and the

model falls into the A class, which is non-topological in 3D.

In other words, we could smoothly move a singularity out of

the NL without closing the gap.

Winding numbers and geometry of the loops for a lat-

tice model.- In order to reveal the topological properties de-

scribed by the NL winding number, we next consider a lattice

model described by an anticommuting set of Dirac matrices

Γ = (σxs0, σzs0, σysx, σysy, σysz), as

H = h(k) · Γ, h(k) = (hx0, hz0, hyx, hyy, hyz) (4)

with

hx0 = µ − t‖(cos kx + cos ky), hz0 = −t⊥ cos kz, (5)

k z
ν=1

ν=−1

FIG. 1: A sketch of the winding number of a NL. The blue circle

indicates the NL given by H0 = 0, the red lines indicate the 1D so-

lution of hy = 0 for models of the chiral class, and each line gives

a singularity in the integrand of (3) in the NL plane. The arrows

around each singularity show the direction of hy near this point, and

the corresponding winding number of these points are labeled in the

sketch. The winding number of the NL, νNL, is given by the summa-

tion of winding numbers of every singularity within the NL, as the

integral path can be smoothly transformed into circles around each

singularity.

which form two NLs in kx − ky plane for kz = π/2 and −π/2

when 0 < |µ/t‖| < 2. The position and shape of the NLs are

only associated with the ratio of µ and t‖, hence we can choose

t‖ = t⊥ = 1 for the sake of simplicity. In the following we only

consider the case with positive µ, with the center of the NLs

given by kx = ky = 0. For negative µ, the center of the NLs

is at kx = ky = π, and a similar discussion applies. The two

NLs of kz = ±π/2 give two independent winding numbers,

ν±
NL

, respectively, and we define the total winding number of

the system as

νsum = ν
+
NL + ν

−
NL. (6)

Without loss of generality, here we choose hyx = 0 to preserve

a chiral symmetry with the operator S = σy sx. The other two

gap terms of hy are functions of k, and hy = 0 gives 1D lines

in the BZ. We consider the following form of hy that breaks

time-reversal symmetry:

hyy = −ty sin ky, hyz = µs − tx sin kx − tz sin kz, (7)

and the system falls into the AIII class. |hy| = 0 gives some

1D lines in the kx − kz plane with ky = 0 or π, which may or

may not be enclosed by the NLs. We would also like to point

out that although the gap terms need be small for the system

to preserve a NL like structure, the topological properties are

not related to the exact value of these terms, but only to the

ratios between them. For the sake of simplicity, we choose

ty = tx = 1 and positive µs hereafter.

We first consider a simple case with tz = 0. In this case, the

1D solution of hy = 0 gives four lines perpendicular to kx − ky

plane, two with ky = 0 and two with ky = π. For positive µ,

the pair of lines with ky = π are always outside the loop. By

tuning µs and µ, the NLs may enclose 2, 1 or 0 lines with ky =

0, as shown by Fig.2(a)-(c). However, the windings of these

lines in the kx−ky plane have opposite values (as in Fig.1), and

the NL enclosing either 0 or 2 lines will result in νNL = 0. On

the other hand, as the system preserves a reflection symmetry
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FIG. 2: The NLs and the 1D lines given by |hy| = 0, represented by

blue and red lines respectively. For the latter, we only show the lines

with ky = 0, as the ones for ky = π lie outside the NLs. (a) µ = 0.2,

µs = 0.8 and tz = 0; (b) µ = 1, µs = 0.8 and tz = 0; (c) µ = 1.8,

µs = 0.8 and tz = 0; (d) µ = 1.6, µs = 0.5 and tz = 0.2; (e) µ = 1.6,

µs = 0.5 and tz = 0.4; (f) µ = 1.6, µs = 0.5 and tz = 0.6.

along z direction, each line will be enclosed by either two or

none of the NLs, hence the total winding number, νsum, in this

case is always even.

In the presence of a nonzero tz, the reflection symmetry is

broken, and the lines of |hy| = 0 will change shape with tz
and eventually form a closed ring, as shown in Fig.2(d)-(f). In

this case, an enclosed line will cross one of the NLs at some

point, resulting in a topological phase transition. After this

transition, the system has an odd winding number, νsum = 1,

as only one of the NLs encloses a singularity.

edgestates and phase diagram.- The topological properties

of a 3D topological insulator can be represented by the num-

ber of Dirac cones in the edge states under OBC. Next, we ap-

ply the method in Ref.33 to study the edge states in our model.

The existence of edge states under OBC and their eigenen-

ergies are associated with the bulk topology of the system,

which can be seen by the trajectory of h(k) in the 5-component

vector space formed by the Dirac matrices Γ. Here we choose

a surface plane perpendicular to the x direction by fixing ky

and kz, and study the corresponding edge states as an exam-

ple. Edge states in the other two directions can also be studied

in this way, and similar results are obtained. The Hamiltonian

terms associated with kx give an elliptical trajectory of h in the

1-5 plane in Γ space,

h(kx) = (− cos kx, 0, 0, 0,− sin kx). (8)

The remaining Hamiltonian terms,

h0 = (µ − cos ky,− cos kz, 0,− sin ky, µs − tz sin kz), (9)

can be viewed as the vector from the origin of the vector space

to the center of the ellipse h(kx). The parallel and perpendic-

ular components of h0 to the 1-5 plane are given by

h0
‖
= (µ − cos ky, 0, 0, 0, µs − tz sin kz) , (10)

h0
⊥ = (0,− cos kz, 0,− sin ky, 0). (11)

0 0.5 1 1.5 2
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FIG. 3: Phase diagram with tz = 0 (left) and µ = 1 (right). The num-

ber of Dirac cones in edge states equals to the total winding number

of the model, νsum = ν
+
NL
+ ν−

NL
. In the left panel, the yellow region

with ν+NL = ν
−
NL = 0 includes three different situations: i) two lines

are enclosed by the NLs when µs < 1 and µ < 1; ii) all the lines are

out of the NLs when µs < 1 and µ > 1; and iii) not any line exsits

when µs > 1.

The existence of edge states depends on whether the ellipse

h(kx) encloses the point h0
‖
, and this condition reads

|h0
‖
| =

√

(µ − cos ky)2 + (µs − tz sin kz)2 < 1 . (12)

Provided that Eq.(12) holds, the edge state energies are given

by E± = |h
0
⊥| = ±

√

cos2 kz + sin2 ky, with candidate Dirac

cones at (ky, kz) = (0,± π
2
). Eq.(12) thus becomes

(µs ∓ tz)
2 < 2µ − µ2 , (13)

for kz = ±
π
2
, respectively. When tz = 0, it gives either no

Dirac cone, or a pair of Dirac cones at (ky, kz) = (0,± π
2
). For

nonzero tz, there may exist 0, 1 or 2 Dirac cones depending on

the parameters. In Fig.2 we display phase diagrams showing

the number of Dirac cone edge states. These results are also in

consistence with the winding numbers of the NLs, as shown

in the figure.

In order to visualize the edge states, next we choose OBC

in x direction and rewrite the Hamiltonian as a tight-binding

between planes

H =
∑

n

ĉ†nUd ĉn +
∑

n

1

2
ĉ
†

n+1
Uod ĉn + h.c., (14)

with ĉn is a vector of annihilation operators ĉn,σ,s on plane n,

ĉn = (ĉn,+,+, ĉn,+,−, ĉn,−,+, ĉn,−,−)n, and

Ud = (µ − cos ky)σxs0 − cos kzσzs0

− sin kyσy sy + (µs − tz sin kz)σysz , (15)

Uod = −σxs0 + iσysz . (16)

We numerically diagonalize this Hamiltonian and show the

four closest doubly degenerate bands above and below zero

energy in Fig.4, with OBC along x from (a) to (c), and periodic

boundary condition from (d) to (f) as comparison. Panels (a)

and (b) are for the topologically nontrivial phases with ν+
NL
=

ν−
NL
= 1 and ν+

NL
= 1, ν−

NL
= 0, and the spectra show edge

states with two or one Dirac cone, respectively. Panel (c) is
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FIG. 4: The spectra of the two doublet bands nearest to E = 0, (a)-(c)

for open boundary condition along x, and (d)-(f) for period bound-

ary condition. The three columns are for three topologically different

phases, while the left two are topologically nontrivial. The parame-

ters are µ = 1 and (a), (d) µs = tz = 0; (b), (e) µs = tz = 1; and (c), (f)

µs = 2, tz = 0.

for the topologically trivial phase with ν+
NL
= ν−

NL
= 0, where

there is no edge state connecting the conduction and valence

bands.

A real material example.-Finally, we apply our method to

3D topological insulators of the Bi2Te3 family34. These ma-

terials possess time-reversal symmetry and are characterized

by a Z2 number. Nevertheless, their topological nature is de-

termined by the physics near the time-reversal-invariant point

Γ(0, 0, 0) in the BZ, around which the low-energy effective

Hamiltonian also satisfies a chiral symmetry. This Hamilto-

nian is given by

H(k) = ǫ0(k)I4×4 +





























M(k) A1kz 0 A2k−
A1kz −M(k) A2k− 0

0 A2k+ M(k) −A1kz

A2k+ 0 −A1kz −M(k)





























, (17)

with k± = kx ± iky, ǫ0(k) = C + D1k2
z + D2|k+|

2 and M(k) =

M − B1k2
z − B2|k+|

2. Using Dirac matrices, this Hamiltonian

can be written as

H(k) = M(k)σz s0 + A1kzσxsz + A2kxσxsx + A2kyσx sy, (18)

where we left out the identity matrix as it only changes the

shape of the energy bands, not the topology of the system.

The chiral operator is given by the absent fifth Dirac matrix,

S = σy s0.

P ∗ T symmetry is here implemented by P = σz. However,

we note that particle-hole symmetry also exists in this case,

which reads CH∗(−k)C−1 = −H(k), with C = σysy, and satis-

fies CC∗ = 1. Thus the model Eq.(18) falls into the DIII class,

which is also characterized by a Z invariant in 3D3. Similar to

our previous discussion, we write H = H1 + H2, with

H1(k) = M(k)σzs0 + A1kzσx sz , (19)

H2(k) = A2kxσxsx + A2kyσx sy . (20)

Then H1 has a NL in kx−ky plane, and the nodes of H2 produce

a single line enclosed by the loop. This gives a NL winding

number νNL = 1, which corresponds to the topological prop-

erties of the Γ point.

Summary.- In summary, we have studied Hamiltonians with

P∗T symmetry where two terms define a NL which is gapped

out by the other terms. In the presence of chiral symmetry,

these gap terms can drive the system into a chiral TI, which

can be described by a winding number defined along the NL.

This winding number is associated with the geometric rela-

tion between the NL and the zeroes of the gap terms. We

investigated a lattice model in detail, which has two NLs in

the BZ, each of them with a winding number of 1 or 0 due

to the gap terms. This winding number corresponds to the

emergence of a Dirac cone for the surface states under OBC.

Finally, we applied our method to the 3D topological insula-

tors of the Bi2Te3 family, and showed the connection between

their topological nature and the NL winding number.
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