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Quantum oscillation experiments in high temperature superconductors show a strong thermally–
induced suppression of the quantum oscillation amplitude approaching the critical dopings [1–3]—in
support of a quantum critical origin of their phase diagrams. We suggest that, in addition to a
thermodynamic mass enhancement, these experiments may directly indicate the increasing role of
quantum fluctuations that suppress the quantum oscillation amplitude through inelastic scattering.
We show that the traditional theoretical analysis of the quantum oscillation amplitude in correlated
metals results in a contradiction with the third law of thermodynamics and suggest a way to rectify
this problem.

Recent advances in high-magnetic field measure-
ments have amassed a body of information about
metallic quantum criticality in high-temperature
superconductors.[4–7] In particular, quantum oscillation
measurements in cuprate, YBa2Cu3O6+x[1], and pnic-
tide, BaFe2(As1−xPx)2[2, 3], systems suggest a strong
enhancement of the quasiparticle mass approaching a
critical doping—a locus for thermodynamic anomalies
in other measurements as well [3, 8, 9].

The quasiparticle mass, m?, is inferred in these
measurements from analysis of the temperature depen-
dence of the quantum oscillation amplitude A(T ).[10]
In conventional metals, A(T ) decays over a tempera-
ture range that is inversely proportional to the quasi-
particle mass with no parameters other than the mag-
netic field and temperature entering the functional form,
A0(T ) = X/ sinhX, where X = 2π2(kBT )/(~ωc) and
ωc = eB/m? is the cyclotron frequency.[11] This form
of the temperature dependence of A(T ) originates in the
temperature smearing (over an energy interval kBT ) of
the occupation number of Landau levels (spaced at ~ωc)
near the Fermi surface. Importantly, it relies on the pres-
ence of well-defined quasiparticles near the Fermi sur-
face, justified by the Fermi liquid theory of conventional
metals.[12, 13]

Unlike the renormalizations of m?, which describe
changes in electron velocity without changes in lifetime,
electron interactions in correlated metals lead to anoma-
lous quasiparticle relaxation dynamics, observed via the
temperature and energy dependence of the quasiparticle
relaxation rate 1/τ(T, ε).[4–7] Such departure from Fermi
liquid behavior must change the character of quantum os-
cillations, or at the very least add to the temperature de-
pendence of A(T ) and change its interpretation in terms
of the quasiparticle mass.

a b

FIG. 1. The temperature dependence of quantum oscillations
in YBa2Cu3O6+x near optimal doping. a Quantum oscilla-
tions in the c-axis resistivity, ρzz, up to 90T for YBa2Cu3O6.86

(p = 0.152, Tc = 92K). [1] b The temperature-dependent
amplitude of the oscillations in a closely follows the standard
Lifshitz-Kosevich behavior A(T ) (black line).

It is therefore puzzling that the observed temperature
dependence of A(T ) in high-temperature superconduc-
tors (Figure 1) appears, within experimental resolution,
to be identical to its Lifshitz-Kosevich form A0(T ), even
for chemical compositions near the critical doping[1–3]
where strong correlation effects are well established.[4–
7] Herein we discuss the thermodynamic constraints on
the form of A(T ) that derive directly from the third law
of thermodynamics (Nernst’s theorem) and are indepen-
dent of the nature of the metallic state. Importantly, the
form of A(T ) required by these constraints suggests that
the observed A(T ) is universal in its broad features and
is not specific to Lifshitz-Kosevich form A0(T ).

Whether the doping evolution of A(T ) observed in
Refs. 1–3 approaching critical doping is a result of quasi-
particle mass evolution alone is now an open question.
More insight into the dynamic and static effects near a
quantum critical point can be gained from comparison
between masses obtained in quantum oscillation mea-
surements with those from other experimental probes,
such as heat capacity, cyclotron resonance, and Landau
level spectroscopy.
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At low temperatures, metals in a magnetic field ex-
hibit quantum oscillations—an oscillatory variation of
magnetization, resistivity, and other properties with field
intensity.[10] The frequency, F , of the oscillations, which
are periodic in inverse magnetic field, 1/B, has a direct
geometric interpretation as the extremal area (perpen-
dicular to the field) of the Fermi surface in momentum
space.[14] Quasiparticle properties near the Fermi sur-
face, such as the effective mass m? and the relaxation
time τ , can be obtained from the analysis of the field
and temperature dependences of the oscillation ampli-
tude A(T,B). The amplitude A(T,B) can be defined
via the oscillatory part of the thermodynamic potential,
Ωosc(T,B) ∝ A(T,B) cos(2πF/B+γ). Note thatA(T,B)
contains all of the temperature dependence in this ex-
pression, therefore, it determines the oscillatory part of
entropy, Sosc(T,B) = −∂Ωosc(T,B)/∂T .

Nernst’s theorem requires that the total entropy
vanishes in the zero temperature limit, [Sosc(T,B) +
Sbg(T,B)]T→0 = 0 where Sbg(T,B) is the non-oscillatory
part.[15, 16] This requirement can only be satisfied at all
fields if Sosc(T,B) itself vanishes in the zero temperature
limit because of its distinct magnetic field dependence,
Sosc(T → 0, B) = 0. The temperature derivative of the
amplitude of quantum oscillations must therefore vanish
in the zero-temperature limit,(

∂A(T,B)

∂T

)
T→0

= 0 . (1)

Similarly, the oscillating part of the heat capacity,
cosc(T,B) = T (∂Sosc(T,B)/∂T ), must vanish at zero
temperature. This requires that the curvature of A(T,B)
is less singular than 1/T in the limit of zero temperature,(

T
∂2A(T,B)

∂T 2

)
T→0

= 0 . (2)

We emphasize that this line of reasoning does not provide
justification for the presence of quantum oscillations in
any metal, but rather it sets tight bounds on the behavior
of A(T,B) if the metal does exhibit quantum oscillations
in the zero-temperature limit, i.e., if A(T,B) can be de-
fined at all. It is in this sense that these thermodynamic
identities are independent of the character of the metallic
state.

Being a result of a well-controlled microscopic calcu-
lation, the Lifshitz-Kosevich A0(T ) satisfies identically
both Eqs. (1) and (2): A0(T ) approaches zero tem-
perature with zero slope and finite (non-singular) cur-
vature. The temperature dependence of A0(T ) in a
broad temperature range is tightly constrained by re-
quirements of vanishing entropy at zero temperature,
dA0(T )/dT |T→0 = 0, and fast decay at high tempera-
tures. Furthermore, its temperature dependence is set by

a single energy scale, ~ωc, which requires A0(T ) = f0(X)
where the function f0(X) approaches zero with zero slope
and decays for X & 1.

The form of A(T) in the quantum-critical regime need
not be identical to that of LK because the underlying
metallic state is not the same as the one assumed in cal-
culate the Lifshitz-Kosevich form of temperature depen-
dence. However, for the scale invariant dynamics[7] in
the vicinity of quantum critical point the temperature
dependence of A(T ) can only be set by an energy scale
associated with external magnetic field, α × ~ωc. Thus,
A(T ) = fq(X/α) where α is a numeric factor. The func-
tion fq(X) is similar in its form to f0(X): it must ap-
proach zero temperature with zero slope (Nernst’s theo-
rem) and it must decay for X & 1. Further refinement in
microscopic modeling and experimental sensitivity may
point to more subtle differences in the functional form of
the two temperature dependences. Unlike the electron
renormalization in m? which describe changes in elec-
tron velocity without changes its lifetime, α originates in
quasiparticle relaxation dynamics, via the temperature
and energy dependence of the quasiparticle relaxation
rate 1/τ(T, ε). We note that fitting A(T ) = fq(X/α)
with A0(T ) = f0(X) yields m?/α rather then the quasi-
particle mass m?.[17]

Thus, the observed Lifshitz-Kosevich functional form
of the temperature dependence of the amplitude of quan-
tum oscillations in high-temperature superconductors[1–
3] should not be taken as conclusive evidence of Fermi
liquid behavior, where all electron scattering is elastic
and an interaction effects are captured by mass renormal-
ization. This observation leads one to ask whether and
how quantum oscillation can arise near quantum critical
point where quasiparticles are poorly defined.

First, we note that the existing theoretical discussions
of the amplitude of quantum oscillations in correlated
metals all lead to finite entropy at zero temperature,
dA(T )/dT |T→0 6= 0 [20–28], violating Nernst’s theorem.
In the remainder of this note we attempt to identify the
source of the problem and point to a way to resolve it.
In particular, we suggest that rather than signaling in-
adequacy of their common starting point (Luttinger’s
functional representation of the Free energy [13]), the
violation of Nernst’s theorem in these discussions simply
indicates that the approximation scheme chosen is incon-
sistent, following too closely the approximation scheme
used for the Fermi liquid metal.

The standard starting point for the existing theoret-
ical analysis of quantum oscillations in a strongly inter-
acting electron liquid[20–27] is the Luttinger’s functional
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representation for the thermodynamic potential [13, 29],

Ω = T
∑
iεn,p

ln(G) + Y {G} − T
∑
iεn,p

G(G−10 −G−1) , (3)

where G(iεn, p) = 1/[iεn − ε(p) + µ − Σ(iεn, p)] is the
exact Green’s function for interacting electrons, and
G0(iεn, p) = 1/[iεn− ε(p) +µ] is the Green’s function for
free electron propagation.[30] Y {G} stands for an infinite
set of diagrams in which electron quasiparticle propaga-
tion is represented by G(iεn, p)[13].

The first term in Eq. (3) evaluates to

Ω1 =−
∫

dε

2π
tanh

ε

2T

∑
p

Im ln
[
ε−εp+µ−ΣR(ε, T )

]
,

(4)

where εp are the energies of quasiparticle states. This
term is similar in structure to the Green’s function
representation of the thermodynamic potential for the
non-interacting Fermi gas, Ω0 = T

∑
iεn,p

ln(G0) =

−T
∑
p ln
(

1 + e
µ−Ep
T

)
(see SM for details). In Fermi

liquid metals, the oscillatory part of the thermody-
namic potential is obtained by analysis of this term, Ω1,
alone.[12, 31]

The single-particle energy levels εp in a magnetic
field consist of a set of quantized Landau levels λp =
ωc(p+ 1/2) with degeneracy BA/Φ0 where A is the area
of the crystal, Φ0 is the flux quantum, ωc = eB/m? is
the cyclotron frequency, and m? = (~2/2π) (∂Ap/∂ε). Ap
is the Fermi surface area perpendicular to the magnetic
field.[11, 12] Performing the sum over Landau level index
p in Eq. (4) (SM) we obtain for the oscillatory (periodic
in 2π/ωc) part of Ω1 per unit area,

Ω1,osc =− 2m$c

∞∫
−∞

dε

2π
tanh

( ε

2T

)
× Im ln

(
1 + e−i

ε−ΣR(ε,T )+µ
$c

)
, (5)

where $c = ωc/2π. Quasiparticle lifetime effects are
introduced in Eq. (5) via the temperature and energy
dependence of the imaginary part of the self-energy,
1/τ = −2ImΣR(ε, T ). The real part of the self en-
ergy, ReΣR(ε, T ), is responsible for quasiparticle mass
renormalization[30]. We distinguish the “static” and
“dynamic” parts of the quasiparticle relaxation rate,
ImΣR(ε, T ) = ImΣRstat + ImΣRdyn(ε, T ). The static part,
1/τ0 = −2ImΣRstat, is independent of temperature and en-
ergy, equal to ImΣR(ε → 0, T → 0). This term typi-
cally describes the effects of elastic disorder, and intro-
duces a temperature-independent exponential envelope

in field to the oscillation amplitude—the so-called “Din-
gle” factor.[10] The dynamic part, 1/τdyn = −2ImΣRdyn,
left out of calculations of A0(T ) in the Fermi liquid,[10]
contains all the temperature and energy dependence of
ImΣR(ε, T ) and is constrained by ImΣRdyn(ε → 0, T →
0) = 0. For the remainder of this discussion we will ex-
plicitly focus on the dynamic effects introduced through
ImΣRdyn, and all mass-renormalization effects that enter

through ReΣR(ε, T ) are contained in the renormalized
$c.

The principal harmonic of Ω1,osc, Eq. (5), defines the
temperature dependent amplitude A1(T )

Ω1,osc ∝RDA1(T ) cos (µ/$c) ,

A1(T ) =
1

$c

∞∫
−∞

dε

2
sin

(
ε

$c

)
tanh

( ε

2T

)
e−

ImΣRdyn(ε,T )

$c ,

(6)

where the temperature-independent Dingle factor RD =
e−

1/2$cτ0 accounts for the effects of elastic scattering.
In the limit where the dynamic part of the self-energy
vanishes, ImΣRdyn(ε, T ) = 0, A1(T ) reduces to its Fermi

liquid form, A0(T ) = − (1/$c)
∫
dε sin (ε/$c)nF (ε) =

X/ sinhX, where X = πT/$c and nF (ε) =
[1− tanhε/2T ] /2 is the Fermi-Dirac distribution function.
This limit is used to set the normalization factor in A1(T )
in Eq. (6). In this approximation, where we have only
considered Ω1, correlation effects introduced via the self
energy change the form of A1(T ). We can now examine
whether this modified form of A1(T ) satisfies the ther-
modynamic constraint imposed by Nernst’s theorem, or
whether a more complete analysis of Luttinger’s func-
tional is required.

Consider the temperature derivative of A1(T ) in
Eq. (6),

dA1(T )

dT
=

1

$c

∞∫
−∞

dε

2
sin

ε

$c
e−

ImΣRdyn(ε,T )

$c

×

[
− ε
T

(
∂tanh ε

2T

∂ε

)
− 1

$c
tanh

ε

2T

(
∂ImΣRdyn(ε, T )

∂T

)]
.

(7)

The frequency integration of the first term on the second
line vanishes in the limit of zero temperature because it
is confined to an interval ∝ kBT about zero. This term
is the only one present in the expression for the tem-
perature derivative of A0(T ). The second term is finite
unless ∂ImΣRdyn(ε, T → 0)/∂T decays fast enough with

ε. We emphasize that it is the behavior of ImΣRdyn(ε, T )
at energies below as well as above kBT that determines
the slope of A1(T → 0). We therefore conclude that the
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violation of the Nernst’s theorem constraint dA1(T →
0)/dT = 0 in Ω1 is a associated with the anomalous
energy-dependence of ∂ImΣR(ε, T → 0)/∂T . For exam-
ple, in the Fermi liquid, where ImΣRdyn(ε, T ) = aε2+bT 2,

the derivative ∂ImΣRdyn(ε, T → 0)/∂T is zero and there-
fore the Nernst’s theorem constraint is satisfied by the
oscillating component Ω1,osc alone.[31] For an arbitrary
form of self-energy, this constraint is not necessarily sat-
isfied without fine tuning. Therefore, a complete analysis
of the effects of electronic correlations on the amplitude of
quantum oscillations must include the effects captured by
the other two terms in the Luttinger functional, Eq. (3).

It is instructive to compare this situation with a Fermi
liquid metal. Analyticity of the Fermi liquid descrip-
tion of a normal metal ensures that oscillating compo-
nents in the last two terms of Eq. (3) cancel out.[12]
At the same time, quasiparticle relaxation near the
Fermi surface in Fermi liquids is nearly temperature–
and energy–independent.[32, 33] Therefore, analysis of
Ωosc(T,B) constrained to Ω1 alone is consistent in the
Fermi liquid: ImΣRdyn(ε, T ) has weak temperature and
frequency dependence. In contrast, for correlated metals
such as cuprates near the critical doping, both of these
conditions—that of a weak temperature–and frequency–
dependence of ImΣRdyn(ε, T ) and that of analyticity which
warrants cancellation of the last two terms in Eq. (3)—
break down.[34, 35]
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