
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Compactly supported Wannier functions and algebraic K-
theory
N. Read

Phys. Rev. B 95, 115309 — Published 20 March 2017
DOI: 10.1103/PhysRevB.95.115309

http://dx.doi.org/10.1103/PhysRevB.95.115309


Compactly-supported Wannier functions and algebraic K-theory

N. Read
Department of Physics, Yale University, P.O. Box 208120, New Haven, CT 06520-8120, USA

(Dated: February 23, 2017)

In a tight-binding lattice model with n orbitals (single-particle states) per site, Wannier functions
are n-component vector functions of position that fall off rapidly away from some location, and such
that a set of them in some sense span all states in a given energy band or set of bands; compactly-
supported Wannier functions are such functions that vanish outside a bounded region. They arise
not only in band theory, but also in connection with tensor-network states for non-interacting
fermion systems, and for flat-band Hamiltonians with strictly short-range hopping matrix elements.
In earlier work, it was proved that for general complex band structures (vector bundles) or general
complex Hamiltonians—that is, class A in the ten-fold classification of Hamiltonians and band
structures—a set of compactly-supported Wannier functions can span the vector bundle only if the
bundle is topologically trivial, in any dimension d of space, even when use of an overcomplete set of
such functions is permitted. This implied that, for a free-fermion tensor network state with a non-
trivial bundle in class A, any strictly short-range parent Hamiltonian must be gapless. Here, this
result is extended to all ten symmetry classes of band structures without additional crystallographic
symmetries, with the result that in general the non-trivial bundles that can arise from compactly-
supported Wannier-type functions are those that may possess, in each of d directions, the non-trivial
winding that can occur in the same symmetry class in one dimension, but nothing else. The results
are obtained from a very natural usage of algebraic K-theory, based on a ring of polynomials in
e±ikx , e±iky , . . . , which occur as entries in the Fourier-transformed Wannier functions.

I. INTRODUCTION

The subject of topological phases in quantum non-
interacting particle systems, or in linear wave-equation
systems, has grown into a major area of research in con-
densed matter physics, which includes the free (i.e. non-
interacting) fermion approximation to topological insu-
lators and superconductors. Various approaches to the
latter problems have lately been converging around ques-
tions of which of the phases can be represented by ex-
amples that possess sets of compactly-supported wave
packets for a single particle, constructed from states in a
single band or from a subset of the bands in k space, that
are in some sense complete sets (like Wannier functions),
and with associated single-particle Hamiltonians in which
the hopping matrix elements are strictly short range (i.e.
their range is bounded). (We consider only systems that
are invariant under a discrete group of translations on a
lattice in real [position] space, and have in mind tight-
binding models that have only a finite-dimensional space
of orbitals [single-particle states] available at each lattice
site.) The various approaches just mentioned are (i) ten-
sor network states [1, 2]—the extension of matrix prod-
uct states [3] to more than one dimension—which can
be applied to interacting [4] as well as to non-interacting
particles; (ii) compactly-supported Wannier-type func-
tions [5, 6], an extreme example of Wannier functions [7],
of interest in electronic structure calculations; and (iii)
flat-band Hamiltonians with strictly short-range hopping
[9], an extreme form of the flat-band approach popular
in constructions of topological insulator states, including
ones with interactions.

In each of these areas, which have been progressing
largely independently, there are by now “no-go” theo-

rems [1, 9] and numerical results [6] that in each case say
(expressing it loosely) that some topologically non-trivial
phases cannot be constructed with the techniques men-
tioned (and with an appropriate gap in the spectrum of
the Hamiltonian in the model) due to some sort of ob-
struction. The cases ruled out are some of those occur-
ring in a space of dimension d larger than 1. On the other
hand, constructions as matrix-product states have long
been known for some non-trivial topological phases in di-
mension d = 1 (even if not always under those names),
including some for non-interacting fermions [10]. But in
each approach, many cases among the distinct non-trivial
topological phases remained unresolved.
In this paper we provide a unified view of these tech-

niques, and a full solution of the problem for non-
interacting topological phases in each of the ten sym-
metry classes [11–13] that arise on a lattice (in a tight-
binding model) that possesses translation symmetry, but
no other crystallographic symmetry, and in all dimen-
sions of space. The essential nature of the problem lies
in the form of functions in k space, which are vector
functions of k with entries that are polynomials in e±ikx ,
e±iky and so on, that lie in a band (or in the span of
the states in a set of bands) for all k. In position space,
these become packets that have compact support, that
is, they vanish outside some bounded region of the lat-
tice. (Single-particle tight-binding Hamiltonians that are
strictly short-range have matrix elements that are the
same type of polynomials, when written in k space.)
These polynomial functions in k space form certain al-
gebraic rings, and lead to the use of algebraic methods.
The solution to the question of which phases can be con-
structed (subject to some conditions, and under a certain
notion of equivalence of topological phases) is given by
a classification that uses algebraic K-theory of the given
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rings, in contrast to the topologicalK-theory [14] now fa-
miliar to physicists in the classification of non-interacting
topological phases in general [13]. The solution reveals
that the only non-trivial topological phases that can be
constructed in these ways in dimensions higher than 1 are
those that are non-trivial only because they utilize topol-
ogy that comes from the one-dimensional case in the same
symmetry class, applied to each of the d directions in
space, together with topology that comes from the zero-
dimensional case in the same symmetry class; thus for
d > 1 these are particular examples of “weak” topologi-
cal insulators and superconductors. We also comment on
the form of this general result, and speculate that some-
thing similar should hold for interacting tensor network
states. This work was motivated by the necessity of ex-
tending the previous results on tensor network states by
Dubail and the author [1] (to be referred to as DR) to
other symmetry classes.
In the remainder of this introduction, we review the

general problems, the older results, and work by others
within the various approaches, then describe our results.
Readers should note that some basic terms used later are
defined in this section only.

A. Compactly-supported Wannier-type functions

The basic natural place at which to begin is the
compactly-supported Wannier-type functions, which are
the central topic of the discussion, and which will be de-
fined in this Section. First, however, we recall the nature
of energy-band structure. For a tight-binding model on a
lattice (with the translation-symmetry assumption men-
tioned above), the single-particle Hamiltonian is a ma-
trix with rows and columns labeled by pairs (i, α), where
i denotes a site in a Bravais lattice and α = 1, . . . , n
labels the single particle states, or orbitals, on each lat-
tice site; α could subsume any spin indices. (Models for
other, non-Bravais, lattices can be brought to this form
by grouping lattice sites in the same unit cell together
onto sites of a Bravais lattice, and treating each group
as a single site.) For the present, the Hamiltonian is
generic; it is not required to be real, nor to have any
symmetries other than under translations. In Fourier (or
Bloch) space, single particle states are labeled instead by
k and α (k has components kµ, µ = 1, . . . , d), with k

in the Brillouin zone which, because of equivalence of ks
that differ by addition of reciprocal lattice vectors, topo-
logically is a d-dimensional torus, which we call T d. The
Hamiltonian in k-space is diagonal in k, and so is an n×n
matrix function of k. Its energy eigenvalues form a set
of n continuous real functions of k, called energy bands.
(The bands may cross, making their identification as n
distinct functions non-unique.) We are more interested
in the corresponding eigenvectors, each of which is an n-
component vector that varies with k. Then the eigenvec-
tors corresponding to any subset ofm of the bands at any
k span a subspace of dimension m in the n-dimensional

vector space.

Wannier functions have a long history; see Refs. [7, 8].
They may be associated with a single band, or with a
set of bands. A Wannier function is a wavepacket in po-
sition space, taking values in the space spanned by the
orbitals for each site; thus it is a vector with components
labeled by the indices i, α. In the original definition, it
and its translates on the lattice are further supposed to
be constructed from the states in a single band, and to
be orthogonal to one another. This can be accomplished
if each of them is the inverse Fourier transform of a sin-
gle function of k that is a normalized eigenvector in the
desired band at each k. The lattice translations of such a
Wannier function correspond to inverse transforms of the
same function of kmultiplied by integer powers of eikµ for
each µ; the power in each eikµ determines the translation
of the function. (Here and below, for simplicity we treat
the lattice as square, cubic, or hypercubic; other Bravais
lattices behave similarly, and are included by using non-
orthogonal coordinates that correspond to the primitive
translations of the lattice, while k vectors are viewed as
being in the dual space to these coordinates, so that no
metric on space or reciprocal space is ever used.) More
generally, one could consider a set of m functions in k

space that are in the span of the eigenvectors for a set of
m bands, vary continuously with k, and are orthonormal
at each k in T d. In order to make the Wannier functions
well localized in position space, the functions in k space
must be smooth, not just continuous. In recent years,
there has been interest in making the Wannier functions
as localized as possible, in some definite sense; these are
called maximally-localized Wannier functions. See Ref.
[15] for a recent review.

We will define a broader notion. For theoretical pur-
poses, orthonormality of the vector-valued functions in k

space is not really required; one may consider only lin-
ear independence and completeness at each k. In fact,
in some situations, linear independence is not essential
either, and we can drop it, in particular we can allow
more than m functions of k (still in the span of the
same m bands). But completeness does seem important.
Hence (following DR) we define a collection of Wannier-
type functions to be a set of continuous vector-valued
functions of k which, at each k, lie in and span the m-
dimensional subspace spanned by the eigenvectors in the
m bands in question (the inverse Fourier transforms of
these, and translations thereof, give the actual Wannier-
type functions in position space). We will see that the
set can always be taken to be finite.

The language of vector bundles can be useful in these
problems, even for band theorists. A vector bundle
[14, 18] consists of a “base” space B, which for band
theory is just the Brillouin torus T d (points in which can
be labeled by k), and for each k a vector space of the
same dimension, m say, for all k. (In our discussion, the
vector spaces are complex.) The totality of vectors in
these spaces forms the “total space” of the vector bun-
dle, while the vector space at each k is called the “fibre”



3

at k. The dimension of the fibre at each point is called
the “rank” of the vector bundle; we emphasize that (be-
cause the Brillouin torus is a connected space) it is the
same at all k. In band theory for a tight-binding model,
there is a rank n vector bundle which includes all possi-
ble states in k space. For a set of m bands, the states
in those bands (may) form a rank m vector bundle that
is a sub-bundle of that; the fibre at each k is a subspace
of the n-dimensional space. (The notation n and m for
these numbers will be used fairly consistently throughout
the paper.) In order to be a vector bundle, it is crucial
that the fibres vary continuously with k; here that means
that the rank-m subspace (or one could say, the projec-
tion operator onto the subspace) varies continuously with
k. (When bands cross, this may not be satisfied, depend-
ing on the choice of which m bands to consider, and then
one does not obtain a vector bundle. But for a set of
bands that occupy a range of energies and are separated
at every k by a gap or gaps from other bands higher or
lower in energy, this will hold.) Next, a “section” of a
vector bundle is a function of k that takes values in the
fibre of the vector bundle at each k, that is defined for all
k, and continuous in k. We can see that a Wannier func-
tion corresponds to a section of a vector bundle, however
in general sections are allowed to vanish at some k. One
can consider sections, or sets of sections, that have addi-
tional properties, such as being smooth, or normalized,
and so on. The virtue of the language of vector bundles
in general is that there are situations in which it is more
convenient to speak of the fibre at k as a vector subspace,
rather than of particular vectors, or of the totality of vec-
tors at all k, rather than of particular sections. Then in
the language of vector bundles, Wannier-type functions
correspond to a set of sections that span the fibre of the
vector bundle at every k. Even if the vector bundle is not
given in advance, we can define a set of Wannier-type
functions to be a finite set of continuous n-component
vector functions of k that at every k span a subspace of
dimension precisely m (the same m at all k); this then
defines the vector bundle.

Wannier functions are usually supposed to be well lo-
calized in position space. The inverse Fourier transform
of a section of an arbitrary vector bundle over the Bril-
louin torus may not be well localized, because a section is
only required to be continuous (as an n-component vec-
tor function of k). In order to obtain Wannier functions
that fall exponentially, asymptotically at large distance
from the Wannier “center”, one requires that the section
of the vector bundle be (real) analytic as a function of
k (again, this means each component of the vector is an
analytic function of k). We will sometimes use the term
analytic for a rank-m vector bundle that is a sub-bundle
in the tight-binding model, if it has the property that, for
every k in the Brillouin torus, there is a set of m sections
of the vector bundle that are both (real) analytic and
span the fibre at k, or equivalently if the projection op-
erator into the fibre varies real-analytically with k at all
(real) k. Again, not all vector bundles satisfy this prop-

erty, however, if there is an energy gap (above or below)
separating the bands making up the vector bundle from
the remaining bands at every k, then the vector bundle
will be analytic.
It has long been realized that in a topologically non-

trivial band, Wannier functions in the traditional sense
do not decay rapidly with distance [19]. This is typically
described by saying something like “there is no smooth
gauge” for the function in k space (the Fourier transform
of the Wannier function). When expressed in the lan-
guage of vector bundles, this result becomes immediate.
First, we introduce the standard definition of a trivial
vector bundle: a rank m vector bundle is (topologically)
trivial if it has a set of m sections that are linearly in-
dependent at all k (in particular, none of them vanishes
anywhere). Otherwise, of course, it is termed non-trivial.
Note that this definition of trivial and non-trivial does
not require examination of any Chern numbers and so on,
as used for example in Refs. [19]; Chern numbers, though
possibly convenient computationally, in general give only
partial characterizations of vector bundles anyway (i.e. a
trivial vector bundle has all Chern classes zero, but the
converse does not have to hold). (However, in low di-
mensions, i.e. d ≤ 3, the familiar first Chern numbers do
characterize complex vector bundles up to isomorphism;
see Sec. III B below.) Then for a non-trivial vector bun-
dle, any attempt to find a linearly-independent set of m
sections (corresponding to a “choice of gauge”) will find
that they cannot be made continuous (let alone analytic)
at all k, while use of discontinuous “pseudo-sections” will
produce slowly-decaying tails in position space. (A sim-
ilar result has been discovered for topological insulators
[20].)
Our definition of Wannier-type functions reflects an

attempt to circumvent this result. Even a non-trivial
vector bundle can have a larger set of more than m sec-
tions that span the fibre at every k, but necessarily any
subset of size m becomes linearly dependent at some k.
If the sections in the set are analytic, then the corre-
sponding Wannier type functions will decay rapidly, and
may be useful, at the cost of having to work with an
“overcomplete” set of more than m functions. Indeed,
the construction of a pair of time-reversal non-invariant
sections of the occupied band bundle in a topological in-
sulator in Ref. [20] can be viewed as an example of this,
if one includes the time-reversed partners of the sections
in the set (compare Section III A below).
One type of highly-localized behavior for functions is

that they could be compactly supported, that is, vanish
outside some bounded region on the lattice in position
space (this is not necessarily equivalent to other defi-
nitions of maximally localized). In Fourier space, such
functions become polynomials in e±ikµ , that is the de-
gree in each eikµ is bounded both above and below. We
define

Xµ = eikµ (1)

(for the hypercubic lattices); polynomials with both pos-
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itive and negative powers of the variables Xµ are called
Laurent polynomials, while the usual kind with only non-
negative powers in Xµ will be called “ordinary” poly-
nomials. (Frequently, the distinction is not significant.)
The use of such functions has recently been advocated
and connected with compressed sensing [5]. For band
structure, the corresponding sections of a vector bundle
can be called (following DR) polynomial sections. It may
be unlikely that a generic band structure has a vector
bundle that admits polynomial sections. But for studies
of model systems, one can consider band structures that
have (over-)complete sets of polynomial sections for the
vector bundle for, say, the filled bands—in other words,
compactly-supported Wannier-type functions. (Such a
vector bundle, which we will term polynomially gener-
ated in Sec. II B below, is necessarily analytic [1].) Then
the question has been raised of whether such models ex-
ist for topologically non-trivial vector bundles (phases of
matter) [6]. This is the problem that is solved in the
present paper.

B. Free-fermion tensor networks, parent

Hamiltonians, and no-go theorem

A little earlier, similar issues were discussed in an ap-
parently different setting, that of tensor network states
(TNSs). TNSs are a broad subject, but here we will de-
scribe only the free-fermion versions.
A ground state that corresponds to band structure of

the sort we have been discussing, and withm bands filled,
has the general form in terms of second quantization

exp



∫

ddk

(2π)d

∑

α,α

gk,αα c
†
k,αck,α


 |11 · · · , 00 · · ·0〉 .

(2)
Here α = 1, . . . , m, α = m + 1, . . . , n, and the refer-

ence state |11 · · · , 00 · · ·0〉 is annihilated by c†
k,α (ck,α)

for all k, or equivalently by c†
x,α (cx,α) for all x, and for

all α (α). The creation and annihilation operators obey

{ckα, c†k′α′} = (2π)dδ(k − k′)δαα′ for α, α′ = 1, . . . , n.
We write gk,αα as gk, which is an (n−m)×m matrix of
functions of k in the Brillouin zone, say [−π, π]d for the
hypercubic lattice.
The ground state is annihilated by single-particle op-

erators of the form

d†
k
=

∑

α

uk,αc
†
k,α +

∑

α

vk,αc
†
k,α, (3)

where the coefficients obey

vk = gkuk, (4)

where uk (vk) is an m-component (n − m-component)
column vector. These are creation operators for particles
in states in the filled band, and so annihilate the ground

state. There are other operators of a similar form for the
empty band.
For a TNS, the coefficients gkαα must be ratios of poly-

nomials [1, 2] (if one gkαα is initially a ratio of Laurent
polynomials, then it can be turned into a ratio of ordinary
polynomials by multiplying numerator and denominator
by positive powers of some Xµs). Then we can find solu-
tions for u, v as polynomials. The equations for them can
be rewritten with polynomial coefficients by multiplying
each component by the lowest common denominator in
that row of g. Then they have the form

Zkwk = 0, (5)

where Zk is fixed (n − m) × n matrix with polynomial
entries and wk is an n-component column vector. The
polynomial solutions wk have inverse Fourier transforms
that are compactly supported. But when the filled band
is determined by such a set of polynomial equations, we
call it a polynomial bundle [1]; this should not be confused
with a polynomially-generated bundle, because in general
the set of all solutions (together with their translations
in position space) may not contain a set of Wannier-type
functions.
However, if there is a gap in the energy spectrum that

separates the filled from the empty states at each k, then
the vector bundle formed by the filled-band states will
be analytic. In Ref. [1], it was shown that for a poly-
nomial bundle that is analytic, for each k there is a
set of m polynomial sections [solutions to eq. (5)] that
span the fibre of the filled band bundle in a neighbor-
hood of that k. Thus for an analytic polynomial bun-
dle there are compactly-supported Wannier-type func-
tions, and conversely it is easy to see that if there are
compactly-supported Wannier-type functions, then the
vector bundle is analytic, though not necessarily a poly-
nomial bundle.
A further strong result, called a no-go theorem, was

proved by DR in Ref. [1]. It says that for band structures
as discussed, if the filled-band bundle is polynomial and
analytic, then it is topologically trivial as a complex vec-
tor bundle. (A heuristic argument for a version of this
statement in two space dimensions was given in Ref. [21].)
This then implies that if a TNS state of this type is con-
structed with a non-trivial vector bundle, then it is non-
analytic, and hence any parent Hamiltonian for it must
be gapless. Here a single-particle parent Hamiltonian is
one for which there is a set of energy bands in which
the eigenstates span the fibre of the “filled-band” bun-
dle at each k, and the remainder span the empty-band
bundle, and further the Hamiltonian has strictly short-
range matrix elements. The latter condition is equiva-
lent to having Laurent polynomial matrix elements in k

space (for a Hamiltonian, one cannot reduce the prob-
lem to ordinary polynomials, because the Hamiltonian
has to be Hermitian). More generally, the result implies
that any short-range single-particle Hamiltonian (with,
say, exponentially-decaying matrix elements) for which
the states in the filled and empty (i.e. positive and nega-
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tive energy) bands span the given non-trivial polynomial
filled- and empty-band bundles must be gapless.
A modified version of the proof of the no-go theo-

rem also shows [1] that if there are compactly-supported
Wannier-type functions for a vector bundle, then the vec-
tor bundle is topologically trivial. This statement is more
general than the no-go theorem for a free-fermion TNS,
because for the latter the polynomial sections are defined
by polynomial equations, and this is presumably less gen-
eral than simply having a set of sections given.
These statements about triviality should be inter-

preted with care, because in fact the proofs in DR in gen-
eral establish only that the bundle is stably topologically
trivial, but not necessarily topologically trivial; however,
for d ≤ 3, these notions are equivalent to each other and
to the vanishing of all Chern numbers. We define and
explain the notion of stable triviality, which is natural in
K-theory, in Sec. III B below.

C. Flat-band Hamiltonians

A further area where similar ideas have appeared is
flat-band Hamiltonians for non-trivial vector bundles;
here a flat energy band is an energy band in which the
energy eigenvalue is independent of k over the whole Bril-
louin torus. When more than one flat band is present,
the case of interest is usually that in which there are flat
bands that all have the same energy eigenvalue (regard-
less of whether or not the remaining bands are also flat,
with different energy). A particular question that has ap-
peared [9] is whether the Hamiltonian that has the flat
band or bands can have strictly-short-range matrix ele-
ments. (This paper appeared earlier than the published
version of Ref. [1], but later than the first version and
Ref. [2]; it was unfortunately not known to us until a
late stage in the present work.) We note immediately
the similarity to the parent Hamiltonians discussed in
the preceding Subsection. In Ref. [9], the authors proved
that for such a two-dimensional Hamiltonian with a sin-
gle flat band, or a degenerate set of flat bands, the Chern
number of the (set of) band(s) must vanish. Further work
on related problems appears in Ref. [22].
We can give a short proof of the result of Ref. [9] as

a consequence of the no-go theorem mentioned in the
preceding subsection. First, we notice that the eigenvalue
problem for the flat band (or degenerate flat bands) is
given by

Hkwk = 0, (6)

where wk is again a section of the vector bundle defined
by the flat bands, Hk has Laurent polynomial entries,
and we have set the energy of the states in the flat band
to zero by a shift of the Hamiltonian by a multiple of
the identity if necessary. After multiplying by positive
powers of Xµs (as necessary), these equations have the
same form as the polynomial equations (5). Thus the
flat-band vector bundle is polynomial. If we assume that

an energy gap is present above and below the flat band
at all k, then it is also analytic; this assumption seems
to be implicit in the problem at hand. Then it follows
from the DR no-go theorem [1] that the vector bundle is
stably trivial. This includes the d = 2 result of Ref. [9],
and in fact goes further, as it applies in all dimensions d
of space.
The flat-band problem is less general than the TNSs,

because in the former case the polynomial equations in-
volve the Hamiltonian, not a more general matrix, and
the Hamiltonian must be Hermitian at each k, unlike the
Zk matrix above. We see that the problem of compactly-
supported Wannier-type functions is the most general of
all.

D. Symmetry classes, role of algebraic K-theory,

and results

The full topological classification of the ten symmetry
classes of band structures for non-interacting particles (or
linear wave equations), with a gap in the energy spec-
trum, on a lattice with translation, but no other crystal-
lographic, symmetries was introduced in Refs. [12, 13]. It
was connected with topological K-theory by Kitaev [13];
see also Refs. [16, 17]. The basic meaning of each of the
ten classes will be explained later in the paper as we go
through the cases.
In the present paper, the goal is to generalize the no-go

theorems already mentioned, which were for the general
case of band structures for complex hopping Hamiltoni-
ans, or for complex vector bundles, to all of the ten sym-
metry classes that occur when the system has transla-
tion symmetry but no other crystallographic symmetries.
These will include the paired states, or superconductors,
for which particle number is not conserved; these can al-
ways be mapped onto number-conserving single-particle
models by “doubling” in a well-known way.
If one starts by examining the compactly-supported

functions, or polynomial sections, it soon becomes appar-
ent that an algebraic approach may be fruitful. As ex-
plained above, given a finite set of compactly-supported
functions, one can obtain others by applying translations
in position space, and by taking linear combinations of
the functions and their translates. (Our analysis always
assumes that the lattice is infinite, though the results
nonetheless have applications in finite systems with peri-
odic boundary conditions.) We restrict the linear combi-
nations to consist of finitely-many terms, each of which
is some translate of one of the (finite) initial set of com-
pactly supported functions; this condition ensures that
the combinations are again compactly supported. In
Fourier (k) space, translation in position space becomes
multiplication by factors like Xµ (defined above) to pos-
itive or negative integer powers, and so we are taking
linear combinations of the given set of polynomial sec-
tions, with coefficients that are polynomials in Xµ with
complex coefficients in the polynomial (in the simplest
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case of complex vector bundles without further symme-
tries, as in all examples so far). The set of all such com-
binations forms what is called a “module” over the ring
of such polynomials, and the module is said to be “gen-
erated” by the initial compactly-supported functions or
polynomial sections; this is analogous to having a vector
space that is generated (spanned) by a given finite set
of vectors, meaning that all others are obtained as lin-
ear combinations of the latter with complex coefficients.
The difference is that the “scalars” are now taken in a
ring (of polynomials), rather than belonging to the field
of complex numbers, while the vectors are actually vec-
tors of polynomials in Xµs (and so both the scalars and
the vectors can be viewed as functions of k), and this
makes a significant difference to the structure, which can
be much less trivial than it is for vector spaces with com-
plex scalars.

It turns out that algebraic K-theory provides appro-
priate tools for classifying this structure. [For experts,
we mention that we need only the “lower” algebraic K-
theory of Grothendieck and Bass, not the “higher” the-
ory of Milnor and Quillen.] In particular, our goal is
to classify which of the topological classes of bundles in
each symmetry class can be generated by a set of polyno-
mial sections; this classification is the desired extension
of the no-go theorem to the remaining nine symmetry
classes. For this, we need to associate a topological K-
theory class (or element of the K-group, or values of a
complete set of numerical invariants characterizing such
classes or elements), as in Ref. [13], with the bundle gen-
erated by the compactly-supported Wannier-type func-
tions. This information can be obtained from algebraic
K-theory groups because of the existence of natural maps
from the latter into the topologicalK-group classification
(a similar approach was also used in Ref. [9]); hence it
is useful first to classify the possible modules using al-
gebraic K-theory, for each of the ten symmetry classes,
before checking that the maps to the topological theory
work properly.

The final results can be characterized as follows. One
does not quite have a no-go theorem, saying that no non-
(stably)-trivial band structure can be obtained, but in-
stead there is a very limited set of possibilities. To de-
scribe this, we point out that (in some of the symmetry
classes, though not for the complex vector bundles as in
DR), there can be a non-trivial “winding number” of the
vector bundle (or of some aspect of it) as a function of
k along a closed path in the Brillouin torus that winds
around it, for example a path along one of the coordi-
nate axes. Such winding can occur in that symmetry
class in any dimension, and in the case of d = 1 dimen-
sion it provides the only possible non-trivial invariant of
the bundles, taking values in some cases in the integers
Z, and in other cases in Z/2 (read as “Z mod 2”, i.e. the
group with two elements); in five of the ten symmetry
classes, the invariant can only be zero. In higher dimen-
sions for the symmetry classes, the same values as in one
dimension for the same symmetry class for these winding-

number invariants can occur independently for each of
the d directions of k-space, giving groups consisting of
d-tuples of elements of either Z or Z/2, or else the trivial
group. In the topological classification, there are topo-
logical classes distinguished by non-zero values of other
invariants (such as a Chern number) as well as by the
winding numbers. But the result of the algebraic anal-
ysis for the bundles obtained from compactly-supported
Wannier-type functions is that the only non-trivial in-
stances are those with non-trivial winding numbers as
just described, and which are trivial in all other ways,
except in some cases for a global invariant coming from
zero dimensions. In zero and one dimension, these cover
all topological classes, but in more than one dimension
these instances are particular examples of “weak” topo-
logical insulators or superconductors, in which the only
non-trivial topology essentially arises from what is possi-
ble in one dimension in that symmetry class, applied to
each of the d directions of k-space, together with what
is possible in zero dimensions. For d > 1, none of the
“strong” topological insulators or superconductors can be
obtained from compactly-supported Wannier-type func-
tions or as free-fermion TNSs. For the reader’s conve-
nience, these results are spelled out in full detail, without
the technical derivation, in section VI, where a Table also
appears that makes comparison with the general case in
0, 1, and 2 dimensions.
The plan of the remainder of the paper is as follows:

section II gives some of the mathematical background
used. Sections III, IV, and V give the detailed analy-
sis, first for the three classic Wigner-Dyson classes (sec-
tion III), then for the three chiral symmetry classes (sec-
tion IV), and finally for the remaining Altland-Zirnbauer
classes (section V). Each of these sections consists of
two parts, the first describing the relevant features of
the symmetry classes, the second the algebraic K-theory
analysis of them (including the mapping into topological
K-theory). Much of the structure of the arguments in
the later sections is the same as that in section III, which
should be read carefully. Section VI, as mentioned, in-
cludes a summary of the precise results, and also some
discussion of the underlying reasons for the results, and
a conjectured extension to interacting systems. The final
section is a Conclusion.

II. MATHEMATICAL BACKGROUND

A. Algebraic background and definitions

This section mostly provides background, but can be
skimmed and referred back to later. For this general
background, see also Refs. [23–26].
We recall that a ring is a set of elements that forms

an Abelian group under addition (with 0 as the identity)
and has an associative multiplication operation that dis-
tributes over addition; we denote a generic ring by R. All
our rings have the multiplicative identity element, writ-
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ten 1. A ring is called commutative if multiplication is
commutative. The elements in a ring R that have a mul-
tiplicative inverse in R are called the units, and form a
multiplicative group denoted R×. A division ring is a
ring in which every non-zero element is a unit; a com-
mutative division ring is a field. A ring R is an algebra
over a field F if the center of R (the set of elements that
commute with all elements) contains a copy of the field
F (with the multiplicative identity identified with that in
the field); thus an algebra is a vector space over F with
an associative and distributive multiplication (with an
identity) defined on the vectors. Our most basic exam-
ples of rings are the integers Z, real numbers R, complex
numbersC, and quaternionsH. The latter are defined as
linear combinations, using real coefficients, of the identity

1 and elements î, ĵ, k̂ (not to be confused with vectors
k) subject to the relations

î2 = ĵ2 = k̂2 = î̂jk̂ = −1. (7)

R andC are of course fields, andH is a non-commutative
division ring. R, C, and H are also algebras over the
field R, and are the only finite-dimensional associative
division algebras over R.
We will also use some polynomial rings. The simplest

are of the form R[X1, . . . , Xd], with d ≥ 0 indetermi-
nates Xµ, µ = 1, . . . , d, and consist of polynomials in
the Xµs with coefficients in a ring R; addition and mul-
tiplication are defined in an obvious way. We will also
use extensively the rings of Laurent polynomials, denoted
R[X1, X

−1
1 , X2, X

−1
2 , . . . , Xd, X

−1
d ], which are polynomi-

als with both positive and negative powers, but with the
exponent of eachXµ in a polynomial bounded both above
and below. More generically these two types of polyno-
mial rings will be written R[Xµ] and R[X±1

µ ]. For the
following Laurent polynomial rings we will use notation

R1 = C[X1, X
−1
1 , . . . , Xd, X

−1
d ],

R2 = R[X1, X
−1
1 , . . . , Xd, X

−1
d ],

R3 = H[X1, X
−1
1 , . . . , Xd, X

−1
d ]. (8)

or R
(d)
i (i = 1, 2, 3) when we wish to specify the space

dimension d. The last of these rings R3 is not commuta-
tive. Each of them contains an image of the underlying
ring R, consisting of the constant polynomials (with no
Xµ appearing in the expression). Further, the units (in-
vertible elements) in the polynomial rings R[Xµ] with
R = R, C, or H are precisely the non-zero constants,
while those in the Laurent polynomial rings Ri are the
monomials, of the form

c
∏

µ

Xmµ
µ (9)

where c is a nonzero constant andmµ are integers, as may
easily be checked. All polynomial rings (Laurent or not)
over a division ring are both right and left Noetherian
(see Refs. [23, 24, 26] for the definition and the result);

the distinction between right and left lapses for commu-
tative rings. R1 and R2 are unique factorization domains
(as is Z), that is any element [a (Laurent) polynomial]
can be factored into prime or irreducible polynomials,
and the prime factorization is unique up to permutation
of the factors and multiplication of factors by units. [This
is well-known for the ordinary polynomial rings over a
field [23], and for Laurent polynomials follows by shifting
exponents (by multiplying by units) until all exponents
of all Xµ are non-negative.]

We will use modules over various rings. A module M
over R (an R-module) is a set of elements that form an
Abelian group (written additively), with an action of the
ring R taking any element of the module to some other el-
ement, written as multiplication: if m ∈M , r ∈ R, then
m→ mr is the map, with (m1 +m2)r = m1r+m2r and
(mr1)r2 = m(r1r2). Notice that we write the element
of the ring acting from the right, so all our modules are
right modules unless otherwise stated; for commutative
rings R, a right module can be viewed as a left mod-
ule (or vice versa), but for noncommutative rings, right
and left modules are distinct. (Many properties of a ring
are module-theoretic in character, and so, in the non-
commutative case, are defined for right or left action, as
for “Noetherian” which was already mentioned. When
the term “right” appears before the name of a property,
it means that there is a parallel definition for the “left”
version.) The ring R is both a left and right module
over itself (i.e. a bimodule). A homomorphism from one
module to another, both over the same ring, is a “linear”
map that commutes both with addition and with the ac-
tion of the ring on the modules. An isomorphism is a
homomorphism that has an inverse homomorphism; we
write A ∼= B when an isomorphism exists. Usually our
modules M will be finitely generated (f.g.), that is, there
is a finite set of generators in M such that any element
can be expressed as a linear combination of the genera-
tors, with coefficients in R. A submodule of a module
is any subset that also forms a module. A direct sum,
written M1 ⊕M2 of modules over R is really a module
consisting of all pairs (m1,m2) with m1 ∈M1, m2 ∈M2,
with addition of pairs, and multiplication of a pair by an
element of the ring, defined componentwise. It will be
common to say that some module “is” a direct sum if it
is isomorphic as a module to a direct sum of modules;
in this case the module is “decomposable” as a direct
sum. It is important that in general when a module has
a submodule, the module is not necessarily a direct sum
(unlike for representations of finite groups, for example).

Different types of modules will enter this work. Some
are free modules, which can be generated by n generators
that are linearly independent over the ring. (We will usu-
ally only require f.g. free modules.) Using the generators,
a f.g. free module, say F , can be represented faithfully
as the set of all column vectors with entries in R, and so
is isomorphic to Rn (the iterated direct sum of n copies
of R) for some n. Such a free module is said to have
rank n. If the ring is right Noetherian, then any sub-
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module of a finite-rank free module is finitely generated
[23–26]. As examples, we mention that modules over a
division ring are always free, and can be termed “vector
spaces” over the division ring. This includes the case of
non-commutative division rings such as the quaternions
H [27], as well as the fields R and C.
An important tool is the idea of an exact sequence. If

A, B C are modules over R, then a pair of maps (ho-
momorphisms) φ1 : A −→ B and φ2 : B −→ C form an
exact sequence

A
φ1−→ B

φ2−→ C (10)

if and only if the image imφ1 of A under φ1 is precisely
the kernel kerφ2 of φ2 (both the kernel and the image of
a homomorphism are modules). Thus not only do they
compose to give the zero map φ2 ◦ φ1 = 0 from A to C,
but the first map is a surjection onto the kernel of the
second. When more maps are present, as in

A1
φ1−→ A2

φ2−→ · · · φn−1−→ An, (11)

then the statement that the sequence is exact means that
exactness holds at each term at which there is both a
map in and a map out, as for A2 through An−1 here. In
particular, a “short exact sequence”

0 −→ A
φ1−→ B

φ2−→ C −→ 0 (12)

means that C ∼= B/A as a module, or strictly C ∼=
B/imφ1. In this case, one can say that A is (isomor-
phic to) kerφ2, while C is (isomorphic to) the cokernel
of φ1, that is B/imφ1.
Another important class of modules are the projective

modules [24–26] (they must not be confused with projec-
tive representations, which are entirely different). They
can be defined in several ways. One way is as a mod-
ule that is isomorphic to a summand in a free module.
Thus P is projective if and only if there is a P ′ such that
P ⊕P ′ ∼= F for some free module F (it follows that P ′ is
also projective); for P finitely generated, P ′ and F can be
taken to be finitely generated. Clearly, any free module
is projective. Another way to define a projective module
is by saying that any short exact sequence ending in a
projective module splits, that is, P is projective if and
only if for any short exact sequence ending in P ,

0 −→ A −→ B −→ P −→ 0, (13)

we have B ∼= A⊕ P .
We will sometimes need the general notion of a tensor

product over a ring that may be non-commutative. IfM1

is a right module and M2 is a left module over R, then
the tensor productM1⊗RM2 is generated (over Z, in the
basic case) by the set of pairs (m1,m2) of elements m1 ∈
M1, m2 ∈ M2, modulo relations that make it bilinear in
m1 and m2 under addition, and also such that elements
of R can be moved between the factors: (m1r) ⊗m2 =
m1 ⊗ rm2 for all m1, m2, r ∈ R. The tensor product is

not always a module over R, though it is always a module
over Z. But for a bimodule, one does get a module. For
example, as R is a right-left R-bimodule, for any right
R-module M , M ⊗R R ∼=M as a right module.
Sometimes it is desired to relate modules for one ring

to those of another, when the rings can be related. Given
a homomorphism from one ring R to another S, say
ϕ̂ : R −→ S, modules over R and S can be related.
Suppose for simplicity (as for the case we will use) that
R is a subring of S, so ϕ̂ is an inclusion. One way to
relate the respective modules is via the pullback or for-
getful map: in view of the inclusion, a module M over
S is automatically a module over R. Formally this can
be expressed using the tensor product, because S can be
viewed as a left S-module and as a right R-module, so
M ⊗S S (which is isomorphic to M as an S-module) is
a right R module. On the other hand, there is also the
change-of-rings map. Given a right R-module N , and
using S viewed as a left R-module and right S-module,
N ⊗R S produces a right S-module, which is likely to be
larger than N . For example, in the context of representa-
tion theory of groups, one studies modules over the group
algebra. For a subgroup H of a group G, there is a cor-
responding inclusion of group algebras, and the pullback
and change-of-rings maps are known as restriction and
induction, respectively. It will be helpful to realize that
when one has a set of generators for an R-module, it can
be proved that the change-of-rings map produces a cor-
responding set of generators for the resulting S-module;
in particular, the latter set of generators has the same
cardinality as the former.
Finally, we should mention that the collection of all

modules over a ringR, together with the homomorphisms
between them, form a category [24–26]. The modules are
the objects, and the homomorphisms are the maps (or
arrows, or morphisms) of the category; a morphism into
a module can be composed with a morphism out to yield
another morphism, and there is a unique identity mor-
phism from each object to itself. (The subcollection of all
f.g. modules together with all homomorphisms between
them forms a “full” subcategory, as does the collection of
all f.g. projective modules likewise). Maps between cat-
egories are called functors; one has to specify an image
under the functor for each object and for each morphism,
with the condition that the functor respects composition
of morphisms and the identity morphisms. The pullback
and change-of-rings maps mentioned above in fact define
functors between the categories of modules of the two
rings.

B. Vector bundles as modules

We have already discussed the notion of a vector bun-
dle. Here we want to relate vector bundles to modules
over a ring, and so make contact with the algebraic ap-
proach. First, given a (finite-rank) complex vector bun-
dle over a base space B (such as a sub-bundle of a rank-n
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trivial vector bundle, as for the vector bundle associated
to some bands in a tight-binding model; then B is the
Brillouin torus), we can consider the space of all its sec-
tions. It is clear that these form an (infinite-dimensional)
vector space over C, and that the vector bundle can be
recovered from its space of sections. (This space is not a
Hilbert space, but can be completed to obtain a “single-
particle” Hilbert space consisting of “states” in the bun-
dle, expressed as vector-valued functions on B, by using
a non-degenerate inner product on each fibre, and inte-
gration over B with some measure, to obtain the inner
product on an L2 space formed from the bundle. For the
case when B is the Brillouin torus, this Hilbert space is
equivalent to that of single-particle states in the original
lattice. This is a good place to point out that, except
for passing inessential references to orthonormality or to
unitary matrices on the fibre, we make no use of these
inner products on the fibre and on the bundle in the ar-
guments in this paper.) If we introduce the ring CC(B)
of continuous complex functions on B, then because we
can take linear combinations of sections using elements
of CC(B) as coefficients, the space of sections is in fact
a module over CC(B).

Further, Swan’s theorem [28] says that if B is a com-
pact Hausdorff space, then a module over CC(B) is iso-
morphic (as a module over CC(B)) to the space of sec-
tions of a vector bundle if and only if the module is
finitely generated and projective. Thus, when B is com-
pact and Hausdorff, the f.g. projective CC(B)-modules
are precisely the spaces of sections of vector bundles. (It
is clear that a free CC(B)-module corresponds to a triv-
ial vector bundle over B.) Being projective means that
for any vector bundle (such as a filled-band bundle in
our case), there is another vector bundle such that the
direct sum (i.e. the direct sum of the fibres at each k, also
known as the Whitney sum) of the two is a trivial vector
bundle (indeed, in our basic example, we also have an
empty-band bundle, and these are two subspaces of the
fibre at each point in k space, so the direct sum is the
trivial vector bundle of the tight-binding model). The
condition that the rank of the vector bundle is constant
on B (which we can assume is connected) is necessary
for this to be valid. Being finitely generated means that
there is a finite set of sections that generate the mod-
ule, that is such that combinations of them (with con-
tinuous complex function coefficients) span the space of
sections, or in particular span the fibre at each point of
B. The assumptions that B is compact and Hausdorff
ensure that this is true for a vector bundle. We note that
similar statements can be made for types of vector bun-
dles other than complex ones, such as the ones we will
encounter later.

Our definition of a set of Wannier-type functions (af-
ter Fourier transform) was a set of sections that span the
fibre at all points k in B = T d, the d-dimensional (Bril-
louin) torus T d, and hence which generate the space of
sections as a module over the ring CC(B). Hence part
of Swan’s theorem guarantees that the set can be as-

sumed to be finite. Notice that the mathematical argu-
ment (and our definition) only required sections to be
continuous, and that if stronger smoothness conditions
are placed on the sections (so that in position space they
decay rapidly), this might change the result; whether a
finite set obeying such conditions exists in general is out-
side the scope of this paper. We will be discussing finite
sets of Wannier-type functions that are analytic, indeed
polynomial, sections.

When we turn to compactly-supported packets within
some set of bands, in k space each one corresponds to
a section of the vector bundle, and in our standard ba-
sis derived from the tight-binding model these are vec-
tors with Laurent polynomial entries. If we have a set
of compactly-supported Wannier-type functions, then we
have a set of polynomial sections that generate the pro-
jective module of all continuous sections. We will call
this a set of polynomial generators for the module (or by
abuse of language, the vector bundle), and say that a vec-
tor bundle that is a subbundle of a trivial vector bundle
and has a set of generators that are polynomial sections
is a polynomially-generated module (over CC(B)) or vec-
tor bundle. This terminology is briefer than saying that
the vector bundle admits a set of compactly-supported
Wannier-type functions; we note that we already used
the term polynomial bundle for a different notion.

The ring R1 of complex Laurent polynomials can be
related to CC(B) when B = T d by evaluating each Xµ

as a complex number with |Xµ| = 1. A Laurent poly-
nomial then becomes a continuous function on the torus
[these functions are dense in the sup-norm topology on
CC(T

d), but we make no use of this fact]. Hence we have
a homomorphism of rings R1 → CC(T

d), which is injec-
tive, so R1 is a subring of CC(T

d). A module over R1

consisting of some set of n-component vectors with poly-
nomial entries (i.e. a submodule of a free module) then
produces a module over CC(T

d) simply by combining
the polynomial vectors (sections) using arbitrary contin-
uous complex-function coefficients. This is an instance
of the change-of-rings functor corresponding to the in-
clusion R1 ⊆ CC(T

d). (This functor was already used
in Ref. [9] and in a less formal way in DR [1].) This
functor always maps a projective module to a projective
module (a vector bundle). However if the R1-module
is not projective, the resulting CC(T

d)-module may not
be projective, and so may not correspond to a vector
bundle. If there is a finite set of generators (consist-
ing of n-component vectors with polynomial entries) for
the R1-module, then after change of rings those genera-
tors are viewed as n-component vectors with polynomial
functions of k as entries, and generate a CC(T

d)-module,
which is a submodule of the free module CC(T

d)n. Thus,
our condition that the compactly-supported Wannier-
type functions span the fibre (with constant rank) at each
k ensures (by construction) that the change-of-rings map
produces a polynomially-generated bundle, or in other
words, that the resulting module over CC(T

d) is in fact
projective. This condition is weaker than the condition
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of being a projective R1-module. In order to obtain re-
sults about vector bundles, the use of this condition will
be crucial to our treatment.

III. WIGNER-DYSON CLASSES A, AI, AII:

K0(R)

Now we begin to describe the extension of the no-go
theorem to other symmetry classes. The simplest cases
are the classic Wigner-Dyson symmetry classes, which
(like the others) originated in the context of random ma-
trix theory. These are known as the unitary, orthogonal,
and symplectic ensembles, or as symmetry classes A, AI,
and AII. The unitary class A was already covered [1], but
we will include some review of that case here. In these
classes the basic issues involve vector bundles of certain
types; this part of the discussion is also relevant for the
other classes later.

A. Cases AI, AII

We will begin with general descriptions of these sym-
metry classes in the context of translation-invariant
single-particle Hamiltonians. The use of a Hamiltonian
here is solely to motivate the symmetry structure; the ar-
guments in the proof refer only to the module of sections
of the filled-band bundle, not to a Hamiltonian.
As mentioned already, for class A the single-particle

HamiltonianH is allowed to be complex, and in k space is
a Hermitian n×n matrix for each k, continuous (or even
smoother) in k. For the orthogonal class AI, we simply
require the Hamiltonian H in position space to be real;
we can think of this as a statement of time-reversal sym-

metry, implemented by an antiunitary operator T̂ with

T̂ 2 = +1, and the time reversal operation T̂ reduces to

complex conjugation T̂ = K; thus T̂HT̂−1 = H means
H is real. (Strictly, this statement is basis dependent,
and one should say that there exists a basis in which the
Hamiltonian is real; by saying the Hamiltonian is real we
have chosen such a basis once and for all. In fact, we are
assuming that it is real in a basis of the form natural for a
tight-binding model, as already defined.) In k space, the
Hamiltonian splits into blocksHk labeled by k, which are
Hermitian. Now the matrix elements in k space are the
Fourier transforms of corresponding “hopping” functions
f(x) (for a displacement by x) in position space, which
are real. The Fourier transform fk of such a function
obeys

f−k = fk, (14)

where¯ is complex conjugation. Atiyah [29] calls such a
function (of k) Real (with a capital R) instead of real.
In fact, he defines a Real space B (such as our Brillouin
torus) to be one with an involution that sends a point
x ∈ B to a “conjugate point” x̄ ∈ B (where the bar

does not mean complex conjugate), with ¯̄x = x. In our
case, the map is k −→ −k, which is well defined mod-
ulo reciprocal lattice vectors. We may now describe our
time-reversal–invariant Hamiltonian Hk by saying that
its matrix elements are Real; it obeys

Hk = H−k, (15)

where¯on a complex matrix stands for complex conjuga-
tion of each matrix element.
Because the Hamiltonian in position space is real and

symmetric, its eigenvectors can be chosen to be real. In
k space, these become Real vectors, and we can speak of
Real sections of the vector bundle; the inverse transform
of a Real section is a real wavepacket in position space.
In this case, the filled-band bundle has a Real structure
[29], that is a map of the total space that sends vectors
in the fibre at x to ones in the fibre at x̄, which is antilin-
ear (like complex conjugation) on each fibre and squares
to the identity. Hence the vector bundle formed by the
filled-band states is a Real vector bundle. Without loss
of generality, it can be studied as a module (over the ring
of continuous Real functions) consisting of Real sections
only. Clearly there are sections of the (Real) vector bun-
dle that are not Real, however, any such section can be
decomposed as a sum of two Real sections (using the Real
and “Imaginary” parts), so no information is lost. This
is similar to studying a complex vector space with a real
structure (i.e. the operation of complex conjugation) in
terms of real vectors only. Note that for the eigenvectors
of the Hamiltonian, the Real symmetry implies that if wk

is an eigenvector of Hk with energy eigenvalue Ek, then
wk is an eigenvector of H−k with the same energy eigen-
value E−k = Ek, and we can choose phases and identify
the eigenvectors as w−k = wk. When this holds for all
k, these are vectors with Real entries.
When we turn to compactly-supported functions and

polynomial sections, we must consider Real polynomials.
These are polynomials in the Xµs, and should be Real
functions. But the conjugate of Xµ = eikµ is, for real
k, just Xµ evaluated at −kµ. So the involution on T d

leaves Xµ invariant. Then Real polynomials are simply
polynomials in the Xµs with real coefficients; they form
the ring R2 already defined.
Now we turn to the symplectic class AII. In this case

we think of spin-1/2 particles, and there is time-reversal

symmetry acting in the Kramers mode, with T̂ 2 = −I
in the single-particle Hilbert space. For a general one-
particle Hamiltonian H acting in a finite-dimensional

Hilbert space of orbitals for either spin, we define T̂ (with
conventional choice of basis) to be

T̂ = KU, (16)

where K is complex conjugation, and U is unitary, with

U = iσy ⊗ I (17)

(where the second factor is the identity on the space of
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orbitals, the first acts in the spin space, and

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(18)

are the usual Pauli matrices). We write matrices like σα⊗
I generically as Σα (α = x, y, or z) for a tensor product
space of this form for any dimension of the second factor,

and also iΣy as J , so T̂ = KJ .
Time-reversal symmetry means that

T̂HT̂−1 = H. (19)

Because of the structure of J , this can be reduced to
a similar condition for the 2 × 2 blocks of H in the first
factor in the tensor product. The time-reversal–invariant
2×2 blocks can be expressed as linear combinations, with
real coefficients, of the 2× 2 matrices [24]

1, î = iσz, ĵ = iσy, k̂ = iσx (20)

(note the ordering of the indices). These obey the rela-
tions in eq. (7) of the generators of the quaternions, so
we used the same symbols. Thus the matrix representing

a quaternion q = a + b̂i + ĉj + dk̂, where a, b, c, d are
real, has the form

q =

(
a+ ib c+ id
−c+ id a− ib

)
, (21)

and there is a natural injective map of the real numbers
R into H that maps the real number to a. Notice that
the determinant of the matrix is a2 + b2 + c2 + d2 = |q|2,
which defines the norm |q| ≥ 0 of the quaternion, a real
number. One can define a “conjugation” operation on
the quaternions, q → q (q ∈ H), which is an isomorphism
that reverses the order in a product of quaternions, by

î = −î, ĵ = −ĵ, k̂ = −k̂, (22)

while 1 = 1. (When quaternions are expressed as 2 × 2
matrices, this is the usual adjoint. We hope that no
confusion will arise from the use of the bar ¯ to repre-
sent both complex and quaternionic conjugation; which
is meant should be clear from the the context, specifi-
cally whether complex or quaternionic coefficients are in
use.) The norm-square of q is equal to qq = qq = |q|2
as a quaternion or as a 2× 2 matrix (i.e. a non-negative
multiple of the identity). The (right or left) inverse of
a quaternion q can be expressed as q−1 = q/|q|2. Then
a time-reversal invariant matrix such as H (Hermitian
or not) can be expressed as a matrix of quaternions. A
matrix of quaternions H is Hermitian when viewed as a
complex matrix if and only if it is Hermitian as a ma-
trix of quaternions, where the adjoint A → A† (for a
matrix A) is defined as the corresponding conjugate of
the transpose of the matrix, and has the usual property
(AB)† = B†A†, in either point of view.
In addition, time-reversal applied to an eigenvector

(viewed as a column vector of complex numbers) of H,

sayHψ = Eψ, implies that T̂ψ is also an eigenvector with
the same energy eigenvalue, and not equal to ψ. For any

vector ψ, it and −T̂ψ can be assembled into a matrix v
with two columns. The two columns are exchanged by
time reversal (with a minus sign in one place, so that

T̂ 2 = −1), as we defined its action so far. If we define
time reversal to act on the matrix (as on any matrix) by

v → T̂ vT̂−1, (23)

(using the appropriate size of J in each place) then

v = T̂ vT̂−1, and we can view v as a column vector of
quaternions. This shows that in the symplectic ensem-
ble, or symmetry class AII, we are in effect dealing with
quaternionic vector spaces; using a basis, maps such as
the Hamiltonian act as matrices from the left, as men-
tioned before, while the scalar multiplication by a quater-
nion is from the right. This relation is mentioned briefly
by Atiyah [14], page 33.
When we turn to band structure, we have similar prop-

erties for Hk, however again complex conjugation sends
k → −k. Then the relation is

T̂HkT̂
−1 = H−k, (24)

and a similar argument shows that Hk can be viewed as

a matrix with entries that are linear combinations of 1, î,

ĵ, k̂ with coefficients that are Real functions of k, rather
than real. It seems reasonable to use the term “Quater-
nionic function” (with a capital Q) for 2 × 2 complex
matrix functions of k obeying

T̂ fkT̂
−1 = f−k, (25)

and call the total space a Quaternionic vector bundle
(over T d), by analogy with the Real ones. In addition we

have H†
k
= Hk. Then we can assemble the eigenvectors

wk and −T̂w−k into a 2n× 2 complex matrix. Doing so
for all k gives a vector with entries that are Quaternionic
functions (on which translations in position space still
act as multiplication by powers of the Xµs), parallel to
the Real functions for the AI case.
If we now consider a Wannier function, then the as-

sumption that time-reversal holds for the filled-band bun-
dle in question means that the function and its time-
reversed partner must both be sections of the vector bun-

dle. If wk is the transform of a Wannier function, −T̂w−k

is (minus) the transform of its time-reverse, and we can
form Quaternionic sections (i.e. vector functions of k,
with Quaternionic entries) from these as noted just now.
(Then gk also has Quaternionic entries, and vk = gkuk
holds for this pair of Wannier functions as vectors with
Quaternionic entries, with notation as in Section IB.)
For functions that are also compactly-supported, we ob-
tain polynomial Quaternionic sections, that generate a
module over H[X±

µ ] = R3 or possibly its subring H[Xµ],
completely parallel to the complex and Real cases.
It may be helpful here to be explicit about the mean-

ing of a trivial vector bundle for orthogonal and sym-
plectic classes. A Real (Quaternionic) vector bundle of
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rank m over B = T d is trivial if it has a set of m Real
(Quaternionic) sections that are linearly independent at
all k. (Here linear independence is over C, and so for
the Quaternionic case involves 2m complex vectors, for k
such that k 6≡ −k; however it reduces to, or can be viewed
as, linear independence over R or H when k ≡ −k.) In
all cases, triviality of a vector bundle of rank m can be
viewed as the vector bundle being isomorphic to a prod-
uct of B and Cm (C2m in the Quaternionic case), with

the obvious action of T̂ on the vector bundle in the cases
of classes AI and AII. The tight-binding model itself has
precisely this product form, with m replaced by n.
When B is a Real space, we will use notation CR(B)

[CQ(B)] for the rings of continuous Real [Quaternionic]
functions on B, by analogy with the ring CC(B) for con-
tinuous complex functions (in which case the Real struc-
ture can be forgotten). Of course, our main interest is in
B = T d, the Brillouin torus. For that case, there are nat-

ural embeddings (injective ring homomorphisms) of R
(d)
2

[R
(d)
3 ] into CR(B) [CQ(B)], similar to that for complex

Laurent polynomials and functions on T d. We will write

Ci or C
(d)
i , i = 1, 2, 3, for the rings CC(T

d), CR(T
d),

and CQ(T
d), respectively, so that R

(d)
i ⊆ C

(d)
i for each

i and d. A bundle in one of the three classes gives rise
to its space of sections, which is a module over the cor-
responding Ci; for the trivial bundles just discussed, this
module is Cm

i .
It is now fairly straightforward to extend the proof of

the DR no-go theorem [1] to the symmetry classes AI and
AII. First we note that, as in class A [1], it is in fact suf-
ficient to consider polynomial sections consisting of col-
umn vectors with entries in the polynomial rings R[Xµ]
for R = R, C, H, with no negative powers; these polyno-
mial rings are more accessible than the Laurent polyno-
mial analogs. The syzygy theorem holds for polynomial
rings with coefficients in any field [30], so for R[Xµ] the
proof in DR goes over essentially unchanged. The poly-
nomials over the quaternions form a non-commutative
ring, but again a version of the syzygy theorem holds
[26]. We discuss these facts in more depth in the section
immediately following; modern treatments of them, es-
pecially for non-commutative rings, invariably enter into
some K-theory.

B. Syzygy theorem and relation with K0(R)

We will now give some discussion of the syzygy theo-
rem and of its relation to the algebraic K-theory group
K0(R), and give a more conceptual account of the proof
of the no-go theorem. In brief outline, given the module
over the polynomial ring generated by the compactly-
supported Wannier-type functions, the proof consists of
two parts: the syzygy theorem establishes that there is a
finite-length free resolution of the module over the poly-
nomials, and then the change of rings to the ring of con-
tinuous functions produces a corresponding free resolu-

tion of the vector bundle, from which stable triviality of
the vector bundle follows (terms used here are defined
below). We will explain how the argument and result
are interpreted in K-theory. We repeat that parts of this
discussion are crucial for the cases of other symmetry
classes as well. For a nice introduction to algebraic K-
theory, see Rosenberg’s book [31]; Refs. [32–34] are also
useful.
First, we introduce resolutions and the length of a res-

olution, all for modules over some given ring R. A (pos-
sibly infinite) exact sequence

· · · −→ P2 −→ P1 −→ P0 −→M → 0 (26)

is a projective resolution of a moduleM if Pi is projective
for i = 0, 1, . . . . It is a free resolution if each Pi is a free
module Fi. If a projective resolution terminates at the
left with a zero, say (the labels φi on the maps are for
future reference)

0 −→ Pℓ
φℓ−→ Fℓ−1

φℓ−1−→ · · · φ2−→ F1
φ1−→ F0

φ0−→M −→ 0,
(27)

then it is a finite projective resolution and we say it has
length ℓ (if it does not terminate, then its length is ∞).
We note that, without loss of generality, the projective
modules P0, . . . , Pℓ−1 in a projective resolution can be
replaced by free modules, as shown, because of the defi-
nition of a projective module (the final projective module
Pℓ in the sequence shown may then not be the same one
as in the original projective resolution). The length of a
free resolution (i.e. as in eq. (27), but where Pℓ is free)
is defined the same way. Finally, when R is Noetherian
(as our rings are) and M is finitely generated, each pro-
jective or free module in the sequence can be taken to be
finitely generated also.
For any module M , there is a minimum length for

a projective resolution, and that minimum is called the
right projective dimension of the module [26]. The pro-
jective dimension measures how close the module is to
being projective; for example, the projective dimension
of a projective (or of a free) module is zero. Finally, the
supremum of the projective dimensions of the modules
is called the right global dimension of the ring R. If all
f.g. modules have finite right projective dimension, then
we say the ring is right regular (note that a regular ring
could have infinite global dimension). For any Noethe-
rian ring, the right and left global dimensions are equal.
We will sometimes use the term length of a module for
the minimum length of a free resolution of the module.
A precursor to the syzygy theorem is the statement

that, if a ring R has (right) global dimension N , then the
polynomial ring R[X ] in one variable has global dimen-
sion N + 1 [26]. As the global dimension of any division
algebra is zero, it follows that the global dimension of the
polynomial rings D[X1, . . . , Xd] is d, where D = R, C,
or H. Thus this limits the lengths of minimum projec-
tive resolutions, but more is true: it can be proved that
any f.g. projective module P over one of these polynomial
rings is stably free, that is there exists a free module F ′
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such that P ⊕ F ′ = F is free. (Clearly, any stably-free
module is projective.) This means that, for any module
over one of these polynomial rings, there is a free res-
olution whose length is greater by at most 1 than the
projective dimension; that is, a free resolution of length
at most d + 1 [26]. These statements—that is, that the
global dimension is d and that all f.g. projective modules
are stably free—also hold for the three rings of Laurent
polynomials Ri (i = 1, 2, 3), for any d [35]. This “weak”
version of the syzygy theorem is sufficient for the proof
of our no-go theorem. Hilbert’s syzygy theorem in its
original or “strong” form says even more: it says that
for D a field (say R or C), there is a free resolution of
length ≤ d of any f.g. module over the polynomial ring;
however, we will only rarely require this refinement.

Next we relate these results to algebraic K-theory.
First, one way to define the Grothendieck group K0(R)
for a ring R is as follows [31]. We begin with the f.g. pro-
jective modules over R, and take isomorphism classes. A
direct sum of f.g. projective modules is f.g. projective,
and is well defined for isomorphism classes. Thus the
equivalence classes of the f.g. projective modules form
an Abelian semigroup, that is a set with an associative,
Abelian, binary operation (which we write as addition).
[Indeed they form a monoid, because the zero module
is projective and is the identity element for direct sum.]
Given any Abelian semigroup S, there is a universal way
to turn it into an Abelian group G, called group comple-
tion or the Grothendieck construction. G can be defined
as the Abelian group that has one generator for each el-
ement of the semigroup, and relations that state that if
x + y = z in S (for elements x, y, z ∈ S), then the cor-
responding generators in G obey the same relations. In
particular, if there is an identity element in S, its image
in G is the identity. [G can also be defined as a group of
pairs of elements of S, obeying some relations such that
a pair (x, y) gives a meaning to the difference x−y which
was not in general defined in S, similar to the usual con-
structions of the integers from the natural numbers (with
addition as the operation), or of the non-zero rational
numbers from the non-zero integers (with multiplication
as the operation).] Applying this definition to the semi-
group of equivalence classes of f.g. projective modules
over the ring R yields K0(R). The equivalence relation
involved in passing to the K0 group can be identified as
stable isomorphism [33, 34]: two f.g. projective modules
P1, P2 map to the same element in K0(R) if and only if
there is a free module F such that P1 ⊕F ∼= P2 ⊕F . We
may note here that if the definition is applied to the case
of the ring CC(B) on a compact Hausdorff space B, the
result is isomorphic to the usual topological K-theory
group K0(B), while when B is also Real, for the rings
CR(B), CQ(B) it produces the corresponding groups that
we denote KR0(B) (following Atiyah [29]) and KQ0(B)
(∼= KR−4(B) in Atiyah’s notation), respectively; these
classify stable isomorphism classes of respective types of
finite-rank vector bundles over B, relevant to classes A,
AI, AII on putting B = T d.

The group K0(R) for the polynomial rings Ri is not
sufficient for our purposes, because the module generated
by a set of compactly-supported Wannier-type functions
is not in general projective. The generators of the module
are supposed to have the property that, when evaluated
as vectors for any k (that is, for any set of Xµ such that
|Xµ| = 1 for all µ = 1, . . . , d), they span a subspace of
Cn of rankm [these becomeC2n and rank 2m (overC) in
the case of class AII]. This property of the vector-valued
functions on the torus |Xµ| = 1 does not imply much
about their behavior at otherXµ, and though the module
is finitely generated, it seems unlikely to be projective in
general. For example, consider a submodule of the rank-
one free module Ri, which for us is the case m = n = 1;
such a submodule is a (right) ideal in Ri. Suppose further
that Ri is commutative (i = 1 or 2). In one variable
(d = 1), the polynomial ring R = F[X ] (F = R or C)
is a principal ideal domain (PID), that is, all ideals are
generated by a single element, so the module is free of
rank one. But for d > 1, such polynomial rings R are not
PIDs, which implies that there are ideals (submodules of
R) that cannot be generated by a single element. If the
polynomials f , g are two generators, then there is a linear
relation with coefficients in R that they obey (namely,
fg−gf = 0), and so the module is not free. But for these
rings all f.g. projective modules are free (Serre’s problem,
solved independently by Quillen and Suslin [26]), and
hence these f.g. modules cannot be projective. We can
obtain examples for larger values of m and n by taking
the direct sum of one of these modules with, for example,
a free module.

For this reason, we must work with a larger category
of modules. We consider the category of all f.g. modules
over R, together with all the homomorphisms between
them. In this setting, there is a further Grothendieck
group G0(R), defined as follows [26, 31, 35]. (Its use
is not essential to the proof, however it can be viewed
as providing an “upper bound” on the classification of
the modules of interest.) It is constructed from genera-
tors, one corresponding to each isomorphism class of f.g.
modules (call the class [A] if it contains the module A),
and relations [A] + [C] = [B] if there is a short exact
sequence as in (12) connecting A, B and C (again, this is
well-defined for isomorphism classes). Other categories of
modules can be handled in the same way, provided they
“possess exact sequences” [31, 34]; in particular, the cat-
egory of f.g. projective modules can also be treated in this
way, and the result is the same group K0(R), essentially
because short exact sequences of projective modules split,
so B ∼= A⊕C. As the f.g. projective modules form a full
subcategory of the category of f.g. modules, K0(R) is a
subgroup of G0(R). We note that in G0(R) or K0(R) we
can also write under the same conditions [C] = [B]− [A],
an “alternating sum”, and that similar forms apply for
the class [M ] of the module M in a resolution like (27) of
any finite length, by iteration of this formula for a short
exact sequence. As an example, for the sequence (27),

we have [M ] =
∑ℓ−1

i=0 (−1)i[Fi] + (−1)ℓ[Pℓ].
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The statements above about the syzygy theorem now
translate into statements about these groups. First, for
any right regular ring R, every f.g. module M possesses
a projective resolution of finite length. This in effect
reduces questions about the structure of M to ques-
tions about the structure of the f.g. projective modules
(including free modules) in the resolution. In particu-
lar, it was proved by Grothendieck in this manner that
G0(R) ∼= K0(R) [34]; note that what happened here was
that the class (group element) [M ] in G0(R) can be com-
puted as a finite alternating sum of the classes [Pi] of the
f.g. projective modules in the finite-length resolution, and
these classes all lie in the subgroup K0(R) ⊆ G0(R), and
hence so does [M ]. (This form of calculation based on
the syzygy theorem will recur in the arguments for every
symmetry class.) Second, if every f.g. projective mod-
ule over R is stably free—that is, stably isomorphic to
a free module—then it follows immediately that K0(R)
is generated by the free module R, and so K0(R) = Z.
(Actually, this also requires that R has the “invariant

basis property” that for f.g. free modules, Rn ∼= Rn′

im-
plies n = n′, which holds for nonzero right Noetherian
rings [34, 35]. Then the free modules indeed generate a
copy of Z in K0(R).) Note that we generally view K
and G groups additively, and so also a direct product of
groups will be written as a direct sum, for example Z⊕Z,
because it is additive, and because such a group is in a
natural way a module over the integers, so it is a genuine
direct sum. Such a form will also be written 2.Z, and
similarly for k.Z for a positive integer k.

These results then imply that for the polynomial rings
Ri, G0(Ri) = Z. This gives the classification of all
f.g. modules over Ri up to the equivalence used in the
Grothendieck construction. (When dealing with more
general categories than the category of f.g. projective
modules, this relation is no longer stable equivalence.)
Within this classification, this result says that the mod-
ules are effectively trivial, as they are described by a sin-
gle invariant, which corresponds to the rank of a free
module (the invariant is the alternating sum of the ranks
in a free resolution of the module). We would like to
relate this to the class of the vector bundle that the ele-
ments of one of our modules span, within the topological
classification of vector bundles of the appropriate type.
To this end, we can map a module into a vector bun-
dle over T d, and map the corresponding Grothendieck
K0 groups, in two steps. For the first step, the rings of
polynomials D[Xµ], D = C, R, or H, (and also the cor-
responding rings of Laurent polynomials D[X±1

µ ]), can
be embedded into the rings Ci of continuous functions
on T d by evaluating the indeterminates Xµ as complex
numbers with |Xµ| = 1, as already discussed. Given a
module over one of the polynomial rings, this produces
a module over the corresponding ring of functions, and
is an instance of the change-of-rings functor that can be
given formally by tensor product with the latter ring (see
Section IIA). The functor maps f.g. projective modules
to f.g. projective modules, so it gives a well-defined ho-

momorphism of groups from K0(R
(d)
i ) to K0(C

(d)
i ). Free

modules clearly map to trivial vector bundles, and our
K0(Ri) = Z maps to the Z in the K group of the vec-
tor bundles that describes the rank and is exemplified by
the trivial vector bundles; that is, the homomorphism of
K0 groups just mentioned is injective (one to one). This
may suggest that the general f.g. modules over R map in
some sense to trivial vector bundles.

The last statement, however, is too naive. For a mod-
ule over the polynomial ring Ri that is not projective,
its image under the change of rings may not even be a
vector bundle (because it is not projective as a module
over the ring of continuous functions). The way this can
happen is that the elements in the module do not span a
vector space of full rankm at some points of the Brillouin
torus T d; then vector-valued functions in the module over
the ring of continuous functions have the same property
at that point, and we do not have a projective module
or a vector bundle. Hence there is no natural functor
from the category of all f.g. Ri modules to that of f.g.
projective Ci modules, and neither do we wish to begin
discussing the category of all f.g. Ci modules and G0(Ci)
(and likewise for higher G and K groups relevant to later
sections). Thus it is crucial that we want to classify,
not all f.g. modules (over Ri), but only the modules that
have the completeness property of Wannier-type func-
tions; the latter property, by definition, gives us a vec-
tor bundle (projective module) as the image under the
change-of-rings functor.

The basic idea with which to complete the proof, as
in DR, is to use the finite-length free resolution of the
Ri-module, and map it onto a similar sequence of Ci-
modules. Each free Ri-module in the resolution maps
to a free Ci-module of the same rank, but there is the
question of showing that the resulting sequence (which
has the same length) is actually exact. If it is exact,
then it gives a free resolution of the Ci-module, which
is the (space of sections of the) bundle of interest. The
K0 class of the latter is then given by the alternating
sum of those of the free modules in the resolution, show-
ing that the K0 class of the bundle is that of a trivial
bundle. Hence essentially the only remaining point to
prove is that the sequence of Ci-modules is exact. We
note that this requires proof because exactness of a se-
quence of vector bundles means exactness of the maps of
the fibres at each k. The maps φi are described by the
same ni × ni−1 matrices with entries in Ri as in the free
resolution of Ri-modules (we put n−1 = n), and so the
composites φi+1 ◦φi = 0. The issue is whether im φi+1 is
onto the kerφi; this could fail to hold when evaluated at
some k, even though the sequence over the polynomial
ring is exact. In DR this was proved using the notions
of analytic polynomial bundles. In the present setting
of polynomially-generated bundles, a more direct argu-
ment using less structure seems appropriate, and is given
here to make the argument self-contained and perhaps
simpler.

The argument proceeds, as in DR, by starting at the
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right and working back up the sequence. To begin, our
moduleM (which we view as a submodule of a free mod-
ule Cn

i ), is polynomially generated and so projective as
a Ci-module, and also is the image of the map φ0 from
the free module F0 = Cn0

i onto M . The kernel of φ0 is
a complex vector space of dimension n0 −m [2(n0 −m)
for i = 3] at all (real) k, by the rank-nullity theorem of
linear algebra, and so forms a vector bundle. We must
show that imφ1 spans kerφ0 at all (real) k. Because φ1 is
a matrix of polynomials, this means showing that kerφ0
is itself polynomially generated (the generators are the
columns of φ1.)

Now studying the kernel of φ0 means solving a system
of n homogeneous linear equations in n0 unknowns. For
equations with coefficients in a division ring, this can
be done using Gaussian elimination, even in the non-
commutative case [27]. (The approach used in DR can
be viewed similarly also.) The result of the algorithm
is expressions for n0 −m linearly-independent (over the
division ring) vectors in the kernel of the linear map.
These expressions are the result of a finite number of
arithmetical operations in the division ring, including di-
vision by a number of “pivots” [36]; it is of course impor-
tant that the latter are invertible (i.e. non-zero) in the
division ring. Our rings Ri are not division rings, but
each can be “completed” to a division ring of “fractions”
or “quotients” by including an inverse for every non-zero
element. The resulting rings, say Di, with Ri ⊆ Di, con-
sist of all finite linear combinations of elements of R, C,
orH for i = 1, 2, 3, respectively, with coefficients that are
now ratios of polynomials in Xµ with real coefficients, in
which the denominator must not be the zero polynomial.
For the commutative cases i = 1, 2, Di is the familiar
field of rational functions, but the non-commutative D3

is likely less familiar (see Ref. [37] for general discussion).
Note that the inverse in D3 of an element r of R3 can
be expressed in a similar way as for quaternions, as an
element of R3 divided by a real polynomial, that is, by
an element |r|2 of R2. If r is expressed as a 2× 2 matrix,
|r|2 is the determinant, and is a sum of four squares of
polynomials, each with real coefficients; crucially, it van-
ishes as a polynomial in R2 only when r = 0 in R3. (We
remark that for classes A, AI, and AII, the matrix gk
used in the definition of a TNS, as in Sec. I B, has entries
in Di.) The Gaussian elimination algorithm can be car-
ried out in Di, and the resulting solutions form a set of
n0−m n0-component vectors with entries in Di, and are
linearly independent over Di. Finally, we can multiply
each n0-component vector by a common denominator of
its entries [37] to obtain vectors with entries in Ri. These
must be linearly independent over Ri, because if not then
the original vectors in Dn0

i would be linearly dependent
over both Ri and Di.

In slightly more detail, Gaussian elimination in Di re-
cursively reduces the n×n0 matrix of φ0, which initially
has entries in the subring Ri, to echelon form [36]: all
rows below the mth are zero, and (after permuting the
columns, i.e. the unknowns, if necessary) the top left

m ×m block is upper triangular with the pivots, which
are non-zero elements of Di, on the diagonal. A linearly-
independent set of solutions in Dn0

i to the homogeneous
equations is obtained using the n0 − m standard basis
vectors (with a single 1, and other entries zero) for the
n0−m-dimensional subspace in which the first m entries
of the vectors are zero. The denominators of the entries
of these vectors are products of elements of Ri that are
also numerators of pivots.

Now we must investigate the finiteness and linear in-
dependence over C of these solutions when evaluated in
the neighborhood of some k0. By hypothesis, we can as-
sume that we have obtained an echelon matrix in which,
when evaluated at k0, the pivots are invertible, meaning
non-zero for i = 1, 2, and invertible as 2× 2 matrices for
i = 3. (The denominator of a pivot cannot vanish at k0,
because in Gaussian elimination starting with a matrix
with entries in Ri, the pivots are produced in a sequence
1, 2, . . . , m, and the denominator of an entry in the jth
row of the echelon matrix can only vanish at k0 if one
of the pivots from a stage earlier than j vanishes at k0.)
This ensures that the rank of φ0 evaluated at k0 really is
m, as assumed. Then our set of n0 −m vectors in Dn0

i

that span kerφ0 are finite when evaluated at k0, and still
linearly independent. By continuity of polynomial func-
tions, this is also true in some neighborhood of k0. (If
expressed as vectors in Rn0

i , they may not be linearly in-
dependent when evaluated at some k outside a neighbor-
hood of k0.) Thus the dimension of the space of solutions
is locally constant and equal to n0 −m. When the com-
mon denominator of each vector is removed, they lie in
kerφ0 viewed as a map of Ri-modules, and the sequence
of modules over Ri was exact, so these vectors also lie in
imφ1. Hence imφ1 spans kerφ0 when evaluated at any
(real) k. This means the sequence of Ci-modules is exact
at F0, or in other words that the corresponding sequence
of vector bundles is exact at F0. The argument can now
be iterated to show that the whole sequence of vector
bundles is exact; it can also be called a free resolution.

Exactness of the sequence of vector bundles, or in other
words the free resolution of the projective Ci module,
now allows us to apply the (at this stage, algebraic) K0

functor to the modules in the sequence, as they are all
projective. As explained above, the K0(Ci) class of our
module M (or corresponding bundle) is the alternating
sum of those of the free Ci-modules in the sequence (the
same alternating sum as for the free resolution over Ri).
The classes of the free Ci-modules lie in the image of the
injective homomorphism from K0(Ri) to K0(Ci) that is
induced from the change of rings map. Alternating sums
of these classes also lie in the same group. Hence the K0-
class of the vector bundle that we have obtained is that of
a free Ci-module, andK0(Ri) classifies the polynomially-
generated bundles. In each of the three cases, thisK0(Ri)
group is the group of integers Z, and the integer-valued
invariant associated with the bundle can be identified as
its rank (it will always be positive). (The analysis for
the remaining symmetry classes will also follow a similar
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path, which is similar to the method for proving that
G0(Ri) ∼= K0(Ri).)

In DR the conclusion of the no-go theorem (or its ex-
tension to compactly-supported Wannier functions) was
stated as saying that the polynomially-generated bundle
(or in particular, the analytic polynomial bundle) ob-
tained must be trivial (as a complex vector bundle, as
only class A was considered). In fact, in general the proof
given there or here only establishes that the bundle is sta-
bly trivial. We define stably trivial to correspond to the
definition of a stably-free module, given above, on pass-
ing to the space of sections: a bundle E is stably trivial if
there are trivial bundles F , F ′ such that E⊕F ∼= F ′. In-
deed, stable triviality of our bundle follows directly from
the existence of a finite-length free resolution: as the
image of each map is a projective module, the sequence
splits as a direct sum at each term. ThenM⊕kerφ0 ∼= F0

is free; kerφ0 might not be free, but we can apply⊕ kerφ1
to both sides, to obtain the free module F1, and so on.
This process terminates after a finite number of steps,
and the result M ⊕F1 ⊕ . . . ∼= F0 ⊕F2 ⊕ . . . [ending with
Pℓ (free) and Fℓ−1 on the two sides] shows the stable free-
ness of the module (i.e. stable triviality of the bundle).
(On mapping to K0 classes, this produces an expression
equivalent to the one for [M ] as an alternating sum.)

It was assumed in the main proofs in DR that stably
trivial is the same as trivial, when dealing with the (split)
exact sequence of bundles. But in general it does not
seem that stably-trivial bundles are always trivial; there
are counterexamples at least for real (not Real) vector
bundles [38]. However, for d ≤ 3, complex vector bun-
dles over any d-dimensional manifold B can be reduced
(i.e. are isomorphic to) to a direct sum of a rank-one (or
“line”) bundle and a trivial bundle [38], and the com-
plex line bundles in any dimension d are classified up to
isomorphism by their first Chern numbers (see e.g. Ref.
[34], page 45). (This notion of ordinary isomorphism of
complex vector bundles describes our problem, i.e. rank-
m complex vector sub-bundles of a trivial rank-n bundle,
in the case of m fixed and n sufficiently large. For gen-
eral values of m and n, a finer classification is possible;
see e.g. Ref. [39].) Hence for complex vector bundles in
d ≤ 3, stably trivial and trivial are the same. DR also
established triviality directly in some special cases. But
in general, the conclusion of our analysis should be stated
as the stable triviality of the bundles for classes A, AI,
and AII. This stable triviality is what K-theory deals in,
and for class A with B = T d corresponds also to the
vanishing of all Chern classes of a bundle.

To avoid a possible confusion, we should mention that
when the polynomial sections fail to span the space of
rank m at some point in the Brillouin torus, it may
still be possible to produce a non-trivial vector bundle,
even though the Grothendieck group of all f.g. modules
G0(R) = Z. The idea is to allow sections obtained from
those mentioned already by using functions that tend to
infinity at the points in question; the pseudo-sections ob-
tained that way may span a vector bundle (i.e. be contin-

uous as vector-valued functions of k, that span a rank-m
subspace). This is the phenomenon discovered in DR [1]
and Ref. [2], which can lead to a non-trivial vector bundle
in this manner. However, such a vector bundle is neces-
sarily non-analytic, and the reason for the non-triviality
of the bundle (contrary to the classification above) is the
use of non-continuous (diverging) coefficients when the
vector bundle was obtained from the polynomial sections.

This essentially concludes the argument for these sym-
metry classes, but we have not yet mentioned the second
step in relating the algebraic classification of modules
over polynomial rings to the topological classification of
vector bundles over the Brillouin torus. This step is the
passage from the algebraic to the topological classifica-
tion in the case of projective modules over a ring of con-
tinuous functions on T d, which correspond to vector bun-
dles. While this requires more explanation in some cases
(see the following section), in the present case the re-
sult of the algebraic classification [e.g. K0(CC(B)) in the
complex case] is already a discrete group, which is just
isomorphic to the topological K-theory group [K0(B) in
the complex case] [33], so there is nothing more to do.

We mention here some consequences of the strong form
of the syzygy theorem for low-dimensional versions of our
problems, in terms of the nature of the modules over the
appropriate polynomial ring. We begin with classes A
and AI. First, a set of compactly-supportedWannier-type
functions generate a module which we will now call M ′

over one of the commutative polynomial rings Ri (i = 1,
2), which is a submodule of a free module F0 of rank n
over Ri. The quotient module of F0 by M ′ is a mod-
ule M , and so in the resolution (27) M ′ is the image
of φ1. In one dimension (d = 1), the syzygy theorem
says there is a length 1 free resolution of M , and so M ′

is actually a free module. (To be precise, we have used
here not only the existence of a length d free resolution,
but the fact that any given projective resolution can be
truncated to one of length at most d, because it splits
[26, 35], together with the fact that any projective mod-
ule is free. The result for d = 1 also follows directly from
the fact that the polynomial ring in one variable is a PID
[26, 31].) For the polynomial bundles, relevant to TNSs,
the module of interest (say M ′′ ⊆ F1) is defined as the
solutions to polynomial equations, and so is the kernel of
a map φ1, again into a free module, and the cokernel of
φ1 can be taken as the moduleM . In one dimension, this
sequence is longer than required by the syzygy theorem,
and so again splits: M ′′ is a direct summand in F1, and
so is projective, and actually free in the real and com-
plex cases. Put another way, the preceding result applies
a fortiori to M ′′. For d = 2, we see from the syzygy the-
orem thatM ′′ is a free module; this extends the result of
DR that for a rank 1 vector bundle, the module is free in
any dimension. In general, the module M ′ in the case of
compactly-supported Wannier-type functions has length
d− 1, while in the case of a TNS the module M ′′ corre-
sponding to the filled-band bundle has length d − 2 for
d ≥ 2 (here we have corrected some misstatements in DR
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about the minimum length of the free resolutions that did
not invalidate any results). For class AII, the polynomial
ring H[Xµ] is not commutative. The same statements as
before hold in one dimension, however stably-free projec-
tive modules over H[X1, X2] are not always free [26], so
the “strong form” of the syzygy theorem does not hold
for d ≥ 2. Hence, when d = 2, M ′′ does not have to be
free, but must be stably free and hence projective.

IV. CHIRAL SYMMETRY CLASSES AIII, BDI,

CII: K1(R)

In this section, we turn to the classes with so-called
chiral symmetry. These are the chiral unitary ensemble,
or class AIII, chiral orthogonal class BDI, and chiral sym-
plectic class CII. For these cases, we will handle the three
classes mostly in parallel.

A. Chiral symmetry classes

A typical way for chiral symmetry to arise in a tight-
binding model is when there are two sublattices, say A
and B, and the only possible hops are from one sublattice
to the other. Then in a basis in which the indices for
sites and orbitals are partitioned into the two subsets
corresponding to the two sublattices, the Hamiltonian
has the block off-diagonal form

H =

(
0 h
h† 0

)
, (28)

with square blocks (in cases where the off-diagonal blocks
are not square, there are zero-energy states in the spec-
trum; we do not consider this as we wish to discuss only
topological phases), and h is an arbitrary matrix with
complex entries. (This most general case defines class
AIII; we discuss the other chiral classes afterwards.) In
the translation-invariant case on a lattice, with 2n or-
bitals per site (n assigned to each “sublattice”; note that
in our hypercubic lattice models, they actually all sit on
the same lattice sites), the Hamiltonian in k space has
the similar form

Hk =

(
0 hk
h†
k

0

)
, (29)

where the blocks are now n× n. To ensure a gap in the
energy spectrum, we assume that hk is non-degenerate
at all k. The chiral symmetry acts as multiplication by
1 on all orbitals on the A sublattice, and by −1 on the
B sublattice, that is by conjugating the Hamiltonian by
Σz: ΣzHkΣz = −Hk, which forces it to have the above
form.
The energy eigenvalues ofHk come in plus-minus pairs,

determined by the square roots of the eigenvalues of H2
k
,

and so by the singular values of hk (the positive square

roots of the eigenvalues of h†
k
hk). A complete orthonor-

mal set of eigenvectors can be written as the columns of
a matrix of the form

1√
2

(
In In
U −U

)
, (30)

where In is the n × n identity, U = Uk is a unitary
matrix function of k, and the first n columns are basis
vectors for negative-energy (filled) bands, and the others
for positive-energy (empty) bands. The chiral symmetry
acts by multiplication by Σz from the left, and exchanges
the eigenvectors corresponding to Ek and −Ek.
For the chiral orthogonal (chiral symplectic) version,

we also impose time-reversal symmetry as discussed in

Section III A, with T̂ 2 = +1 (−1), which in k-space
implies that the entries of Hk are Real (Quaternionic),
and likewise Uk must be unitary (at each k) with Real
(Quaternionic) entries. Consequently, the vector bundles
of rank 2n with chiral symmetry are classified topolog-
ically by the homotopy classes of maps (without base-
points) of T d into U(n); in the Real (Quaternionic) case,
the maps involved also respect the involution k → −k

which acts as T̂ on the entries of the unitary matrix U in
either case. (For the Quaternionic case, the ranks over
C mentioned are doubled due to spin; we will usually
not mention this, just as if we describe the rank over H
for a quaternionic vector space.) We discuss the precise
(basis-free) meaning of this statement in the next sec-
tion. The limits as n → ∞ of these groups of homotopy
classes of maps give the topological K-groups K−1(T d),
KR−1(T d), and KQ−1(T d) ∼= KR−5(T d) [14, 29, 32]
which classify the topological classes of band structures
in these symmetry classes. This definition for K−1(B) is

equivalent to another definition as K̃0(S(B+)), where K̃0

is a “reduced” K-group, S is “reduced suspension”, and
B+ is B with a disjoint basepoint adjoined to it [14, 32];
the equivalence arises because the map into unitary com-
plex matrices determines the “clutching function” used
to construct a rank-n bundle over SB [14, 32].
For a set of compactly-supported Wannier-type func-

tions to respect the chiral symmetry, we only require that
they come in pairs related by the symmetry transforma-
tion (multiplication by Σz). Since we allow overcomplete
sets, this means that even if we begin with a set that
does not respect the symmetry, we can simply include all
polynomial vectors obtained by the symmetry action as
generators.

B. Classification by K1

First, we will unpack the implications of our assump-
tions about the compactly-supported Wannier-type func-
tions in these classes. At each k there is a subset of these
functions (polynomial 2n-component vectors in k space)
that span the fibre of the rank-n filled-band bundle, and
their counterparts (obtained by applying Σz) span the
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empty-band bundle. Together, they span at each k the
trivial rank-2n vector bundle of the total system. Clearly,
by restricting to the first n components, we obtain gen-
erators for a module (always over one of the polynomial
rings Ri in this paragraph) in the sublattice A orbitals,
and restricting to the last n components gives a set gen-
erating a module in the sublattice B orbitals. (Instead of
restricting, we could take the sum and difference of the
pair of corresponding functions.) The latter sets of or-
bitals give in k-space two trivial vector bundles of rank n
over T d, which are two orthogonal subbundles of the total
rank 2n trivial vector bundle, and the overcompleteness
of the generating sets of sections implies that their re-
strictions to the two subbundles span each of them at all
k. At the same time, there is a correspondence between
the fibres of the two (sublattice) subbundles, which is
an invertible linear map between the fibres, exactly like
that defined in (30), except that here we allow U to be a
general invertible matrix (with entries that are complex,
Real, or Quaternionic functions, depending on the sym-
metry class). Given any element of the module (i.e. a
polynomial section) associated to sublattice A, this map
gives an associated element of the module associated to
sublattice B, and there is an inverse map. Hence we
obtain an invertible homomorphism between the two Ri-
modules.

We point out that for two free modules of the same
rank over a ring R, presented as Rn, an invertible map
from the first to the second is equivalent to an invertible
matrix with entries in R, because each generator of the
first, represented by a column vector (0, . . . , 1, 0, . . . , 0)T

with a single nonzero entry, must be mapped to a vector
with entries in R. For modules that are isomorphic to a
free module, an invertible map (or isomorphism) can be
represented this way, up to changes of basis on the two
free modules. But maps between general modules need
not have this form. For modules that are submodules of a
free module, like many of those we study, a map from one
to another can be expressed as a matrix because of the
embeddings of the modules in the free modules, but the
entries of the matrix need not be elements of R; it is only
necessary that it map an element of the first module to an
element of the second, not that it map the standard basis
vectors to vectors with entries in R. That is, it does not
have to be a homomorphism of the first free module into
the second at all, and so even though invertible on the
submodules, it does not have to be an invertible map of
the first free module to the second. On the other hand, if
an element of the first module is now expressed as a linear
combination of generators (with coefficients in R), and
so is its image in the second, then the map determines a
matrix with entries in R (because the generators express
each module as the image of a free module, represented
by matrices with entries in R). However, the expression
as a linear combination of generators in either place need
not be unique, and consequently the matrix of the map,
or of its inverse, need not be unique.

This shows that the basic problem we need to study is

posed as two submodules of free modules of rank n, with
an invertible map (isomorphism) between the submod-
ules. This will lead us to the algebraic K1 groups of the
various rings. A first basic point is that if, naively, we
attempt to classify isomorphisms α : M1 → M2 (up to
isomorphism) between two given modules M1, M2, the
result will be trivial, because we can simply compose the
given isomorphism with an automorphism of M2 (i.e. an
isomorphism to itself; it could be viewed as a change of
basis if M2 is free and expressed as Rn), and so obtain
any isomorphism from M1 to M2. To obtain anything
non-trivial from the given data, we will have to com-
pare different isomorphisms between the given modules.
Thus if we pick an isomorphism, say α0 : M1 → M2,
and use it as a reference with which to compare other
isomorphisms α, then this is equivalent to studying the
automorphism α−1

0 α : M1 → M1, which is not necessar-
ily a trivial problem. (Indeed, when we discussed the
basic band-structure problem above, we described it as
classifying U , the unitary matrix functions of k. There
we referred to some fixed bases for the two subspaces on
the two sublattices. This choice of two bases sets up a
reference isomorphism, so that the present formulation
is equivalent to what was used there.) Using henceforth
the notation α : M → M for an automorphism on M ,
the effect of a further change-of-basis automorphism (say
α′) on M is to conjugate α with α′: α → α′−1αα′. This
cannot reduce α to the identity id unless α = id to begin
with. It is also clear that if we want to classify automor-
phisms of a module in a meaningful way, then those that
differ by conjugation should be viewed as equivalent.
We are now ready to introduce the definitions of the

Bass-Whitehead group K1(R) for a ring R, or in fact
K1(C) for any category C with exact sequences [31] (go-
ing straight to the more general form this time). We con-
sider pairs (M,α) where M is an object in the category
(we can think ofM as a module over R), and α is an au-
tomorphism of M . We construct a type of Grothendieck
group for these pairs, as an Abelian group with a genera-
tor [(M,α)] for each pair (M,α), subject to the following
two types of relations: (i) for two automorphisms α, β of
M ,

[(M,α)] + [(M,β)] = [(M,αβ)], (31)

(so composition of automorphisms gives addition of el-
ements in K1, with in particular [(M, id)] as the zero
element of the group for all M ; note this relation also
shows that αβ and βα give the same element, since the
group operation + is Abelian); and (ii) if there is a com-
mutative diagram in the category with exact rows

0 −→ M1 −→ M2 −→ M3 −→ 0
α1 ↓ α2 ↓ α3 ↓

0 −→ M1 −→ M2 −→ M3 −→ 0,
(32)

where α1, α2, α3 are automorphisms of M1, M2, M3,
respectively, then

[(M2, α2)] = [(M1, α1)] + [(M3, α3)]. (33)
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The latter implies in particular invariance under conju-
gation of an automorphism (set, say, M1 = 0, and M2 =
M3). It also implies (taking M1 = M3, M2 = M1 ⊕M3,
α2 = α1 ⊕ α3) that addition of two automorphisms of
the same module (as direct sum) is equivalent to com-
position (mentioned just now). When C is the category
of all f.g. right R modules, the resulting group is called
G1(R). When instead C is the category of f.g. projective
modules, it is called K1(R). Apart from the polynomial
rings Ri, the preceding definition of K1(R) can be ap-
plied without change to the case of the rings of continu-
ous functions Ci, and of vector bundles or f.g. projective

modules over such a ring, to obtain the groups K1(C
(d)
i ).

For the case in which R is a right regular ring, there is a
theorem analogous to that for K0(R) and G0(R), namely
G1(R) ∼= K1(R) (again due to Grothendieck [31]). Once
again, this is a consequence of the syzygy theorem, to-
gether with a result that given a module M with an au-
tomorphism α, there exists a projective resolution with
compatible automorphisms of each term (of a form simi-
lar to the commuting diagram above) [31].
Now we need to calculateK1(Ri) for the Laurent poly-

nomial rings Ri. (In the present case, one cannot reduce
the problem to the ordinary polynomials, because mul-
tiplying generators of the module by positive powers of
Xµ cancels out in the automorphism. Indeed, the K1

groups of the two types of rings are different, as we will
see.) We can begin with a simpler looking problem: we
suppose that M is a free module Rn for some n. Then
an automorphism α is represented by an invertible ma-
trix with entries in R, that is an element of the group
GL(n,R). As free modules are projective, α will give
rise to an element in K1(R), and we know that compo-
sition of automorphisms gives composition in the group,
and (hence) that conjugation by an automorphism leaves
the element invariant. If R is commutative, then we know
that the determinant of the matrix of α has these prop-
erties; here the determinant is a map onto R× (because
the matrix must be invertible), viewed as a multiplica-
tive group. [In general, we might think of a determinant
operation on invertible n×n matrices as defining a homo-
morphism of GL(n,R) into an Abelian group, whether or
not R is commutative.] Thus for the Laurent polynomial
rings R1 and R2, the determinant map gives (calling the
resulting group detR temporarily)

detR
(d)
1 = C× ⊕ d.Z (34)

detR
(d)
2 = R× ⊕ d.Z. (35)

Here we reverted to additive notation for direct products
of groups; the integers arise from the exponents mµ in
the units. Note that we could write the group of units
additively as Z/2 ⊕ R instead of the multiplicative R×

(the latter is obtained by using the exponential map).
For C×, it can be obtained by applying the exponential
map to the additive group C, but note that this map of
course has a kernel, the integer multiples of 2πi. These
groups are independent of the size n of the matrices used;

the determinant already gives values in these groups for
the n = 1 case.
For matrices whose entries are quaternions, it is possi-

ble to define a determinant, the Dieudonné determinant
[27, 31]. There seems to be no simple algebraic expression
for it, but the result is

detR
(0)
3 = R×

>0, (36)

the group of positive real numbers under multiplication.
For quaternions, the group of units H× is not Abelian,
whereas K1 and det should be. The properties of a de-
terminant, applied to 1× 1 matrices, imply (at least if it
is independent of n) that detR should contain a quotient
of R×

ab. Here for any group G we define its Abelian-
ization to be Gab = G/[G,G], where [G,G] denotes
the group generated by elements of G that are group-
theoretic commutators, that is [g, h] = ghg−1h−1 for g,
h ∈ G. For quaternions, the group of units H× is iso-
morphic to R×

>0 × SU(2) by using the norm |q| defined
above, so H×

ab
∼= R×

>0, and the map H× → R×
>0 can be

represented by the norm map q → |q|. For the Laurent
polynomial ring, the units were described above, and the
Abelianization is

R
(d)×
3 ab = R×

>0 ⊕ d.Z. (37)

One would expect this group to play the role of the de-
terminant group for this ring. We also note that, if one
decides to represent Quaternionic functions by 2× 2 ma-
trices of complex functions, then the usual (complex) de-
terminant can be taken, and the values for an invertible

matrix are of the form |c|2 ∏µX
2mµ
µ , where c 6= 0 is a

quaternion and all exponents are even. Thus the result
is effectively the same, and this gives some justification

for identifying detR
(d)
3 = R

(d)×
3 ab also. (Only our reluc-

tance to take a square root stops us from using this as
the basis for a definition of the determinant for matrices
with Quaternionic polynomial entries.)
The group GL(n,R) has an obvious embedding into

GL(n + 1, R) given by mapping n × n matrices to the
n× n top left block, with a 1 at the bottom right place,
and zeroes elsewhere. The sequence of embeddings al-
lows us to take the direct limit as n→ ∞ of these groups,
called GL(R). K1(R) can in fact be defined as GL(R)ab,
the Abelianization of GL(R); this can be shown by using
the fact that the projective modules are defined as direct
summands in a free module [31]. This makes K1(R) a
“stable” version of a determinant. (Likewise, the group
K0(R) can also be defined using idempotent matrices
over R, that is matrices p with entries in R such that
p2 = p [31], similar to projection operators that can be
used to define a vector bundle as a subbundle of a trivial
vector bundle. In both cases, these definitions show that
the K groups are the same whether right or left mod-
ules are used in the other definitions.) In the case of a
division ring D = R, C, or H, it turns out that K1(D)
is precisely the Abelianized group of units in each case,
that is, as in the results above with d = 0.
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These results leave the question of whether the deter-
minant (when defined) or R×

ab actually is all of K1(Ri)
for the polynomial rings when d > 0. This question is
answered (affirmatively) in a different way by a further
result. If R is a right regular ring, then K1 of the Laurent
polynomial extension ring R[t, t−1] (with indeterminate
t) is

K1(R[t, t
−1]) ∼= K1(R)⊕K0(R); (38)

this is part of the “fundamental theorem of algebraic K-
theory” proved by Bass, Heller, and Swan [31, 34]. Be-
cause a Laurent polynomial ring is itself right regular,
the result can be applied iteratively, and using the re-
sults for K0 and the d = 0 results for K1 already stated,
we obtain

K1(R
(d)
1 ) = C× ⊕ d.Z, (39)

K1(R
(d)
2 ) = R× ⊕ d.Z, (40)

K1(R
(d)
3 ) = R×

>0 ⊕ d.Z, (41)

in agreement with the Abelianized groups of units dis-
cussed above. Note that, as mentioned already, these also
give the corresponding G1 groups, relevant to the classifi-
cation problem in which we are interested. We may men-
tion that under the same conditions K1(R[t]) = K1(R),
so that K1 for ordinary and for Laurent polynomial rings
differ for d > 0, whereas for the K0 groups they are all
the same and independent of d.
The presence of continuously-varying factors in these

groups may seem surprising to readers used to the topo-
logical classifications of free-fermion topological phases
by topological K-theory. But there is a simple way to
map the algebraic classification here (essentially based on
isomorphisms) into a topological one (essentially based
on homotopies). The continuous factors in the groups
above represent distinctions between automorphisms, al-
ready seen for a 1 × 1 matrix or an element of R×,
which clearly can be continuously deformed to one an-
other. Thus for a classification up to homotopy equiv-
alence, we can simply remove the continuous factors,
which more formally means we take the quotient by the
path-connected component of the identity element of the
group [34], which is a normal subgroup. We can also
describe this operation as passing to the homotopy set
of path-connected components π0(K1) of the K1s, which
we write as π0K1; this homotopy set inherits a group
structure. Then we obtain

π0K1(R
(d)
1 ) = d.Z, (42)

π0K1(R
(d)
2 ) = Z/2⊕ d.Z, (43)

π0K1(R
(d)
3 ) = d.Z. (44)

We will now confirm (i) that this classification of mod-
ules up to equivalence describes what can be attained
with compactly-supported Wannier-type functions, and
(ii) relate this to the topological classification of all band
structures in these three symmetry classes. For (i), it is

sufficient to point out that rank one (or n = 1) examples
exist corresponding to the groups π0K1 just obtained.
This is clear, because we already discussed how the re-
sults correspond to the (Abelianized) groups of units
R×

i ab (i = 1, 2, 3) of the three polynomial rings. For each
choice of a unit, there is a corresponding vector bundle
in the chiral-symmetry class in question (set U equal to
the unit; we have pointed out already that with a given
choice of basis for the free module associated to each sub-
lattice, the automorphism α is represented by the matrix
U , which here is 1×1), and it is immediate that the vector
bundles are polynomially generated. These constructions
correspond to Wannier functions that in position space
are simply dimers, with one end on a single site in the
single A orbital, and the other end in the B orbital on
a site displaced by (m1, . . . ,md), the set of exponents
of the Xµ in k space. Incidentally, these examples also

possess a flat-band parent Hamiltonian with hk = U−1
k

,
provided that in the unit |c| = 1 [see eq. (9)]. For (ii), it is
also immediate that these examples are non-trivial in the
topological classification of vector bundles of these sym-
metry classes. The exponentsmµ are “winding numbers”
for the behavior of U in k space (i.e. when evaluated at
|Xµ| = 1). Part of the characterization of vector bundles
of these classes in general uses the one-dimensional wind-
ing number of the automorphism U , which is essentially
the winding of the determinant, similar to the above dis-
cussion. (For the Quaternionic case, the complex de-
terminant is usually used, leading to the appearance of
factors of 2.) These uniquely label the “weak topologi-
cal insulators” that arise in dimensions larger than 1 by
using the topology of one-dimensional systems, namely a
winding in each of the d directions.

To prove that these results classify all polynomially-
generated vector bundles in the chiral symmetry classes,
we will again proceed in two steps, as in the case of
K0 in the previous Section; namely, we first consider a
map (a functor) from the K1 group of the polynomial
ring Ri to the K1 group of the corresponding ring Ci

of continuous functions, and then the map from the lat-
ter to the topological K-theory groups K−1(B). The
argument does not use the full strength of the G1(R)
groups, since we are not interested in all f.g. modules,
but these groups do provide an “upper bound” on the
groups classifying the modules in which we are interested:
the ones generated by (the Fourier transforms of) a set
of compactly-supported Wannier-type functions. How-
ever, our arguments do use the methods that went into
the proof that G1(R) ∼= K1(R) for the polynomial rings.
Namely, as mentioned above, for any f.g Ri-module M
with an automorphism α, we can set up a resolution that
is equipped with an automorphism of the free module
at each step, that is a commutative diagram similar to
the sequence (32) above, though possibly longer in the
horizontal direction (this involves the “resolution theo-
rem” for K1 [31]). The resolution essentially reduces the
equivalence class [(M,α)] [in G1(Ri)] to an alternating
sum of the classes [in K1(Ri)] of the automorphisms of
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the free modules, which is why G1(Ri) ∼= K1(Ri). (The
automorphisms of the free modules in the resolution can
be described as matrices with entries in the Laurent poly-
nomial ring; we know that the class in K1(Ri) of one of
these is determined by the determinant of the matrix.)

If the module M we begin with is generated by a set
of compactly-supported Wannier-type functions, then we
know that the exact sequence of free modules in the res-
olution becomes an exact sequence of trivial vector bun-
dles (free modules) when viewed as modules over the con-
tinuous functions. Moreover, the automorphism of each
free module is given by a matrix with polynomial en-
tries, and is invertible over Ri, so its determinant is an
(Abelianized) unit of Ri, and in particular is therefore
nonzero at all real k, as required for an automorphism of
a free module over the ring Ci. (Such an exact sequence
of free modules and automorphisms can still involve non-
trivial automorphisms of each free module.) This is an
application of the change-of-rings functor (see Sec. II A),
to the change from R = Ri, to S = Ci, using the natural
embedding; let us denote these generically by R → S.
This maps a free module Rn to Sn, a f.g. projective R-
module to a f.g projective S-module, and a direct sum to
a direct sum. Consequently, it induces a natural map (a
homomorphism) K1(R) → K1(S). It is important that
this is well-defined; it means that free modules and auto-
morphisms that are in the same class inK1(R) are also in
the same class when mapped to K1(S). In our case, the
former contains d copies of the integers (we disregard the
other part for a moment), as does the latter (the winding
numbers mentioned two paragraphs ago).

We will pause the main argument to address K1 of a
ring S of continuous functions briefly. For any commuta-
tive ring S, such as C1 and C2, the algebraic K1(S) has
a natural decomposition as a direct sum of S× coming
from the determinant, plus in general a remainder called
SK1(S) which can be defined as SL(S)/[GL(S), GL(S)]
(here SL(S) is the subgroup of GL(S) of matrices with
determinant 1, and note that all commutators have de-
terminant 1). For us, S× is the multiplicative group
of nowhere-vanishing continuous functions, so is rather
large, but ultimately only its image under the homotopy
equivalence that mods out the connected component of
the identity will be of interest, and that leaves only the
group of homotopy classes of such nonvanishing functions
(under multiplication). (Here we are referring to the sec-
ond step of mapping.) For functions with values in C×

(as both examples are, at least away from points where
k ≡ −k), the homotopy classes are obtained by consid-
ering only functions into U(1), and for B = T d these
are determined only by their winding numbers on going
around the torus in one of the d directions. It is clear
that the K1(R)s map onto this group d.Z in each case.
It should be similar for the non-commutative rings R3

and C3 also; we can carry through the argument using
the ordinary complex determinant of a matrix of Quater-
nionic functions with the quaternions expressed as 2× 2
matrices, as before, and so define SK1(R3) even in this

case. In the particular case of R2, π0K1(R2) has an addi-
tional summand Z/2 due to the sign of the determinant,
which also occurs in the corresponding determinant for
π0K1(C2).
We now return to the free resolution of our Ri-module

with automorphism, which we converted (by change-of-
rings Ri → Ci) to a similar resolution by free Ci-modules
(trivial bundles) of the bundle (with automorphism) of
interest. We see that the automorphism of the bundle is
classified [in K1(S)] by an element that is an alternat-
ing sum of elements of K1(R), which we can view as a
subgroup of K1(S). Consequently, the possibilities are

classified algebraically by K1(R
(d)
i ); we know that all of

these can be attained in some rank-one example. This
concludes the more constructive part of the argument.
Finally, for the second step, in which one removes

the continuous part of the space K1(S) by passing to
the homotopy group of connected components, Milnor
[33] (chapter 7) shows, for any commutative ring of con-
tinuous functions, that the only effect is to remove the
part we just discussed as the continuous part of the de-
terminant, because SK1(S) is already a discrete group.
Hence π0K1(CC(B)) ∼= K−1(B) and π0K1(CR(B)) ∼=
KR−1(B). Using the methods outlined above, this goes
through for R3 also, giving π0K1(CQ(B)) ∼= KQ−1(B).
In summary, the polynomially-generated vector bundles
with an automorphism are classified up to homotopy by
π0K1(Ri) above, and do not yield any nonzero element of
SK1(Ci), just as polynomially-generated vector bundles

do not yield any nonzero element of K̃0(Ci), the non-
trivial part of K0(Ci), which was the statement of the
no-go theorem for vector bundles.
The remarks that follow in this paragraph will not be

used in the remainder of the paper. As regards the sec-
ond step, Milnor also mentions that, for the ring CC(B),
there is an exact sequence involving the first few algebraic
groups Kj(CC(B)) and the topological groups K−j(B).
This exact sequence can be understood conceptually, and
extended to all values of j, because in some of Quillen’s
definitions of algebraic K-theory [e.g. the B(S−1S) con-
struction [34]] there is the option, in the case of rings
such as C, R1, or CC(B), of using two different topolo-
gies under either of which the ring operations are con-
tinuous maps. The usual algebraic theory corresponds
in Quillen’s treatment to using the discrete topology on
the ring, while there is also a natural “continuous” (non-
discrete) topology (as in Milnor’s discussion), the use of
which in the appropriate construction leads to the topo-
logical K groups ([34], sections IV.3.9, IV.4.12.3). There
is a “change of topology” functor (see the same refer-
ences) that, for the given ring, leads to an infinite long
exact sequence involving the two types of K theory and
some relative groups, and which explains Milnor’s state-
ments. (The references state that there is a map of spaces
associated to the two topologies on the ring; the K-
groups are homotopy groups of these spaces, and the long
exact sequence for homotopy groups of two spaces with a
map between them produces the long exact sequence of
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K groups.) We used a purely algebraic formulation, but
then referred to a natural continuous topology when iden-
tifying the connected component of the identity, before
taking the homotopy sets; together, these correspond to
the change-of-topology functor on R1. Thus essentially
the two steps we used are the composite of the change
of rings and change of topology to pass from R1 (with
the discrete topology) to CC(T

d) (with the continuous
topology) and relate algebraic to topological K-theory;
the functors can be considered in either order. (Natu-
rally, similar statements apply for the other rings and
other K-groups used in this paper.) We will continue to
use the simpler homotopy-set point of view.

V. ALTLAND-ZIRNBAUER CLASSES D, DIII,

C, CI: RELATIVE K0

In this section we deal with the final four symmetry
classes, those characteristic of paired states of fermions,
the Bogoliubov-de Gennes or Altland-Zirnbauer (AZ)
[11] symmetry classes D, DIII, C, and CI. (Other symme-
try classes, such as BDI and CII, can also arise in relation
to paired states, but have already been covered.)

A. AZ symmetry classes

In this subsection, similar to the previous two groups
of symmetry classes, we characterize each class, and de-
fine the problem that needs to be solved algebraically,
before turning to the methods to do so in the following
subsection. We will be able to treat the four cases in
parallel, but we present details in only one case, as an
example.
We begin with what we view as the most basic class,

class D. It is necessary to begin with a second quantized
“reduced” Hamiltonian Hred, which has the most general
form

Hred =
1

2
C†

(
h ∆

−∆ −h

)
C =

1

2
C†HC, (45)

where C stands for a column vector of creation and de-
struction operators, in which the firstM components are
cα, the remaining M are c†α; further, for the M × M
matrices h and ∆, h must be Hermitian and ∆ must be
antisymmetric. Using the 2M × 2M matrix H viewed
as acting in a tensor product of M dimensional vector
space and a two-dimensional space (“Nambu space”), the
required behavior of H can be characterized by

ΣxHΣx = −H, (46)

as well as H† = H. The operation on the left can also
be described using a time-reversal-like antilinear oper-
ator, τ = KΣx with τ2 = +I, as τHτ−1. (Note we
are not saying the system has time-reversal symmetry
here). Such H can be viewed as elements of the Lie al-
gebra of O(2M), and have eigenvalues in ±E pairs; an

orthonormal set of eigenvectors can be assembled into
an orthogonal matrix. The eigenvectors corresponding
to a pair of eigenvalues ±E are related by τ , so have
the form w, τw. The more familiar basis for O(2M) can
be obtained by taking the real and imaginary compo-
nents of vectors; for the operators cα, c

†
α, they are writ-

ten as combinations of the now-familiar self-adjoint or
“Majorana” operators. In this basis, H becomes i times
a real antisymmetric matrix. The eigenvectors can be
viewed as defining a complex structure on the real vec-
tor space (i.e. choosing a real 2M × 2M matrix J with
J2 = −I), turning R2M into CM ; the choice of such a
complex structure can be labeled uniquely by a point in
the space O(2M)/U(M), because the complex structure
is invariant under a group isomorphic to U(M) (a change
of basis on CM ). In this point of view, the familiar Bo-
goliubov transformation (used to diagonalize a second-
quantized Hamiltonian in the form above) corresponds
to a change from the given reference complex structure
to the equivalence class that contains the basis in which
the single-particle Hamiltonian H is diagonal.
For a translation-invariant system with n orbitals per

site, we obtain a 2n × 2n Hamiltonian matrix Hk in k

space, which obeys

τHkτ
−1 = −H−k (47)

with τ = KΣx as before, and alsoH†
k
= Hk. The explicit

form can be written as

Hk =

(
hk ∆k

−∆−k −h−k

)
. (48)

Then the eigenvectors of Hk come in pairs wk =
(uk, vk)

T , τw−k = (v−k, u−k)
T , with eigenvalues Ek,

−E−k. Using an orthonormal set, we assemble these into
a matrix

Wk =

(
uk v−k

vk u−k

)
(49)

(where here uk, vk stand for n×n matrices) which obeys

τWkτ
−1 = W−k and W †

k
= W−1

k
; Wk represents the

Bogoliubov transformation at each k. We might describe
this as representing a choice of a complex structure on a
Real vector bundle; it is similar to the Quaternionic case,
class AII, except that the energies come in E, −E pairs,
more like the chiral classes. At k such that −k ≡ k, it
reduces to a complex structure on the real vector space,
and Wk becomes an element of O(2n).
For Wannier-type functions, we have only to find a set

of such pairs wk, τw−k, which one may think of as a
set of wavefunctions for quasiparticle creation and an-
nihilation operators, with of course the overcomplete-
ness property in k space to make them Wannier-type.
For compactly-supported functions, they should in addi-
tion have components that are Laurent polynomials in
Xµ = eikµ . For the latter, we have simply vectors w
(with entries in R1) and its partner τw, in which com-
plex coefficients are conjugated and X is unaltered [cor-

responding to Xµ(k) = Xµ(−k)]. There is a matrix Wk
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with τWkτ
−1 = W−k as above, and the vectors w (τw)

together span the same space spanned by the first (sec-
ond) n columns of Wk when evaluated at k. (This does
not necessarily mean thatW has polynomial entries.) W
represents the transformation from the standard com-
plex structure (corresponding to W = I2n) to another
one. The vectors w can be linearly combined with one
another using coefficients in R1 (complex polynomials),
so they generate a module over R1, while w ± τw give
real and imaginary parts, which can be linearly combined
only using coefficients in R2 (Real polynomials), so they
form a module over R2; we recall that R2 is a subring of
R1: R2 ⊆ R1. Hence the complex structure turns an R2

module into an R1 module.
For the remaining symmetry classes, the details are

similar but more intricate, and in principle can be found
in the literature [11–13] (for vector bundles, not for mod-
ules over polynomials); note, however, that AZ mainly
focused on the Hamiltonian, not on the vector space or
bundle formed from the eigenfunctions. The structure
parallels that in class D, where it involved the natural
embedding (or inclusion) of rings R ⊆ C for d = 0, or
R2 ⊆ R1 for Laurent polynomials, and for modules over
these rings an additional structure turning an R1 module
into an R2 module (i.e. the reverse direction). We briefly
recall the symmetries involved in the remaining classes,
in addition to the τ symmetry: For class DIII, time-

reversal symmetry T̂ 2 = −I is present. For class C, the
system admits an SU(2) “spin rotation” symmetry, but
not time-reversal symmetry. For class CI, time-reversal
symmetry is present as well as spin-rotation symmetry.
We present the inclusions of rings, showing the d = 0
case as well as the Laurent polynomial rings:

D: R ⊆ C, R2 ⊆ R1;
DIII: C ⊆ H, R1 ⊆ R3;
C: H ⊆M2(C), R3 ⊆M2(R1);
CI: C ⊆M2(R), R1 ⊆M2(R2).

(50)

(Here and below Mn(R) for a ring R means the ring
of n × n matrices with entries in R.) The forms of all
these inclusions can be understood using constructions
of the complex numbers and quaternions as matrices, as
we have discussed; for example, C can be represented by
2×2 real matrices inM2(R), or as a subset of the quater-

nions H, by representing i as ĵ = iσy (which is real) in
the construction discussed earlier. (Similar forms apply
also for the rings C1, C2, C3 of continuous functions on
T d, corresponding to the rings R1, R2, R3, respectively.)
For use below, we also point out that in each of these in-
clusions R ⊆ S, S is a free module of rank 2 over R (gen-

erated over R by 1 and i, î, i1, or îi, respectively, where
the last three refer to the 2 × 2 matrix constructions).
The remaining spaces that describe the spaces of possi-
ble structures in the general (or d = 0) case, correspond-
ing to O(2M)/U(M) for class D, are U(2M)/Sp(2M),
Sp(2M)/U(M), and U(M)/O(M), respectively, in cor-
respondence with the inclusions above. (The full list of
ten spaces, all related to topological K-theory, appears

e.g. in Refs. [32, 40], as well as in Ref. [11] in a slightly
different way.)

B. Classification by relative K0

For the analysis of the band structures in the AZ
classes, we need to characterize the possible ways in
which a module over a ring R can be extended to ob-
tain a module over a ring S, where R → S is an inclusion
of rings, so R ⊆ S. To describe this, we first notice
that for any S-module MS, there is an R-module MR,
obtained using the pullback or forgetful functor (see Sec.
II A): asMS is an S-module, it is certainly an R-module,
when R is viewed as a subset of S. (The subscript R
or S records the ring for which M is viewed as a right
module.) Different S-module structures can be obtained
from a reference one by following the map by an auto-
morphism of MR as an R-module, while automorphisms
of MS correspond to the same S-module structure; note
that such an automorphism maps to an automorphism
of MR. As automorphisms of projective modules MR,
MS are described by K1(R) and K1(S), we expect that
the desired classification should involve the quotient of
K1(R) by (the image under a homomorphism of) K1(S),
though this quotient might not exhaust the classification.
For the example of class D, in the simplest example of
matrices or in zero-dimensional space, R ⊆ S is R ⊆ C,
and the description just given appears to be an algebraic
analog of the classifying space O/U mentioned above in
similar terms, because O(2M) [U(M)] describes the au-
tomorphisms of the free R-modules of rank 2M (free S-
modules of rank M)—that is, of real (complex) vector
spaces. We return to the precise K-theoretic characteri-
zation of the classification that we need after introducing
the correct machinery.
For the formal description in K-theory, we need the

relative K0 group associated to a functor ϕ that takes
a category of S modules to a category of R modules;
for various versions of this, see Refs. [31] (page 131),
[32] (section II.2.13), or [34] (section II.2.10), which is
the simplest. First, a functor is said to be exact if it
maps a short exact sequence in the first category to a
short exact sequence in the second (thus, the categories
must possess exact sequences). The pullback functor of
an inclusion is exact on the categories of f.g modules of
the two rings whenever S is f.g. as an R-module, which
is true for the examples here. It also induces an exact
functor between the categories of f.g. projective mod-
ules, provided S is f.g. projective as an R-module; in
our examples, S is actually free of rank 2. These general
statements follow by representing the pullback functor
as the tensor product − ⊗ S, described in Sec. II A; see
Ref. [34], page 350. Then the definition of K0(ϕ) goes
as follows: we take triples (M1,M2, α), where M1, M2

are S-modules in the category in question, and α is an
isomorphism α : ϕ(M1) → ϕ(M2) from the image of
M1 to the image of M2 under the functor ϕ; in other
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words, M1 and M2 become isomorphic after forgetting
the S-module structure. Then with some natural-looking
equivalence relations imposed on these triples (for which
we defer to the references), we obtain a Grothendieck
group, and when the categories of modules are those of
f.g. projective modules, we will denote it by K0(ϕ); again
we will write [(M1,M2, α)] for the equivalence class of
a triple (M1,M2, α) in K0(ϕ). There is a natural map
K0(ϕ) → K0(S), given by [(M1,M2, α)] → [M1] − [M2].
For the inclusions R → S in our examples, there are nat-
ural homomorphisms (called “transfer maps”) Kj(S) →
Kj(R) for j = 0, 1, which come directly from the forget-
ful (pullback) functor. Clearly the image of [(M1,M2, α)]
in K0(R) under the composite of these maps is zero, be-
cause of the isomorphism α.
When the functor ϕ is also “cofinal” (or “quasi-

surjective”), essentially meaning that it maps f.g. free
modules to f.g. free modules, as is the case for the pull-
back in our examples (again because S is free of rank 2),
then there is an exact sequence of K-groups (Ref. [32]
sections II.2.20, II.3.22, or Ref. [34], page 210),

K1(S) → K1(R)
∂→ K0(ϕ) → K0(S) → K0(R) (51)

(∂ is the “connecting map”). If the image of K0(ϕ)
in K0(S) is zero, then this shows that K0(ϕ) ∼=
K1(R)/imK1(S), as we anticipated above. If one knows
the K-groups of the two rings, and the maps between
them in the exact sequence, then the sequence can be
used to calculate K0(ϕ). The same can also be done
for the rings of continuous functions. We use a change
of rings to an inclusion of rings of (possibly matrices
over) continuous functions that correspond to the inclu-
sion R ⊆ S, and denote it as R′ ⊆ S′ [coming from
replacing each Ri by Ci in the inclusions (50)], and the
corresponding pullback functor as ϕ′, leading to the cal-
culation of K0(ϕ

′). Finally, this can be related to the
homotopy classification of vector bundles at the end, as
for the K0, K1 cases.
To cement the identification of the relative K0(ϕ) [or

K0(ϕ
′), likewise] group as the correct classification for

the f.g. modules or bundles in the AZ symmetry classes
(at least when the modules are projective), we first note
that when ϕ is cofinal, any class in K0(ϕ) can in fact be
represented by the class of a triple [(M1, S

n, α)] for some
n, so while M1 is projective, M2 = Sn is now free (see
Ref. [34], page 80; the proof is straightforward). Since
ϕ(Sn) is free, this means that ϕ(M1) is isomorphic to
a free R-module, which is exactly the situation in the
paired states in tight-binding models that we study, at
least for the projective modules over the polynomial rings
(in view of the projective modules being stable free, so
possibly after taking direct sum with a free module), and
for bundles: namely, when the pairing is ignored, the
system just becomes the tight-binding model band struc-
ture, which is trivial as a vector bundle (i.e. free as a
module over the ring of continuous functions correspond-
ing to R). We note that this description contains, but is
more general than, the description above as a quotient

K1(R)/imK1(S), since it allows imK0(ϕ) ⊆ K0(S) to be
non-zero; instances of this occur for K0(ϕ

′) for modules
over the continuous functions (or for band structures) in
class D in two dimensions (and a calculation then leads
to the correct results for the classification). We will see
that the image imK0(ϕ) is always zero in the cases of
the polynomial rings considered below.
We will now carry out the calculation in the four cases

of interest. First, for class D, the exact sequence reads

K1(R1) → K1(R2) → K0(ϕ) → K0(R1) → K0(R2).
(52)

For the polynomial rings, the K0 groups are always ∼= Z,
while the K1 groups have been determined earlier. Now
we require information about the maps (homomorphisms
of Abelian groups) in the sequence. In general, it is suf-
ficient to understand how the functor (pullback, in our
case) acts on some representative module in each equiv-
alence class in each K0(S) and K1(S) group. In the
present case, the rings are Laurent polynomial extensions
of division rings, and we know from the earlier analysis
that free modules of rank m over each ring give repre-
sentatives for the classes. Thus in the present case, the
pullback functor ϕ maps the space of complex vectors
(with polynomial entries in R1) of rank m over R1 to a
space of Real vectors, by taking Real and “Imaginary”
parts, thus producing a module of rank 2m over R2. In
this way, only free modules over R2 of even rank can be
produced, so the last map in the sequence is multiplica-
tion by 2, or ×2, on the integers, and hence its kernel is
zero. Thus K0(ϕ) maps to zero, and the map before it
must be a surjection. ForK1s, the relevant information is
contained in the determinants (again using free modules).
Invertible matrices of size m over R1 map to invertible
matrices of size 2m over R2 when complex numbers are
represented as 2 × 2 real matrices, and the (real) deter-
minant of the latter is the square of the absolute value of
the (complex) determinant of the former (in the absolute
value, the Xµs are treated simply as indeterminates, so
not complex conjugated). Hence the units c

∏
µX

mµ
µ in

R1 (which are the possible values of the complex deter-

minant) map to units |c|2 ∏µX
2mµ
µ , and the first map

is |.|2 ⊕ d.(×2) (i.e. absolute-value squared on C×, and
multiplication by 2 on each group of integers), mapping
K1(R1) = C× ⊕ d.Z into K1(R2) = R× ⊕ d.Z. We can
summarize these statements by writing out the exact se-
quence explicitly as

C× ⊕ d.Z
|.|2⊕d.×2→ R× ⊕ d.Z → K0(ϕ)

0→ Z
×2→ Z (53)

(the unidentified connecting map being the quotient,
which is a surjection). Because R× contains negative as
well as positive real numbers, we find that the quotient
of K1(R2) by the image of the first map is therefore

K0(ϕ) = (d+ 1).Z/2. (54)

The results for d = 0, 1 agree with the topological K-
group for this class, which is KR−2(T d) [13]; in this case
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there was no continuous part to divide out on passing
from the algebraic group for Real functions to the topo-
logical K-theory group.
The calculation for class DIII is similar. The exact

sequence is

K1(R3) → K1(R1) → K0(ϕ) → K0(R3) → K0(R1).
(55)

Again, the pullback from matrices with Quaternion poly-
nomial entries to matrices with complex entries doubles
the rank of a free module (over the respective rings), and
maps of determinants behave similarly as before. The
sequence becomes

R×
>0 ⊕ d.Z

|.|2⊕d.×2→ C× ⊕ d.Z → K0(ϕ)
0→ Z

×2→ Z. (56)

Hence the relative K0 group for class DIII is

K0(ϕ) = U(1)⊕ d.Z/2, (57)

and contains a continuous summand U(1) (the analog
of the additional Z/2 in the class D case). Since U(1)
is connected, it disappears in π0K0(ϕ), the quotient by
the connected component of the identity, which we will
compare with the topological K group KR−3(T d) (in
particular, these agree for d = 0 and d = 1).
The case of class C involves the pullback from a ma-

trix ring S = M2(R1) to R3. Algebraic K-theory al-
ways exhibits invariance under Morita equivalence of
rings, which means in particular that the K-groups of
a matrix ring are the same as those of the ring, that
is Kj(Mn(R)) ∼= Kj(R) for any j and any ring R. We
therefore have a functor from modules over R1 to mod-
ules over R3, and we note the inclusion R1 ⊆ R3. In
K-theory, the original pullback functor is in fact Morita
equivalent to the change-of-rings functor corresponding
to this inclusion. That is, for class C, we simply “ex-
tend rings” from R1 to R3 in a natural way; this functor
leaves the rank of a free module unchanged. The exact
sequence of the pullback is (Morita) equivalent to

K1(R1) → K1(R3) → K0(ϕ) → K0(R1) → K0(R3).
(58)

Working through the maps gives the sequence

C× ⊕ d.Z
|.|⊕d.id→ R×

>0 ⊕ d.Z
0→ K0(ϕ)

0→ Z
id→ Z (59)

(id : Z → Z is the identity map on the integers), which
gives, for class C,

K0(ϕ) = 0. (60)

For d = 0, 1, this agrees with the topological K-group
for class C, KR−6(T d).
Similarly for class CI, by Morita invariance the exact

sequence is

K1(R2) → K1(R1) → K0(ϕ) → K0(R2) → K0(R1),
(61)

and the functor becomes the change-of-rings functor for
R2 ⊆ R1, which again leaves the rank of a free module
invariant. The details of the maps give

R× ⊕ d.Z
i∗⊕d.id→ C× ⊕ d.Z → K0(ϕ)

0→ Z
id→ Z, (62)

where i∗ : R× → C× is the map induced from the inclu-
sion i : R → C of the rings of real into complex numbers.
This then implies that, for class CI,

K0(ϕ) = U(1). (63)

[This U(1) is the multiplicative group of complex num-
bers of absolute value 1, modulo the subgroup Z/2 =
{±1}.] The homotopy group is π0K0(ϕ) = 0, and for
d = 0 and 1 this is the same as the topological K-group
KR−7(T d).
So far, we discussed and calculated the relative K0

groups, which are defined using the categories of f.g. pro-
jective modules over our rings. As in the earlier sections
for other classes, what we actually need for full general-
ity is an analysis for more general modules, and it may
be helpful to have a corresponding result for relative G0

groups, defined using the categories of all f.g. modules,
as an “upper bound” on the classification of the mod-
ules of interest, even though in fact we do not strictly
need the bound, as we will see in the following para-
graph. A full discussion for these relative G0 groups is
harder to find than for K0 groups, however, the condi-
tion for the underlying pullback functor to be exact has
already been given, and leads to maps Gj(S) → Gj(R)
(see Ref. [34], page 350). A high-level argument for the
definition of the relative group G0(ϕ) and the exact se-
quence can be obtained in higher algebraicK-theory from
Quillen’s Q construction, in which the absolute Kj(R)
[Gj(R)] groups are defined as homotopy groups of certain
spaces constructed from the categories of f.g. projective
modules (f.g. modules), and for any exact functor be-
tween such categories (say, for two rings R and S) there
is a corresponding map of the spaces (see again Ref. [34],
page 350). Then an exact sequence containing relative
groups K0(ϕ) [G0(ϕ)] groups follows from the exact ho-
motopy sequence associated to the map. Finally, because
we know that Gj(R) ∼= Kj(R), Gj(S) ∼= Kj(S), and also
the transfer maps induced from the pullback agree ([34],
page 425), it follows that G0(ϕ) ∼= K0(ϕ) for the pull-
back functors ϕ, by using the exact sequence again, and
so the results for G0(ϕ) are the same as those already
calculated above as K0(ϕ).
Finally, we need to consider the relation of the modules

over polynomial rings with the topological classification
in terms of vector bundles. This is much like the analysis
in earlier sections, especially the case of chiral symmetry
classes that involved K1. We carry it out here in a form
that avoids any use of G0(ϕ) for the polynomial rings.
We will use the change of rings to the inclusions R′ ⊆ S′,
and the corresponding pullback functors ϕ′, as already
defined. First, an example in one of these symmetry
classes means a set of polynomial sections that generate
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a module M over the ring S [see the inclusions R ⊆ S in
(50)], with the overcompleteness property that, after the
change of rings to S′, we obtain an S′-module M ′ with
generators that span the fibre of the bundle (i.e. the space
of states of the tight-binding model) at all k; by applying
ϕ′, we obtain a set of generators for an R′ module which
is free (because it is the trivial bundle in the tight-binding
model viewed as an R′-module) and of the form ϕ′(S′n)
for some n (for the same reason); of course the generators
span the fibres of the corresponding bundle.
By the syzygy theorem, M has a projective resolution

of finite length, and applying the pullback functor pro-
duces a projective resolution of the pullback R-module
ϕ(M) also. Now we change rings to R′ ⊆ S′ using the
change-of-rings functor, and apply it to the projective
resolution as in earlier sections. Because we assume that
our polynomial sections have the overcompleteness prop-
erty, the resulting sequence is an exact sequence of pro-
jective S′-modules (indeed, free modules except possibly
for M ′ and at the dth place), that is a projective resolu-
tion of the projective S′ module M ′, and we also obtain
another resolution of the projective R′ module, the pull-
back ϕ′(M ′). The pullback ϕ′(M ′) is isomorphic to a free
module (trivial bundle) ϕ′(S′n) as already mentioned, via
an isomorphism we call α′. In addition, we can assume
that there are compatible maps α′

i making the pullbacks
of the free S′ modules in the resolution isomorphic to
free modules ϕ′(S′ni). These structures allow us to apply
K0(ϕ

′) to these exact sequences of triples, and we take
it as given that K0(ϕ

′) classifies the physically-relevant
structure of the bundles in these symmetry classes [i.e.
equivalence classes of triples consisting of a pair of pro-
jective modules (i.e. bundles) and an isomorphism]; see
the discussion above. As we have an exact sequence
(projective resolution), the K0(ϕ

′) class for our triple
(M ′, α′, S′n) containing our polynomially-generated bun-
dle M ′ is an alternating sum of those for the triples in
the resolution. Those classes lie in the image of K0(ϕ) in
K0(ϕ

′) under the injective homomorphism induced from
the change of rings. Hence (passing finally to homotopy
sets), the polynomially-generated bundles in these sym-
metry classes are classified by elements of the π0K0(ϕ)
groups of the polynomial rings which have already been
described. Again, these polynomially-generated bundles
(which are non-trivial only for classes D and DIII) can
all be found in rank-one examples, by lifting the one-
dimensional constructions to higher dimensions by choos-
ing some winding number in Z/2 for each direction (for
class D in one dimension, the example is essentially the
Kitaev chain [10]). This concludes the constructions.

VI. DISCUSSION

In this section, we discuss the general features of the
results of this article. We have seen that, in every one of
the ten symmetry classes, the (stable) topological clas-
sification of vector bundles (or band structures) that

field p class π0K0(ϕ
(d)
p ) d = 0 d = 1 d = 2

C 0 A Z Z Z 2.Z

1 AIII d.Z 0 Z 2.Z

R 0 AI Z Z Z Z

1 BDI Z/2⊕ d.Z Z/2 Z/2⊕ Z Z/2⊕ 2.Z

2 D (d+ 1).Z/2 Z/2 2.Z/2 3.Z/2 ⊕ Z

3 DIII d.Z/2 0 Z/2 3.Z/2

4 AII Z Z Z Z/2⊕ Z

5 CII d.Z 0 Z 2.Z

6 C 0 0 0 Z

7 CI 0 0 0 0

TABLE I. Table of results for topological phases that can be
realized using compactly-supported Wannier functions (poly-
nomial sections) or TNSs. First three columns: labels for
symmetry classes of topological phases. Fourth column: re-
sults of the analysis of the present paper for what can be
realized with polynomial sections in dimension d, up to ho-
motopy. Fifth through seventh columns: topological phases
in general non-interacting systems in dimensions d = 0, 1,
and 2, classified by K−p(T d) (for C) or KR−p(T d) (for R),
for comparison with the fourth column.

are polynomially generated (i.e. can be constructed from
compactly-supportedWannier-type functions; see section
II B) has a similar form: it can always be described as the
classification (a group 0, Z, or Z/2) that arises for zero-
dimensional systems (where the problem just reduces to
matrices, essentially), plus d copies of the group (again
0, Z, or Z/2) that classifies what can further arise in that
symmetry class in one space dimension within the general
topological classification. (The result for class A is the
no-go theorem of DR [1].) Thus, all equivalence classes
that can arise in zero or one dimension can be obtained
(of course, restricting functions in zero variables to be
polynomials has no effect, but should be included in the
mathematical analysis). In higher dimensions, the wind-
ing that can occur in one dimension can still occur in each
of the d directions, giving the d copies mentioned; these
are described as “weak” topological insulators or super-
conductors. But the other invariants, including weak
ones associated with dimensions < d but > 1, do not
occur within polynomials. This then constitutes the ex-
tension of the no-go theorem to other symmetry classes.
The results are tabulated in Table I. In this table we

have labeled the classes by an integer p for both the real
and complex classes, as well as with the Cartan symmet-
ric space labels A, AI, etc, used so far. The algebraic
K groups of the polynomial rings, modulo the connected
component of the identity, calculated earlier in this paper

have been denoted by π0K0(ϕ
(d)
p ) in the table. For us,

this is essentially only a unified notation (explained fur-
ther below). With this notation, the general result which
was described in the previous paragraph, including both
the complex and real cases, can be expressed as the fol-
lowing theorem which encapsulates the results proved in
this paper:
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Theorem: polynomially-generated vector bundles are
classified by the algebraic K-theory groups

K0(ϕ
(d)
p ) ∼= K0(ϕ

(0)
p )⊕ d.[K0(ϕ

(1)
p )/K0(ϕ

(0)
p )], (64)

for the symmetry classes labeled by p = 0, 1 (for C),
p = 0, . . . , 7 (for R), and for all dimensions d ≥ 0. The
classification up to homotopy takes the same form, with
K0 replaced by π0K0 in each place; for these, the results
coincide with the topological K-theory groups K−p(T d)
(for C) and KR−p(T d) (for R) for d = 0, 1 and all p.
The mathematics behind this result is largely contained
in the so-called fundamental theorem of algebraic K-
theory that we have mentioned, as well as the Hilbert
syzygy theorem (or the fact that the polynomial rings are
regular) which was used repeatedly. We point out that

the zero-dimensional result K0(ϕ
(0)
p ) is always present as

a summand here.
In the Table, the columns labeled d = 0 through d = 2

contain the results of the topological K-theory groups
for the same symmetry classes in dimension d, that is
K−p(T d) for C andKR−p(T d) for R. These columns are
included for comparison with the results for polynomial
rings. Again, the zero-dimensional result, which is the

same as K0(ϕ
(0)
p ), is always present as a summand here.

This summand can be viewed as classifying the structure
present at one point in the Brillouin torus (analogous
to the other images of low-dimensional groups, or weak
invariants; the point should be one with k ≡ −k in the
real cases), or as a “global” invariant. In the literature,
this part is frequently divided out or omitted from the
tabulated results, corresponding to the use of “reduced”

K-groups, generically denoted K̃. We believe that it is
physically meaningful for the topological classification of
band structures to retain it, that is to use unreduced K-
groups, as it is the group of classes of a “strong” invariant
for d = 0, and a “weak” invariant for d > 0, which are
on the same footing as the other invariants for d > 0.
One sees in the Table that for five of the ten symme-

try classes, namely, A, D, DIII, AII, and C, there are
topological phases that can occur in d = 2 dimensions
but cannot be realized with polynomials or TNSs; these
are the “strong” topological insulator or superconductor
phases in two dimensions. The difference becomes even
larger in d > 2 dimensions. In terms of the results in Ki-
taev’s paper [13], our results are obtained by truncating
the formula in his eq. (26) to the terms s = 0, 1 only.
There is a unified way of describing results of topolog-

ical K-theory for all symmetry classes simultaneously,
which can also be applied algebraically for modules over
the rings of continuous functions, as well as for rings of
polynomials as used here. It extends the approach used
for the AZ classes here, viewing all of them as involving
the extension of a Clifford algebra with p generators into
another with p + 1 generators, as shown in Karoubi’s
book, Ref. [32], page 141. Then all the K groups can
be interpreted as relative K0 groups for the appropriate
pullback functor ϕp (hence the notation used in the Ta-
ble). This viewpoint was used by Kitaev [13], and has

been popular in the physics literature. (While algebraic
K-theory in general does not exhibit Bott periodicity,
that is, periodicity in p, the piece of it obtained by this
method does, just like the topological version.) We did
not use this approach here because it requires use of rel-
ative K0 groups from the beginning. The more direct
approach used here (which requires no overt reference to
a Hamiltonian) can also be employed for the K-theory
of the rings of continuous functions; that is essentially
Karoubi’s approach, except that, from the beginning, he
uses equivalence up to homotopy rather than up to iso-
morphism. We want to point out that the use of Clifford
algebras requires use of vector spaces whose dimension
(or the dimension of a tensor factor) is a sufficiently high
power of 2 (even higher if Dirac matrices are employed,
so that the Clifford algebra has a further d generators).
While this is not a problem when the goal is to calculate
K groups of a given space B, or to construct examples in
a given topological class, it does not in general reflect the
dimensions of the vector bundles that arise “naturally”
or in band theory. For our purposes, we wanted to con-
sider the most general vector bundles we could, and so
the approach used herein seemed the most direct.

Finally we want to speculate on how an aspect of the
results could generalize to interacting TNSs. Certainly,
the approach used here cannot be easily generalized to
interacting systems. But the form of the results may
extend. There is an argument [41] that for lattice sys-
tems, topological phases that possess protected gapless
edge excitations (like the free-fermion topological phases
considered in this paper) cannot be realized by a TNS
with a gapped parent Hamiltonian. The idea is that for
a gapped TNS, correlations are short ranged, and then
the entanglement spectrum [42] (when the system is cut
into two parts in position space) is expected to be that of
a short-range entanglement Hamiltonian acting in some
suitable Hilbert space of states confined close to the en-
tanglement cut, and similar to that of a real edge. But
for a TNS, the rank of the entanglement Hamiltonian is
bounded by the “area” of the cut times a constant related
to the rank of the tensors used in the construction. It is
then impossible for, say, a chiral spectrum to be obtained
without the Hamiltonian being non-analytic in k space
and therefore not short-ranged in position space. (Exam-
ples for free-fermions can be seen e.g. in the figures in DR
[1].) For a generic ground state (not a TNS), this issue
is avoided because the low-lying entanglement spectrum
that resembles the edge merges at higher pseudoenergies
with a continuum coming from the bulk, which obviates
the argument.

This argument does seem reasonable, but there is an
additional point we wish to mention here: first, the argu-
ment does not apply in one dimension; in that case, gap-
less edge modes are simply zero modes, and there is no
objection to them in a TNS on grounds of non-analyticity.
Indeed, many examples are known of one-dimensional
topological phases that are TNSs (or MPSs) with gapped
parent Hamiltonians: the Kitaev chain is of this type.
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Then as for “weak” topological insulators and supercon-
ductors, there are phases in higher dimensions that re-
flect (wholly or in part) topological phases from lower di-
mensions. (For example, there can be higher-dimensional
quantum Hall phases that are essentially two dimensional
quantum Hall states occurring in layers that are stacked,
and without significant interaction between them.) For
behavior that results from a one-dimensional topological
phase, the entanglement spectrum should contain a large
number of degenerate zero modes coming from the one-
dimensional systems making it up. It is possible for these
to mix (that is, it is sometimes allowed by symmetries),
which in some cases can split the degeneracy of the modes
(so they become non-zero-pseudoenergy modes). Such an
entanglement spectrum, for a phase that is derived from
one-dimensional phases in each direction of space, is not
forbidden by the argument mentioned just now. This is
reflected in the form of the generalized no-go theorem
obtained in this paper, and we expect that it is a general
feature that occurs in interacting phases also. Likewise,
we have viewed the zero-dimensional system as a single
site, and there is no edge, and hence no gapless edge
modes. It makes sense that the corresponding weak in-
variants can appear in higher-dimensional polynomially-
generated bundles, as we found.

VII. CONCLUSION

The problem of compactly-supported Wannier func-
tions, or polynomially-generated vector bundles, and the
results have been described both in the Introduction and
in the preceding Discussion section, so we will be brief
here. The generalized form of the DR no-go theorem,
proved in this paper, states that, apart from the clas-
sification of zero-dimensional (or global) aspects of the
band structures, for each of the symmetry classes in
the “tenfold way” classification for lattice models with
only translational symmetry, the only topological (sta-
ble) equivalence classes of vector bundles that can be ob-
tained as polynomially-generated bundles are those that
have a “winding number” of a one-dimensional system in
the same symmetry class in each of the d directions of
space, and nothing else. The allowed possibilities were
listed explicitly in Table I. These results imply similar
statements for free-fermion TNSs: any free-fermion TNS
that gives rise to a bundle not in the list will have only
gapless parent Hamiltonians. They also apply to flat-
band Hamiltonians: For a strictly short-range flat-band

Hamiltonian for a band structure (with the symmetries
assumed in this discussion) in any of the ten symmetry
classes, and if the flat band is separated by a gap from
the remainder of the spectrum at all k, then the vector
bundle of the flat band must be one of those in the list.
The classification used here was in terms of algebraic

K-theory, because of the rings of polynomial functions
that appeared in place of the more generic rings of con-
tinuous functions that appear in connection with topo-
logicalK-theory. It might be thought that the results can
be described simply as using the former in place of the
latter, which results in the contrasting K groups. There
is a little more to it, however, as in order to obtain full
generality in the sets of Wannier-type functions, or poly-
nomial sections generating the bundle, it was necessary
to venture beyond the projective modules, which are clas-
sified directly by these groups. The syzygy theorem came
to our rescue, allowing the bundles in these more general
cases nonetheless to be related to the classification by the
K groups.
It might now be interesting to extend the results

to tight-binding models with additional crystallographic
symmetries, by using equivariant algebraic K-theory.
The extension to TNSs of interacting systems of fermions
would also be interesting, but it is not clear what tech-
niques could be used to do this.
Finally, we want to emphasize that our results do

not necessarily mean that other tensor-network construc-
tions, different from those considered here, for topolog-
ically non-trivial states cannot work. As a concrete ex-
ample, the scheme of Ref. [43] uses a tensor network to
produce approximate values for expectations of products
of local operators in (non-TNS) trial topological states,
rather than using a TNS as a trial ground state as dis-
cussed here for free fermions. This alternative approach
does not appear to be affected by the results presented
herein.
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