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ABSTRACT 1 

Variations in exciton absorption resulting from charge accumulation in various 2 

semiconducting donor–acceptor (DA) copolymer thin films were systematically investigated 3 

by gate-modulation (GM) spectroscopy by using field-effect transistor device structure. The 4 

GM spectra obtained for high-mobility DA copolymer thin films exhibited 5 

second-derivative-like line shapes due to an effect of spectral broadening of ordinary exciton 6 

absorption spectra by accumulated charges. In contrast, the GM spectra obtained for relatively 7 

low-mobility DA copolymer thin films exhibited simple bleaching of exciton absorption 8 

spectra, as well as observed for non-DA-type-type polymers like 9 

poly(3-hexylthiophene-2,5-diyl) (P3HT). From a systematic comparison of the GM spectra 10 

with temperature-dependent absorption spectra for the polymers in solution, we found that the 11 

spectral broadening observed in the GM spectra can be attributed to a reduced effect on the 12 

exchange narrowing where excitonic transitions of individual polymer chains are coherently 13 

coupled within highly-ordered crystalline domains in the polymer thin films. We discuss that 14 

the gate-induced charge accumulation in the polymer films effects to suppress the exciton 15 

coherence length, which contributes to the reduced exchange narrowing. We also discuss that 16 

the whole feature of the GM spectra can be understood in terms of a decomposition into 17 

ordered and disordered polymers, and that the GM spectra can be used as fine probes for a 18 

degree of structural ordering in semiconductor channels of polymer field-effect transistors. 19 

 20 

 21 
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I. INTRODUCTION 1 

Exciton absorption spectra of semiconducting π-conjugated polymers are strongly affected 2 

by the interchain structural order, as well as by the linear rigidity of the conjugated backbones 3 

[1,2]. The spectral linewidth becomes relatively sharp, with a value of about 0.4 eV, when the 4 

conjugated backbone is linearly extended, whereas it becomes broader than 1 eV when the 5 

backbone is folded or disordered. A particular example of a sharp exciton absorption spectrum 6 

is seen in poly(3-hexylthiophene-2,5-diyl) (P3HT), which has a crystalline lamellar structure 7 

in which the conductive layers composed of the rigid linear backbones are stacked and are 8 

separated by the alkyl side-chain layers [3,4]. Such layered-crystalline polymers have 9 

attracted considerable recent attentions, because their crystalline layer structure permits 10 

efficient carrier transport in polymer field-effect transistors (PFETs) [5]. 11 

In the absorption spectrum of P3HT, a sharp shoulder-like structure appears on the 12 

lower-energy side of the main exciton absorption when the interchain structural order is 13 

reinforced by the introduction of regioregularity [2,6–13]. It has been pointed out that the 14 

shoulder structure could be ascribed to exchange narrowing of the exciton absorption where 15 

the excitonic transitions of the individual polymer chains are coherently coupled within the 16 

crystalline domains [14–18]. The exchange narrowing effect on optical absorption and 17 

luminescence spectra is known as an outstanding and fundamental concept in some crystalline 18 

molecular materials, as is exemplified by “Davydov splitting” in polyacenes and “exchange 19 

narrowing in J-aggregates” in carotenoid, cyanine dyes, and porphyrins, where a marked 20 

spectral narrowing accompanied by a spectral shift was clearly observed [19]. In striking 21 
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contrast, the effect in polymer semiconductors has not been so evident as the crystalline 1 

molecular materials, probably because the transition moments are much smaller and 2 

disordered domains should be present within the films. Therefore, these effects have not been 3 

a crucial subject so far on polymer semiconductors. 4 

Recently, a new series of semiconducting π-conjugated polymers has been developed in 5 

which the polymer main chain consists of an alternating sequence of electron donor and 6 

electron acceptor units. These are referred to as donor–acceptor (DA) copolymers and were 7 

reported to exhibit an excellent mobility, considerably in excess of 1 cm2 V−1 s−1, in PFETs 8 

[20–24]. These copolymers exhibit a large transition dipole moment due to donor–acceptor 9 

charge-transfer exciton absorption as well to as the high crystalline order in the films. These 10 

features lead us to expect the presence of strong interchain excitonic coupling, although this 11 

effect has not yet been disclosed. 12 

Here, we report an effect of charge accumulation on the exciton absorption spectra for five 13 

kinds of semiconducting DA copolymers, PDPP2T-TT (abbreviated hereafter as DA1, as 14 

shown in Fig. 1) [20–22], PDVT-10 (DA2) [23–24], PNTz4T (DA3) [25], P(NDI2OD-T2) 15 

(DA4) [26], and PCPDTBT (DA5) [27], as well as for non-DA-type polymers, P3HT and 16 

PNDT3BT [28]. We used gate-modulation (GM) spectroscopy [29–32] to investigate slight 17 

variations in the exciton absorption spectra induced by the charge accumulation in the PFETs. 18 

We found that second-derivative-like line shapes due to spectral broadening of the exciton 19 

absorption spectra were clearly observed in the GM spectra of the high-mobility DA 20 

copolymers, whereas simple bleaching was observed in the GM spectra of the low-mobility 21 
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DA copolymers and the non-DA-type polymers. On the basis of the comparisons with 1 

temperature-dependent absorption spectra of the polymers in solution, we discuss that the 2 

spectral broadening observed in the GM spectra can be ascribed to a reduction of the exciton 3 

coherence length by the charge accumulation in highly-ordered domains in the polymer thin 4 

films, and that the GM spectra can be used as fine probes for a degree of structural ordering in 5 

the channels of the PFETs. 6 

 7 

II. EXPERIMENT 8 

The semiconducting polymers, DA3 and PNDT3BT, were synthesized by the process 9 

reported in the references [25,28], whereas the other ones were purchased from vendors; DA1, 10 

DA2, DA5 from 1-Material Inc. (Dorval, Quebec, Canada), DA4 from Polyera Corp. (Skokie, 11 

Illinois, USA), and P3HT from Merck KGaA (Darmstadt, Germany). Their molecular weights 12 

and polydispersity indices are summarized in Fig. 1. For the measurements of the GM spectra, 13 

we fabricated semitransparent thin-film PFETs on quartz glass substrates with a bottom-gate 14 

bottom-contact configuration with a channel length of 100 μm and a channel width of 1 mm 15 

(see Fig. 2a). The devices consisted of successively accumulated layers of a gold gate 16 

electrode (6 nm), a fluoropolymer layer (400 nm; CYTOP CTL-809M; Asahi Glass Co., Ltd., 17 

Tokyo) as the gate dielectric, gold source and drain electrodes (30 nm), and a thin film of 18 

semiconducting polymer (60 nm). The fluoropolymer gate dielectric was formed by a 19 

spin-coating method. The gate and source/drain electrodes were patterned by vacuum 20 

sublimation with stencil masks. Cr was used as an adhesion layer between the Au source/drain 21 
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electrode and the fluoropolymer gate dielectric as well as between the Au gate electrode and 1 

the quartz glass substrate. Al was used as an adhesion layer between the Au gate electrode and 2 

the fluoropolymer gate dielectric. 3 

The thin films of the semiconducting polymers were formed on the highly hydrophobic 4 

fluoropolymer surface by a push-coating technique [33] in which a 0.1 wt% solution of the 5 

semiconducting polymer in 1,2,4-trichlorobenzene was dropped onto the fluoropolymer 6 

surface and was compressed by using a stamp made of viscoelastic poly(dimethylsiloxane) 7 

(PDMS). The newly prepared thin films of semiconducting polymers were annealed at 373 K 8 

for 30 min. The measured areal capacitance of the gate dielectric was 4.1 × 10−9 F cm−2. 9 

The GM measurements were conducted by using a Cassegrain-type microscope system in 10 

conjunction with a grating monochromator whose spectral resolution and focal length were 6 11 

nm and 257.4 mm, respectively [31]. A halogen lamp was used as the light source. The 12 

incident light was focused onto the channel between the source and drain electrodes in the 13 

PFETs, and the transmitted light was detected by Si and InGaAs photodiodes. The 14 

illumination area on the PFETs was 100 × 100 μm2, and the power density was about 0.2 mW 15 

cm−2 at 630 nm and about 1 mW cm−2 at 1100 nm. In the measurements, the source and drain 16 

electrodes were grounded, and a square-wave ac bias (5 V, 10 Hz) was applied to the gate 17 

electrode with a dc offset bias of −50 V for p-type polymers (50 V for n-type polymer DA4). 18 

The modulated transmittance signal (ΔT) was detected by a lock-in technique to obtain the 19 

GM signal (Δαd = −ΔT/T) where α, d, and T are the linear absorption coefficient, film 20 

thickness, and transmittance, respectively.  21 
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The absorption spectra of the polymer solutions were measured in the temperature range 1 

303−453 K. The measurements were conducted on 1,2,4-trichlorobenzene solutions of the 2 

semiconducting polymers with the concentration of 0.002 wt%. The measurements were also 3 

conducted on nitrobenzene solutions of the semiconducting polymers with the concentration 4 

of 6 × 10−6, 6 × 10−5, and 2 × 10−4 wt%. 5 

Synchrotron radiated X-ray diffraction measurements were conducted at BL-7C line of the 6 

KEK (High Energy Accelerator Research Organization) Photon Factory. The 7 

monochromatized X-ray (energy 8.9 keV, wavelength 1.388 Å) was focused on the sample 8 

film surface, and the Bragg reflections were detected by the Rigaku SmartLab diffractometer. 9 

All device fabrications and measurements, except for solution spectroscopy and X-ray 10 

diffraction, were conducted under inert N2 gas. 11 

 12 

III. RESULTS AND DISCUSSION 13 

III-1. Critical dimensions in polymers 14 

Firstly, we consider critical dimensions involved in the present polymer systems for a better 15 

understanding of subsequent discussions. From the molecular weight (Mw = 65 kDa), it is 16 

estimated that the single polymer chain of DA1 consists of about 59 monomer units. The 17 

length of the single polymer chain can be therefore estimated at about 108 nm with using the 18 

length of monomer unit (1.85 nm), assuming that the polymer chain is fully extended. Figure 19 

1 shows a summary of above estimation for the seven kinds of semiconducting polymers. 20 

Optical electronic excitations of organic materials are confined exclusively to the individual 21 
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molecular units, and the dimension of relative motion of photo-generated electron–hole pairs 1 

for the excitons should be further confined to a few monomer units because of the very strong 2 

electron–hole Coulomb interactions [34]. 3 

 4 

III-2. Gate modulation spectra 5 

Figure 2b shows GM spectra measured for thin-film PFETs of the seven kinds of polymers 6 

at room temperature. The magnitude relation of their mobilities was obtained as follows; DA1 7 

> DA2 > DA3 > DA4 > P3HT ≈ PNDT3BT > DA5, as presented in Fig. 2b. As seen, a 8 

positive signal was observed at low energy region for all the polymers; < 1.45 eV for DA1, < 9 

1.48 eV for DA2, < 1.61 eV for DA3, < 1.53 eV for DA4, < 1.57 eV for DA5, < 2.00 eV for 10 

P3HT, and < 2.23 eV for PNDT3BT. These signals can be ascribed to an increase of the 11 

exciton absorption transition from singly occupied molecular orbital (SOMO) to the lowest 12 

unoccupied molecular orbital (LUMO) for radical ionic polymers. On the other hand, a 13 

negative signal was observed at high energy region; > 1.45 eV for DA1, > 1.48 eV for DA2, > 14 

1.61 eV for DA3, > 1.53 eV for DA4, > 1.57 eV for DA5, > 2.00 eV for P3HT, and > 2.23 eV 15 

for PNDT3BT. In the case of high-mobility DA copolymers (≥ 0.1 cm2 V−1 s−1), these line 16 

shapes are much sharper than those of the ordinary absorption spectra and are similar to the 17 

second derivative line shapes of the respective absorption spectra. These feature are 18 

considerably different from those for a low-mobility DA copolymer, DA5 (0.0004 cm2 V−1 19 

s−1), where the spectral line shapes can be basically understood in terms of a bleaching of the 20 

exciton absorption transition from the highest occupied molecular orbital (HOMO) to the 21 
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LUMO, as well as observed for non-DA-type polymers, P3HT and PNDT3BT [30,35]. The 1 

second-derivative-like line shapes of the GM spectra indicate that the exciton absorption 2 

spectra are broadened by the charge accumulation. 3 

Figure 3 summarizes spectral sharpness of the GM spectra where Δαd / αd and WGMS / Wabs 4 

correspond to the peak intensity and the peak width of GM spectra both normalized by those 5 

of the ordinary absorption spectra, respectively. These parameters were estimated for the peak 6 

at 1.5 eV for DA1, 1.5 eV for DA2, 1.7 eV for DA3, 1.7 eV for DA4, 1.8 eV for DA5, 2.3 eV 7 

for P3HT, and 2.5 eV for PNDT3BT. As seen, the Δαd / αd increases, and the WGMS / Wabs 8 

decreases, monotonically, as the mobility increases. These plots clearly indicate that the sharp 9 

second-derivative-like line shapes of the GM spectra are closely associated with the increase 10 

of the mobility. As we will show below, such a systematic variation in the GM spectra can be 11 

ascribed to the interchain structural order of the polymer films, which should be directly 12 

responsible for the carrier mobility of the PFETs. 13 

 14 

III-3. Temperature-dependent solution spectra 15 

To clarify the origin of the second-derivative-like line shape of the GM spectra in the 16 

high-mobility DA copolymers, we measured exciton absorption spectra of their polymer 17 

solutions at various temperatures. Figure 4a presents absorption spectra of DA1 in 18 

1,2,4-trichlorobenzene solution measured at various temperatures between 303 and 453 K. 19 

The spectra showed a marked narrowing effect at about room temperature as compared with 20 

the spectra recorded at higher temperatures: A broad peak centered at 1.8 eV with the width of 21 
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0.22 eV at 453 K gradually disappeared as the temperature decreases, and a new sharp peak 1 

grew at 1.5 eV with the width of 0.11 eV at 303 K. The latter peak should be ascribed to the 2 

exciton absorption of aggregates of linear polymer backbones, as the feature is quite 3 

coincident with the absorption spectrum of the DA1 thin film. On the other hand, the former 4 

peak can be ascribed to the exciton absorption of isolated polymer chains, because the 5 

polymer is completely dissolved at high temperatures. The spectral change discussed above 6 

was reversible with respect to the heating–cooling cycle, indicating that polymer aggregates 7 

are in thermal equilibrium with isolated polymers. These observations clearly indicate that the 8 

DA1 aggregates present a strong interchain excitonic coupling, which is ascribable to the high 9 

interchain structural order and/or the large transition moment in DA1. 10 

We also measured a concentration dependence of solution spectra at room temperature to 11 

confirm and establish the aggregate formation for DA1, the result of which is shown in Fig. 12 

4b. Although it was difficult to prepare the solution of non-aggregated copolymers due to the 13 

low solubility of DA1, we successfully obtained it with use of nitrobenzene as solvents. As 14 

seen, the spectra exhibited a clear variation by the concentration, which was fundamentally 15 

similar to the spectral variation by the change of temperature: The sharp absorption peak due 16 

to the aggregates was observed at 1.5 eV with the increase of concentration, while broad peak 17 

due to the isolated polymers was observed at 1.8 eV only in the low-concentration solution. 18 

The results clearly indicate that the aggregates are formed with an increase of the 19 

concentration. Nonetheless, we used the temperature dependence of polymer solution spectra 20 

in 1,2,4-trichlorobenzene for the subsequent analyses, because it exhibited clear spectra of the 21 
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aggregates with minimized spectral component due to isolated polymers. 1 

 2 

III-4. Exciton coherence length analyses for highly-ordered DA1 copolymer 3 

A comparison of the GM spectra with the narrowing effects in the polymer solution spectra 4 

indicates that the second-derivative-like GM spectra might be due to broadening as a result of 5 

charge accumulation with gate voltages. A possible origin of this phenomenon is that the 6 

coherent interchain excitonic coupling is violated by charge accumulation in the crystalline 7 

polymer aggregates. 8 

Such a spectral narrowing of the exciton absorption caused by coherent excitonic coupling 9 

has been previously discussed for some small-molecule organic dye crystalline materials, 10 

such as merocyanine J-aggregates [19]; if the dye molecules form a well-ordered crystalline 11 

system, electronic excitations of individual molecules are coherently coupled, leading to the 12 

formation of an exciton band, as shown in Fig. 5a [14–17]. The excited states at the 13 

wavenumber k = 0 correspond to the excited state in which the electronic transitions of 14 

individual molecules are coupled in parallel, leading to a shift in the lowest optically allowed 15 

exciton transition to a lower energy than that of the isolated molecule (Fig. 5b). The 16 

outstanding feature is the spectral narrowing effect by J-aggregate formation, in which the 17 

narrowed linewidth can be expressed by the following equation [36]: 18 

coh

0

L
w

w=      (1) 19 

where Lcoh is the coherence length (unit: molecules) of excitonic coupling. w is the spectral 20 
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linewidth of a molecular aggregate, and w0 is the spectral linewidth of an isolated molecule. 1 

The relevant physics behind Eq. 1 was firstly introduced as “motional narrowing” in the field 2 

of nuclear magnetic resonance where the fluctuating local magnetic fields created by 3 

randomly oriented nuclear spins are averaged when the motion of the nuclei is thermally 4 

activated [37]. Inspired by this, the similar concept was proposed as “exchange narrowing” in 5 

the field of optical spectroscopy where the delocalized exciton state of the aggregate averages 6 

over the local inhomogeneities in the transition energies of the individual molecules [36,38]. 7 

The simple explanation of Eq. 1 can be given by considering the probability distribution of 8 

each of the transition energies: Averaging transition energies of Lcoh molecules gives square 9 

root dependence on Lcoh. 10 

The exciton coherence length can be estimated by means of Eq. 1, by comparison of the 11 

spectral linewidths with and without the exchange-narrowing effect. Here we estimate the 12 

exciton coherence length for the DA1 solution from the temperature-dependent spectra (Fig. 13 

4a). The exciton coherence length was estimated by the following procedure. First, the 14 

spectrum at 453 K was assigned to the absorption of the isolated polymers, because the 15 

absorption of polymer aggregates completely disappears above this temperature. The 16 

spectrum at 453 K was then used to fit the solution spectra at temperatures other than 453 K, 17 

and the residual spectral components were extracted and assumed to correspond to absorption 18 

by polymer aggregates (see inset to Fig. 6a). Figure 6a shows the fraction of polymer 19 

aggregates, as estimated by spectral fitting. This fraction increased with decreasing 20 

temperature, and the variation was almost saturated below 400 K, indicating that aggregates 21 
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become dominant below 400 K. The inset to Fig. 6b shows the spectral components for the 1 

polymer aggregates. The vibrational progressions were well fitted by three Gaussians with an 2 

interval of 0.14 eV. Figure 6b shows the variation in the peak position and linewidth of the 3 

aggregates. The spectral components for the polymer aggregates clearly show a peak shift 4 

from 1.58 eV to 1.50 eV and a linewidth reduction from 0.15 eV to 0.11 eV in the temperature 5 

range between 433 and 303 K. From the obtained peak linewidth, we estimated the exciton 6 

coherence length, Lcoh, at the respective temperatures by using Eq. 1 (Fig. 6c). The exciton 7 

coherence length increases at low temperatures and is extended over four molecules at 303 K. 8 

This trend can be ascribed to dimensional growth of polymer aggregates at low temperatures. 9 

The exciton coherence length of four molecules corresponds to a length of 1.5 nm if the 10 

co-facial separation (0.38 nm) between the nearest-neighbor polymer chains is used. The 11 

exciton coherence length of the thin film was also estimated by comparison of the linewidth 12 

of absorption spectra between the thin film and the isolated polymers in solution. As seen in 13 

Fig. 6d, the linewidth of the thin film (0.13 eV) is clearly smaller than that of the isolated 14 

polymers in solution (0.22 eV), which gives the exciton coherence length of three molecules 15 

(1.1 nm). 16 

In addition to the spectral narrowing, the extended exciton coherence can also be confirmed 17 

by the relative intensity distribution among the vibrational subbands. It is known that a 18 

change in exciton coherence length could cause a variation of relative intensity distribution 19 

among the vibrational subbands, e.g., enhancement of the 0-0 vibronic peak intensity for the 20 

case of J-aggregate-type excitonic coupling [2,8−11,18]. We checked the vibronic peak 21 



14 
 

intensity of the polymer aggregates formed in the solution, and found that the 0-0 vibronic 1 

peak intensity was strongly enhanced. As seen in the inset of Fig. 4b, the 0-0 vibronic peak 2 

intensity is about 2 times larger than the 0-1 vibronic peak intensity, indicating the strong 3 

J-aggregate-type excitonic coupling. This is fairly consistent with the extended exciton 4 

coherence length estimated from the spectral narrowing. 5 

It should be necessary to consider here that the spectral narrowing could be affected by 6 

other effects than the exchange narrowing. Particularly, we have to consider the 7 

electron-phonon coupling effect, because absorption spectra are the convolution between 8 

vibrational progression due to the electron-phonon coupling and inhomogeneous broadening 9 

of optical transition. It is known that the electron-phonon coupling causes the variation of 10 

relative intensity distribution among the vibrational subbands by the change of temperature. 11 

However, the effect does not cause the linewidth variation of each subband in general [39]. It 12 

is therefore clear that the linewidth narrowing of each subband observed in this work (Fig. 6b) 13 

cannot be ascribed to the electron-phonon coupling. On the other hand, it has been reported 14 

for the π-conjugated polymers that the temperature dependent inhomogeneous broadening 15 

could be caused by thermally induced torsional displacement of polymer main chains which 16 

strongly affects effective π-conjugation length along the polymer main chain [40,41]. This 17 

effect is well observed in non-aggregated polymer solutions where the polymer chain is free 18 

to be transformed. However, the effect is not observed in aggregated polymer solution (or in 19 

solid state polymer) where torsional displacement should be frozen. For example, 20 

poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) demonstrates no 21 
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spectral narrowing in the thin film, whereas it demonstrates spectral narrowing of 20 meV in 1 

the temperature range from 300 K to 200 K in the non-aggregated solution [40]. Thus, neither 2 

the torsional displacement effect nor the electron-phonon coupling effect gives the reasonable 3 

explanation of the spectral narrowing observed for polymer aggregates (Fig. 6b). From the 4 

above considerations, the exchange narrowing effect should be the most probable origin for 5 

the spectral narrowing observed in the aggregated solution of DA1. 6 

 7 

III-5. Coexistence of ordered and disordered polymers; further spectral analyses 8 

The spectral narrowing observed in the solution spectra provides convincing evidence that 9 

the second-derivative-like spectral line shape of the GM spectra probably originates from a 10 

reduction in exciton coherence length as a result of charge accumulation, which contributes to 11 

a reduction in the exchange-narrowing effect. To understand the charge-induced reduction of 12 

the exciton coherence length, we compared the GM spectrum with the solution spectra. 13 

Figure 7a shows the change in the absorption spectra with changing temperature for a 14 

1,2,4-trichlorobenzene solution of DA1 as obtained by subtracting the lower-temperature 15 

spectrum from the higher-temperature spectrum: ΔεHT corresponds to the difference spectrum 16 

at high temperatures between 433 K and 423 K, and ΔεLT corresponds to that at low 17 

temperatures between 303 K and 313 K. These difference spectra can be regarded as the 18 

spectral changes induced by the reduction in exciton coherence length: Lcoh = 2.6 → 2.3 for 19 

ΔεHT and Lcoh = 4.0 → 3.9 for ΔεLT (see Fig. 6c). As can be seen, ΔεLT shows a 20 

second-derivative-like spectral shape that closely resembles the GM spectrum. This clearly 21 
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indicates that the exciton coherence length is reduced by charge accumulation. The coherence 1 

reduction by charge accumulation can be considered as follows. The charge accumulation 2 

(with the density of 1.3 × 1011 cm−2 for the measurements of GM spectra) ionizes a small 3 

minority of polymers in the PFET. The ionized polymers do not show the exciton coupling 4 

with the neutral polymers because their transition energies should be different from those of 5 

the neutral polymers [35]. As a result, if we assume that a charge carrier is injected into a thin 6 

film consisting of crystalline domains with the exciton coherence length of Lcoh, the exciton 7 

coherence length of the charge-injected domain should decrease from Lcoh to (Lcoh − 1), as 8 

shown in Fig. 5c, whereas those of the other domains remain unchanged. Because the 9 

coherence reduction increases the spectral linewidth by a factor of ( )1cohcoh −LL / , in 10 

accordance with Eq. 1, the spectral change should have a second-derivative-like spectral line 11 

shape. On the other hand, if a charge carrier is injected into the disordered thin film with Lcoh 12 

= 1, the exciton coherence length remains unchanged before and after charge injection. In this 13 

case, the absorption of the neutral polymer disappears as a result of ionization, and the 14 

spectral change should therefore correspond to simple bleaching of the absorption. The 15 

second-derivative-like spectral shape in the GM spectrum for DA1 PFETs can be well 16 

understood by the mechanism discussed above. 17 

Note, however, that the GM spectrum of DA1 coincides quite well with the summed 18 

spectra of ΔεHT and ΔεLT in a ratio of about 2:5 (Fig. 7b). This indicates that the DA1 film is 19 

composed of two different domains whose exciton coherence length are Lcoh = 4.0 and Lcoh = 20 

2.6, respectively (Fig. 7c). These values are consistent with the exciton coherence length (Lcoh 21 
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= 3.0) estimated from the linewidth analysis of the regular absorption spectra (Fig. 6d). As a 1 

plausible structural model, the thin film of DA1 can be considered as consisting of 2 

well-ordered domains that are partly surrounded by disordered domains, as reported for other 3 

polymer semiconductors [42]. The disordered domains might act as local charge-trapping sites 4 

and thereby limit interdomain charge transport. 5 

The relation between the structural order and the exciton coherence length was examined 6 

by using the synchrotron radiated X-ray diffraction measurements. Figure 8a shows the 7 

out-of-plane and in-plane X-ray diffractions measured for the thin film of DA1. As seen, the 8 

diffraction peaks were observed both in the out-of-plane and in-plane setups, indicating that 9 

the ordered structure responsible for the exciton coherence should be formed in the film. The 10 

peaks in the out-of-plane setup (q = 2.7 and 5.4 nm−1) correspond to the first and higher order 11 

diffractions from the 2.30 nm d-spacing, while the peak in the in-plane setup (q = 16.5 nm−1) 12 

corresponds to the diffraction from the 0.38 nm d-spacing. These d-spacings indicate that the 13 

film of DA1 demonstrates a lamellar structure in which the conductive layers composed of the 14 

parallel π-stacked polymers with the co-facial separation of 0.38 nm are separated by the alkyl 15 

side-chain layers with the interlayer distance of 2.30 nm (Fig. 8b). By using the Scherrer’s 16 

equation [43], the size of crystalline grains are roughly estimated at 11 nm from the peak 17 

width of the out-of-plane diffraction (q = 2.7 nm−1). Such structural order is responsible for 18 

the extended exciton coherence length obtained from the GM spectrum (1.52 nm, Lcoh = 4.0). 19 

 20 

IV. CONCLUSIONS 21 
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In summary, we have systematically investigated the effect of charge accumulation on the 1 

exchange narrowing of the exciton absorption spectra of various DA copolymers. The GM 2 

spectra, measured for thin-film transistors with the high-mobility DA copolymers as the 3 

semiconductor channel, were well fitted by the second-derivative-like line shape of the 4 

absorption spectra in sharp contrast to those of the low-mobility polymers. This result 5 

indicates that the absorption spectrum is broadened by a reduction in exchange narrowing 6 

caused by charge accumulation. From a comparison with the temperature-dependent 7 

absorption spectra of the polymer solution, we demonstrated that the reduced exchange 8 

narrowing originates from coherence reduction of interchain excitonic coupling due to the 9 

accumulated charges. We also demonstrated that the exciton coherence length extended to 10 

four molecules in the solid-state DA1. This finding should be important in understanding the 11 

spectroscopic signature of excitonic absorption for molecular solids, particularly for 12 

well-ordered systems with extended exciton coherence length which is a key factor in 13 

developing high-performance PFETs. 14 
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FIGURE CAPTIONS 1 

Figure 1 2 

Molecular structures, molecular weights (Mw), poly dispersity indices (PDI), lengths of 3 

monomer unit, and lengths of polymer chain for seven kinds of semiconducting polymers. 4 

 5 

Figure 2 6 

(a) Schematic device structure of a thin-film transistor. (b) GM spectra measured for thin-film 7 

transistors with seven kinds of semiconducting polymers as the semiconductor channels 8 

(black line). The red and blue lines are the absorption spectra measured for the thin films and 9 

their second derivatives, respectively.  10 

 11 

Figure 3 12 

Peak Intensity (Δαd / αd) and peak width (WGMS / Wabs) of the GM spectra normalized by 13 

those of the ordinary absorption spectra. Both parameters are plotted as a function of carrier 14 

mobility. 15 

 16 

Figure 4 17 

(a) Temperature dependence of the absorption spectra measured for a 1,2,4-trichlorobenzene 18 

solution of DA1, in which the molar absorption coefficient (ε) is plotted as a function of the 19 

photon energy. The absorption spectrum measured for the thin film is shown for comparison 20 

(broken line). (b) Concentration dependence of the absorption spectra measured for 21 
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nitrobenzene solutions of DA1 at room temperature. 1 

 2 

Figure 5 3 

(a) Schematic representation of the electronic structure of an isolated polymer and a polymer 4 

aggregate, in which the ground and excited states are abbreviated as GS and ES, respectively. 5 

(b) Schematic representation of absorption spectra for an isolated polymer and a polymer 6 

aggregate. (c) Mechanisms of charge-induced changes in the absorption spectra for ordered 7 

and disordered polymer aggregates. 8 

 9 

Figure 6 10 

(a) Fraction of polymer aggregates in the DA1 solution, as estimated from the spectral fitting. 11 

The inset shows spectral components of the polymer aggregates and isolated polymers 12 

obtained by fitting of the solution spectrum measured at 413 K. (b) Peak position and width 13 

for spectral component of polymer aggregates, as determined by Gaussian fitting. The inset 14 

shows the spectral component of polymer aggregates at 303 K whose vibrational progressions 15 

are fitted by three Gaussians. (c) Exciton coherence length Lcoh estimated from the peak width 16 

of the polymer aggregates. (d) Absorption spectra measured for a 1,2,4-trichlorobenzene 17 

solution of DA1 at 453 K and a thin film of DA1 at room temperature. The red lines are 18 

vibrational progressions fitted by Gaussians. 19 

 20 

Figure 7 21 



25 
 

(a) Difference spectra for two different temperatures for the DA1 solution; ΔεHT between 1 

423 K and 433 K and ΔεLT between 303 K and 313 K. (b) A summed spectrum of ΔεHT and 2 

ΔεLT with a ratio of 2:5 (red line), and a GM spectrum of a thin film of DA1 (black line). (c) 3 

Schematic representation of a DA1 thin film consisting of high- and low-coherence domains. 4 

 5 

Figure 8 6 

(a) Out-of-plane and in-plane X-ray diffractions measured for the thin film of DA1. 7 

Background halo pattern due to a quartz glass substrate is subtracted for the shown data. (b) 8 

Schematic for lamellar structure of DA1. 9 
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FIGURES 1 
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Figure 1. Tsutsumi et al. 13 
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Figure 2. Tsutsumi et al 5 
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Figure 3. Tsutsumi et al 16 
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Figure 4. Tsutsumi et al 15 
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Figure 5. Tsutsumi et al. 13 
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Figure 6. Tsutsumi et al. 8 
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Figure 7. Tsutsumi et al. 14 
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Figure 8. Tsutsumi et al. 14 
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