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We consider the Sachdev-Ye-Kitaev (SYK) model1–3 as a model for the thermalized zero-
dimensional boundary of a many-body localized, Fermionic symmetry protected topological (SPT)
phase in one spatial dimension. The Fermions at the boundary are always fully interacting. We
find that the boundary is thermalized and investigate how its boundary anomaly, dictated by the
bulk SPT order, is encoded in the quantum chaotic eigenspectrum of the SYK model. We show
that depending on the SPT symmetry class, the boundary many-body level statistics cycle in a
systematic manner through those of the three different Wigner-Dyson random matrix ensembles
with a periodicity in the topological index that matches the interaction-reduced classification of the
bulk SPT states. We consider all three symmetry classes BDI, AIII, and CII, whose SPT phases
are classified in one spatial dimension by Z in the absence of interactions. For symmetry class BDI,
we derive the eight-fold periodicity of the Wigner-Dyson statistics by using Clifford algebras.

I. INTRODUCTION

Symmetry protected topological (SPT) phases are
gapped quantum systems with quantum disordered
short-range entangled ground states which cannot be
smoothly deformed into trivial product states without
closing the gap, if the symmetry defining the SPT phase
is preserved. The corresponding ground states are non-
degenerate even on spatial manifolds with non-trivial
topology.4–6 Famous examples of SPT states include the
ground states of the Haldane spin-1 chains7–9 and of
topological insulators and superconductors10–19. Short-
range entanglement is manifested in a strict area-law en-
tanglement entropy of the SPT state. As a quantum
order, the SPT order is in general not expected to per-
sist to highly-excited (finite-energy-density) states in the
many-body spectrum, because highly excited states are
typically thermalized according to the eigenstate ther-
malization hypothesis (ETH),20–23 and have a volume-
law entanglement entropy in contrast to the area-law en-
tanglement in the SPT state.

However the phenomenon of many-body localization
(MBL)24–29 provides a class of examples where quantum
many-body systems can evade thermalization in the pres-
ence of quenched disorder. MBL systems are generic non-
ergodic phases of matter, which can retain the memory
of local quantum information and exhibit an area-law en-
tanglement entropy even for highly excited (finite energy-
density) states. In some sense, excited states of an MBL
system are like ground states30, which enables us to ex-
tend the discussion of ground state quantum orders to
highly excited (finite energy-density) states. Examples
of many-body localization protected quantum order have
recently been discussed in Ref. 30–37. Here we are inter-
ested in such “MBL stabilized SPT states” (referred to
hereafter as “MBL-SPT states”).

In particular, we will focus on interacting Fermionic
MBL-SPT states, and investigate the possibility and the
consequences of thermalization at the boundary of such

a state. Many-body localizability of SPT states has been
discussed in Ref. 36,37. It was shown that, at least in
one spatial dimension (1D), Fermionic SPT states can
be fully many-body localized in the bulk. In the strong
disorder regime of the MBL system, all bulk Fermion de-
grees of freedom can be renormalized to local integrals
of motion.38–44 Resonances among them are suppressed
by disorder, which makes the bulk stable against ther-
malization. However, the Fermions near the boundary of
the MLB-SPT system are less protected against thermal-
ization. Indeed, if the 1D bulk SPT order is non-trivial,
its zero-dimensional (0D) boundary will host degener-
ate boundary (“edge”) states (generalizing the Majo-
rana Fermion zero modes in the non-interacting limit),31

whose presence reflects a quantum anomaly45–49 that
is required by the SPT order in the bulk. For exam-
ple, consider the symmetry class16,17,50,51 BDI, whose
1D non-interacting Fermion SPT phases are classified by
Z16–18; its 0D boundary can then support arbitrary many
Fermion zero modes in the absence of interactions.

Two possibilities arise on the 0D boundary of the 1D
MBL-SPT system: the boundary Fermions could be ei-
ther localized or thermalized. In general, we expect
random interactions among the Fermion modes on the
boundary due to the strong-disorder nature of the MBL
system. If the interaction is sparse or short-ranged, the
boundary Fermions can be localized. An example of
sparse four-fermion interaction which does not lead to
thermalization was constructed in Ref. 52. On the other
hand, if the interaction is dense and non-local (all fermion
modes are coupled together), then due to the vanishing
level-spacing between the boundary modes, the boundary
Fermions can be easily thermalized. One may wonder if
the MBL bulk is stable against the thermalization due to
the contact with the thermalized boundaries. According
renormalization group (RG) studies of the thermalization
transition in one dimension53,54, the MBL fixed-point is
stable against weak thermalization: A thermal bubble
(small thermalized region) in the 1D bulk cannot expand
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indefinitely into the MBL environment. Therefore, the
thermalized boundary (which can be viewed as a ther-
malized bubble residing at the boundary) will not be
able to thermalize the entire bulk in 1D. Then we are
facing the interesting scenario of an MBL-SPT bulk with
thermalized boundaries.

We use the Sachdev-Ye-Kitaev (SYK) models1–3 (or
corresponding generalizations) as concrete models to de-
scribe a class of thermalized boundary. The SYK mod-
els are 0D quantum many-body systems of Fermions
with random interactions. Symmetry constraints on the
boundary naturally forbid the Fermion bilinear terms
in the SKY models. The extremely rich physics of
SYK models is being actively explored recently.55–62 The
quantum chaotic (thermalizing) nature of SKY models
have been revealed from the Lyapunov exponent of the
out-of-time-ordered correlator.3,55 Early studies63–65 also
pointed out the level statistics of the many-body spec-
trum as another probe for the quantum chaos in inter-
acting Fermion models. We will study the level statis-
tics for SYK models in this work to further explore the
chaotic nature of these models in terms of their spectrum
properties.

Since the MBL bulk has non-trivial SPT order,
the thermalized boundary must possess a correspond-
ing quantum anomaly that characterizes the SPT
phase6,45–48. What is the signature of this quantum
anomaly for a thermalized boundary? First of all, the
presence of a protected degeneracy of every energy level
in the boundary many-body spectrum31,32 is one obvi-
ous signature. In this work, we will show that the level
statistics of the boundary spectrum is another such sig-
nature. In particular we will show that for the thermal-
ized boundary, the level statistics follows the Wigner-
Dyson distribution of one of the three Wigner-Dyson
random matrix ensembles which is in correspondence,
as specified below, with the global anomaly required by
the bulk SPT order: Take for example the thermalized
boundary of the MBL-SPT state in symmetry class BDI.
We find that its level statistics cycles through that of
the Gaussian orthogonal, unitary, and symplectic ensem-
bles (GOE, GUE, and GSE) in a systematic manner, as
summarized in Tab. I with an eight-fold periodicity that
matches the (interaction-reduced) Z8 classification6,66 of
the Fermionic SPT order in symmetry class BDI.

TABLE I: Eight-fold-way spectrum on the thermalized
boundary of Nχ Majorana chains in symmetry class BDI
(Nχ > 4). qdim: quantum dimension (level degeneracy per
boundary), lev. stat.: level statistics in a definite Fermion
number parity sector.

Nχ(mod 8) 0 1 2 3 4 5 6 7

qdim 1
√

2 2 2
√

2 2 2
√

2 2
√

2

lev. stat. GOE GOE GUE GSE GSE GSE GUE GOE

C`0,Nχ−1 R⊕ R R C H H⊕H H C R

Subsequently, we will extend our analysis to the bound-
ary level statistics for Fermionic MBL-SPT states in sym-
metry classes AIII and CII, which are the other two 1D
symmetry classes that also possess a Z classification in
the absence of interactions.16–18 In contrast to symmetry
class BDI discussed above, here we have to pay attention
to the fact that Fermionic MBL-SPT states in classes
AIII and CII are in general unstable to interactions in the
1D bulk67,68 (due to the presence of charge-conjugation
symmetry).83 For this reason, we will consider in sym-
metry classes AIII and CII situations where interactions
are solely present at the 0D boundaries, whereas the 1D
bulk remains non-interacting throughout. Even though
in symmetry classes AIII and CII these bulk states are
not many-body localizable (when bulk interactions are
turned on), we can (and will) nevertheless still discuss the
spectral properties of corresponding interacting bound-
ary Hamiltonians, which turn out to be, as mentioned,
the corresponding SYK models (while always consider-
ing a corresponding non-interacting, but random bulk).
We note that our discussion of level statistics also applies
to bosonic MBL-SPT states, because bosonic SPT states
in 1D can always be interpreted as interacting Fermionic
SPT states.69,70

Finally, we would like to mention that although we fo-
cus on the SYK model as a convenient description of the
thermal boundary of MBL-SPT states, the periodic be-
havior of the level statistics we observed should be univer-
sal as long as the boundary is thermalized, because the
level statistics is a local spectral property that is only
sensitive to the symmetry class.

II. SYMMETRY CLASS BDI

A. Four Fermi Interactions and Numerical Results

We will start with 1D Fermionic MBL-SPT states in
symmetry class BDI, sometimes also known as the “Ki-
taev Majorana wire”,10 protected by a time-reversal sym-
metry ZT2 which squares to the identity operator (in the
single-particle setting - for a complete discussion of the
action of the square of the time-reversal operator on the
many-body Fock space, see71). In the absence of inter-
actions, the SPT order is characterized by an integer-
valued topological index Nχ ∈ Z, which counts the num-
ber Nχ (of species) of protected Majorana zero modes
χa (a = 1, 2, · · · , Nχ) at the boundary. The operators χa
satisfy the Clifford algebra {χa, χb} = 2δab and χ†a = χa.
The (anti-unitary) time-reversal symmetry acts on these
Majorana zero modes as T χaT −1 = χa. Fermion bilin-
ear terms iχaχb are forbidden to occur in the boundary
Hamiltonian H by time-reversal symmetry T . So to low-
est order in many-body terms, the boundary dynamics is
governed by random four-Fermion interactions

H =
∑

a<b<c<d

Vabcdχaχbχcχd. (1)
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Here, the interaction strengths Vabcd are taken to be in-
dependent random real numbers with zero mean. The
randomness in the boundary Hamiltonian, Eq. (1), orig-
inates from the strong disorder in the 1D MBL bulk.
The detailed probability distribution of Vabcd is unimpor-
tant, and we may assume it to be Gaussian. This model,
Eq. (1), was introduced by Kitaev3 as a toy model for
holography. Here we would like to consider it as an ef-
fective model describing the thermalized boundary of a
1D SPT phase. From this perspective, the fact that this
model contains no Fermion bilinear term (a condition im-
posed by hand in Kitaev’s model) appears here naturally
as a consequence of the symmetry requirement (in the
present case, the relevant symmetry is the time-reversal
symmetry in class BDI).

In general, the degeneracy at the boundary of the non-
interacting system arising from the Majorana zero modes
(which is vast when Nf is large) can be lifted by inter-
actions. However, if the bulk SPT order is non-trivial,
the boundary degeneracy cannot be fully lifted, because
otherwise the bulk state could have been smoothly de-
formed into the trivial vacuum state across the bound-
ary (which here is a boundary to vacuum). We recall
that with interactions, the classification of the SPT or-
der in symmetry class BDI is reduced from Z to Z8.6,66

So the energy levels of the boundary many-body spec-
trum are non-degenerate if and only if Nχ is a multiple
of eight [Nχ(mod 8) = 0]; otherwise, there is a degen-
eracy of every energy level of the many-body spectrum.
The degeneracy of energy levels of the boundary many-
body Hamiltonian can be studied numerically by exact
diagonalization of the Hamiltonian in Eq. (1). In doing
so we need to recall that when Nχ is odd, the low-energy
Hilbert space of a single boundary is not well-defined.
In that case, the “quantum dimension” (qdim) of the
boundary mode is considered instead, which is defined
to be the square root of the level degeneracy with both
boundaries considered. Numerical results for qdim are
listed on the second line of Tab. I: We see that the eight-
fold periodicity of the level degeneracy matches the Z8

periodicity of the (global) anomaly of the boundary. The
same result was also obtained in Ref. 72.

However the level degeneracy (or “quantum dimen-
sion”) alone cannot fully resolve the eight-fold anomaly
described by Z8. As we will now explain, we have found
that the level statistics can provide an additional diag-
nostic. In the past, the level statistics of the many-body
spectrum has been used to diagnose whether a many-
body Hamiltonian is in the MBL phase or the ETH
phase (see e.g.26,73). Here we use the level statistics
of the boundary to further resolve the (global) quan-
tum anomaly of the SPT phase, beyond the diagnos-
tic provided by the degeneracy of all levels. In gen-
eral, we collect the eigen energies {En} of the Hamil-
tonian, and arrange them in ascending order E1 < E2 <
· · · . Let ∆En = En − En+1 be the level spacing,
and we evaluate the ratios of adjacent level spacings
rn = ∆En/∆En+1,26,74,75 such that the dependence on

the density of states cancels out in the ratio. The distri-
bution of the ratio rn follows Poisson level statistics in
the MBL phase,

Poisson: p(r) =
1

(1 + r)2
, (2)

and Wigner-Dyson level statistics in the ETH phase
(given by the “Wigner-surmise”76),

Wigner-surmise: p(r) =
1

Z

(r + r2)β

(1 + r + r2)1+3β/2
. (3)

The parameters β and Z are different for GOE: β =
1, Z = 8

27 ; GUE: β = 2, Z = 4π
81
√
3
; and GSE: β = 4, Z =

4π
729
√
3
. The level repulsion in the ETH spectrum mani-

fests itself in the asymptotic behavior p(r → 0) ∼ rβ . To
make clearer the contrast between different level statis-
tics, we choose to show the probability distribution of the
logarithmic ratio ln r, which is given by P (ln r) = p(r)r.

We now apply this analysis to the boundary Hamilto-
nian in Eq. (1). However, extra care should be taken
regarding the Fermion parity. Levels with different
Fermion parities are independent, so putting all levels to-
gether will spoil the true level statistics in each sector.84

Therefore, the level statistics must be collected in each
Fermion parity sector. Since our BDI-class Hamilto-
nian in Eq. (1) possesses, besides Fermion number par-
ity, no other unitary symmetries, any remaining level de-
generacies within each Fermion parity sector will be ig-
nored, i.e. we only consider the level spacing between ad-
jacent (non-degenerate) eigenenergies in each such sector.
We have collected the probability distribution P (ln r) =
p(r)r of the logarithmic ratio ln r numerically; the re-
sults are shown in Fig. 1. We see that the probability
distribution varies systematically with the number Nχ of
Majorana modes. First of all, in all cases Wigner-Dyson
statistics is observed, which shows that the boundary is
indeed in the ETH (quantum chaotic) phase. Secondly,
depending on the topological index ν ≡ Nχ(mod 8), the
data correspond to one of the three Wigner-Dyson ran-
dom matrix ensembles (GOE, GUE, or GSE), as summa-
rized on the third line of Tab. I.85 Combining the results
for the level statistics (3rd line of Tab. I) with those for
the level degeneracy (2nd line of Tab. I) , the Z8 anomaly
pattern of the thermalized boundary can be determined
up to the sign of the topological index ν (i.e. ν and −ν
are not distinguishable yet).86

B. General Hamiltonian and Analytical Results

In this section we demonstrate analytically that the
‘eight-fold-way’ level statistics of the boundary Hamil-
tonian Eq. (1) persists even after including all possible
(random) higher-order interactions (see Eq. (5) below).
Moreover, we show that this is related to the Bott period-
icity of the real Clifford algebra C`0,Nχ−1.87 To make this
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FIG. 1: Many-body level statistics (in term of the ln r dis-
tribution) of the random interaction model in Eq. (1), for
Nχ = 8, · · · , 15 (a full Z8 period) by exact diagonalization.
The background gray curves describe the “Wigner-surmise”
given by Eq. (2) and Eq. (3): from wide to narrow, they cor-
respond to Poisson, GOE, GUE, and GSE statistics respec-
tively. The level statistics in the even (odd) Fermion parity
sector is shown in green (yellow).

connection, let us first observe that the Fermion bilinear
operators

γa = χaχNχ (a = 1, 2, · · · , Nχ − 1), (4)

where χNχ is the “last” of the Nχ Majorana modes on the
boundary, can be used to define the generators of the Clif-
ford algebra C`0,Nχ−1. We consider a real (matrix) repre-
sentation in Fock space, so that we have χᵀ

a = χa (where
ᵀ denotes the transposed matrix), and {χa, χb} = 2δab.
Then it is easy to show, using Eq. (4), that γᵀa = −γa
and {γa, γb} = −2δab. So the operators γa indeed repre-
sent the (Nχ−1) antisymmetric generators of the Clifford
algebra C`0,Nχ−1. Then it can be checked that those el-
ements in C`0,Nχ−1 which are represented by symmetric
matrices (in the real representation we are currently con-
sidering – they are thus self-adjoint) are of grade (4k−1)
or 4k (for some k ∈ Z+), meaning that they can be
written as products of (4k − 1) or 4k generators γa. It
turns out that these matrices represent all possible time-
reversal invariant terms that are allowed in the boundary
Hamiltonian. For example, the four Fermion interaction
terms in Eq. (1) are of grade 3 and 4 (corresponding to
k = 1): χaχbχcχNχ = −γaγbγc (a, b, c < Nχ) are grade-
3 terms, and χaχbχcχd = γaγbγcγd (a, b, c, d < Nχ) are
grade-4 terms. Higher order time-reversal invariant inter-
actions (4k-Fermion interactions) correspond to higher
grades in the Clifford algebra C`0,Nχ−1, and it is not dif-

ficult to see that these exhaust the full space of all sym-
metric matrices in C`0,Nχ−1 (in a real representation).
Therefore, if all symmetry-allowed interactions are in-
cluded in the Hamiltonian,

H =

bNχ/4c∑
k=1

∑
a1<···<a4k

V{ai} χa1 · · ·χa4k , (5)

the Hamiltonian H will be a general (real) symmetric
matrix in (the real representation of) the Clifford al-
gebra C`0,Nχ−1. Hence, when the real coefficients V{a}
are random, H will be a general random symmetric ma-
trix in C`0,Nχ−1, and its level statistics will fall into the
matrix ensemble determined by the real representation
of C`0,Nχ−1. The representations of the Clifford alge-
bra C`0,Nχ−1 are known and are listed in the last line of
Tab. I, where R, C and H stand respectively for the set
of all m×m matrices with real, complex and quaternion
entries with certain matrix dimensions m, which are not
written out explicitly; the Hermitian such matrices (sym-
metric in a real representation of the corresponding Clif-
ford algebra) correspond, respectively, to the Hamiltoni-
ans in the three Wigner-Dyson random matrix ensembles
GOE, GUE and GSE. The numerical results reported in
the previous sections of this paper for a Hamiltonian of
the form of Eq. (5), which contains solely four-Fermion in-
teractions, show that restricting the generic Hamiltonian
in Eq. (5) to one that contains only four-Fermion inter-
actions (as in Eq. (1)), does not affect the level statistics.
Because the level spacing is a local property of the spec-
trum, it should depend only on the symmetry class of the
Hamiltonian matrix, not on its sparsity. However, as the
SYK model is relatively sparse compared to the Gaus-
sian random matrix H in Eq. (5), their global spectral
properties, such as the spectral density and the long-time
correlator, will not agree with each other.

In the remainder of this paper we extend the above
discussion for the MBL-SPT state in symmetry class
BDI to the other two symmetry classes that also have
a Z classification in 1D in the absence of interactions:
These are symmetry classes AIII and CII which we will
now discuss in turn. As already mentioned in the in-
troduction, here we need to pay attention to the fact
that, in contrast to symmetry class BDI, there are no
many-body localized Fermionic SPT phases in symme-
try classes AIII and CII in the 1D bulk.88 For this rea-
son, in symmetry classes AIII and CII we consider situ-
ations in which interactions are only present at the 0D
boundaries, the 1D bulk system remaining throughout a
non-interacting Anderson-localized insulator. The non-
interacting Anderson-localized 1D bulk systems in these
two symmetry classes are known to possess a Z classifi-
cation which applies30 also to excited states (at finite en-
ergy density), in complete analogy with the usual MBL
systems (in which interactions are present). Here the in-
teractions, localized solely at the boundary, reduce the Z
classification of the 0D boundary Hamiltonian to Z4 in
class AIII, and to Z2 in class CII. The following analyses
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of the level statistics (which are confirmed numerically)
of the resulting SYK systems at the 0D boundaries in
symmetry classes AIII and CII must then follow as long
as the respective protecting symmetries are not broken
spontaneously in (0+1) dimensions.

III. SYMMETRY CLASS AIII

Ground states of 1D SPT phases in symmetry class
AIII can be viewed as being protected by U(1) × ZS2
symmetry, where the superscript S stands for chiral sym-
metry S.16,17,19,50,51 The 1D SPT phases protected by
this symmetry are classified by Z4 in the presence of in-
teractions. In the sense explained above, the resulting
boundary anomaly will determine the properties of all
states of the random boundary Hamiltonian in this class.
The corresponding 0D boundary degrees of freedom are
complex Fermion modes ca (a = 1, 2, · · · , Nc), where Nc
labels the number of complex Fermion mode species. The
U(1) symmetry is naturally implemented as ca → eiθca.
The chiral symmetry, an anti-unitary symmetry opera-
tion when acting on the many-body Fermion Fock space,
can be taken to act as ScaS−1 = c†a, and Sc†aS−1 = ca
on canonical Fermion annihilation and creation opera-
tors at the boundary89. Fermion bilinear terms are again
forbidden at the boundary by the U(1) × ZS2 symme-
try which protects that SPT order, so that the bound-
ary Hamiltonian only contains charge-conserving inter-
actions of fourth and higher order in Fermion operators
that are invariant under the action of the chiral sym-
metry. The boundary Hamilonian thus roughly reads

H =
∑
Vabcdc

†
ac
†
bcccd + · · · , or more precisely

H =
∑

a<b,c<d

Vabcd[(c
†
acd − 1

2δad)(c
†
bcc −

1
2δbc)

− (c†acc − 1
2δac)(c

†
bcd −

1
2δbd)]

+ h.c.+ · · · ,

(6)

where the coefficients Vabcd are complex numbers. In
the above equation the interaction terms are written in
a way that makes their invariance under chiral symme-
try obvious. As in the BDI case, randomness in the
complex coefficients Vabcd is induced by the randomness
in the 1D bulk in symmetry class AIII (which, as dis-
cussed above, is here non-interacting). Possible higher
order random interactions are not written out explicitly
in Eq. (6). This model was first introduced by Sachdev
and Ye1, and was revisited2 recently in view of its close
analogy with the model in Eq. (1), considered by Kitaev.
We find that the level statistics of the Hamiltonian in
Eq. (6) exhibits a four-fold periodicity in Nc, matching
the Z4 global anomaly on the boundary characteristic
of class AIII with interactions. Let us explain our find-
ings. Due to the U(1) symmetry, the Hamiltonian can be
block-diagonalized in each U(1) charge sector, where the

charge operator (with eigenvalue q) reads

Q =

Nc∑
a=1

(c†aca − 1/2). (7)

Therefore, the level statistics must be collected in each
charge sector separately. It turns out that there is an in-
terplay between the charge quantum number q (= eigen-
value of Q) and the level statistics, as can be seen from
our results shown in Tab. II(a): First, observe that there
is an even-odd effect for the charge q, depending on Nc: q
takes integer values ifNc is even, and half-integer values if
Nc is odd (due to charge fractionalization occuring at the
boundary of the 1D SPT). So the charge neutral sector
(q = 0) exists only for even Nc. Second, in the q = 0 sec-
tors, the level statistics is that of GOE for Nc(mod 4) = 0
and of GSE for Nc(mod 4) = 2. (We can think90 of the
statistics as being inherited from the Nχ(mod 8) = 0, 4
cases of class BDI via the correspondence Nχ = 2Nc -
compare Table I.). Furthermore, in any q 6= 0 sector,
the chiral symmetry operation S connects the q and −q
sectors which turns out to result in GUE level statistics
(see the discussion below).

TABLE II: Level statistics on the thermalized boundary of
AIII and CII class MBL-SPT states. q is the U(1) charge
quantum number. The Fermion flavor number must be suffi-
ciently large for the result to be universal.

(a) AIII class

Nc(mod 4) 0 1 2 3

q = 0 GOE GSE

q = ±1/2 GUE GUE

q 6= 0 GUE GUE GUE GUE

(b) CII class

Nf (mod 2) 0 1

q ∈ even GOE GSE

q ∈ odd GSE GOE

The interplay of level statistics and symmetries can
be understood from the analysis of the projective repre-
sentations of the chiral symmetry on the boundary. In
general, the anti-unitary operator implementing the chi-
ral symmetry on the many-body Fock space can always
we written as the complex conjugation operator K fol-
lowed by a unitary operator U on the Fock space, i.e.
S = UK. The unitary operator U can be found by con-
sidering its action on the boundary Fermions as follows.
Let us first represent the Fermion operators ca as “qubit
operators” ca = (

∏
b<a σ

z
b )(σxa + iσya)/2 using a Jordan-

Wigner type transformation. In this representation (i.e.
in this basis of Fock space), ca and c†a are hence both rep-
resented by real matrices (using the standard convention
for Pauli matrices). Both are therefore invariant under
complex conjugation, KcaK−1 = ca, and Kc†aK−1 = c†a,
in this representation (i.e. in this basis of the Fermion
Fock space). Therefore, to implement the chiral transfor-
mation on the Fermion operators, ScaS−1 = UcaU† = c†a
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and similarly Uc†aU† = ca, one only needs to set

U ≡ eiπNcQ
Nc∏
a=1

ξa, where ξa = i(c†a − ca) (8)

are Majorana Fermion operators satisfying {ξa, ξb} =
2δab, ξ

†
a = ξa, as well as KξaK−1 = −ξa. Here Q is

the U(1) charge operator defined in Eq. (7), which satis-
fies SQS−1 = −Q. Using these algebraic relations, it is
straightforward to verify that

S2 = UU∗ =

{
+1 if Nc mod 4 = 0, 1,

−1 if Nc mod 4 = 2, 3,
(9)

where U∗ = KUK−1. Note that since this result for S2 is
invariant under a change of basis of the many-body Fock
space, it holds true in any such basis (even though it was
initially derived in a representation in which both ca and
c†a are real).91 Chiral symmetry leaves the charge neutral
sector (q = 0) of the Hamiltonian invariant and is thus a
symmetry of the Hamiltonian in this sector. Specifically,
in this sector, chiral symmetry of the Hamiltonian Hq=0

amounts to

SHq=0S−1 = UH∗q=0U−1 = Hq=0. (10)

When Nc(mod 4) = 0 we have UU∗ = +1, and so one
can choose a basis of the many-body Fock space in which
U = 1. Then Eq. (10) implies that Hq=0 ∈ R is a real
symmetric matrix, which should exhibit GOE level statis-
tics in the ETH phase. When Nc(mod 4) = 2 we have
UU∗ = −1, and so one can choose a basis of the many-
body Fock space in which U =

(
0 +1
−1 0

)
. Then Eq. (10)

implies that Hq=0 ∈ H is a quaternion Hermitian matrix,
which should consequently exhibit GSE level statistics in
the ETH phase. Since, as mentioned above, Nc must be
even when q = 0 this exhausts all possibilities for the
q = 0 sector. However for q 6= 0, the chiral symmetry
transformation S connects the two charge sectors ±q. In
block-matrix form, we have

Q =
(−q 0

0 +q

)
, U =

(
0 1
ηS1 0

)
, H =

(
H−q 0
0 H+q

)
, (11)

where ηS = ±1 depends on the projective representation
S2 = ηS . But no matter what the value of ηS , Eq. (10)
only establishes a connection between H+q and H−q, i.e.
H∗q = H−q, which imposes no further restriction on Hq it-
self. So for q 6= 0, Hq ∈ C is a complex Hermitian matrix,
which should exhibit GUE level statistics in the ETH
phase.92 - These predictions are confirmed by numerical
studies of these spectra, and displayed in Tab. II(a).

IV. SYMMETRY CLASS CII

Now we turn to the MBL-SPT states in symmetry
class CII, which are protected by (U(1) o ZC2 ) × ZS2
symmetry. The Z classification of the non-interacting

1D SPT phases in this class reduces to Z2 in the pres-
ence of interactions93. The symmetry action on the
boundary is understood most easily if we embed the
U(1) o ZC2 subgroup into the SU(2) group (although the
SU(2) symmetry is not necessary94 to protect this SPT
phase). Therefore we consider the boundary degrees of
freedom to be spin-1/2 Fermions fa = (fa↑, fa↓)

T , where
a = 1, 2, · · · , Nf . The SU(2) generators are defined as

~S =
1

2

Nf∑
a=1

f†a~σfa, (12)

where σ = (σx, σy, σz) are Pauli matrices. The U(1)
symmetry in this representation of symmetry class CII
corresponds to conservation of Sz, with the U(1) charge
operator

Q = 2Sz =

Nf∑
a=1

∑
σ=1,2

(−1)σf†aσfaσ. (13)

“Charge”-conjugation corresponds to spin-rotation by
angle π about the Sy-axis

C = eiπSy , (14)

so that Cfa↑C† = fa↓, Cfa↓C† = −fa↑ and CQC† = −Q
(which makes C consistent with its physical meaning
of charge conjugation). The chiral symmetry acts as

SfaσS−1 = f†aσ, which also flips the spin S ~SS−1 = −~S,
and in particular the “charge” Q = 2Sz. To implement
the chiral symmetry operation, we write S = UK where
K denotes complex conjugation and U a unitary oper-
ator in the many-body Fermion Fock space. In com-
plete analogy with the AIII case discussed above, one
first chooses again a real representation of the canoni-
cal Fermion operator faσ and f†aσ using a Jordan-Wigner
type transformation and “qubit operators”, as was done
in the paragraph above Eq. (8), so that KfaσK−1 = faσ,
and Kf†aσK−1 = f†aσ. As before, one immediately verifies
that the action of the chiral symmetry transformation S
on the Fermion operators is reproduced by setting

U =

Nf∏
a=1

∏
σ=↑,↓

ξaσ, where ξaσ ≡ i(f†aσ − faσ), (15)

where again KξaσK−1 = −ξaσ. One easily verifies

S2 = UU∗ = (−1)Nf and C2 = (−1)Q, (16)

where the 2nd equation follows directly from the action
of C on the Fermion operators. One also immediately ver-
ifies the algebraic relations SeiθQ = eiθQS and SC = CS
(such that ZS2 commutes with U(1) o ZC). As in the
case of AIII, note that since these relations, in particu-
lar Eq. (16), are invariant under a change of basis of the
many-body Fock space, they hold true in any such basis
(even though it was initially derived in a representation
in which both fa and f†a are real).
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The boundary Hamiltonian contains all (U(1)oZC2 )×
ZS2 symmetric random interactions. One may think of
generating such a Hamiltonian from the Hamiltonian in
symmetry class BDI appearing in Eq. (5) containing an
even number Nχ = 4Nf of Majorana Fermion species
paired up so as to define the action of an U(1) symme-
try, by projecting the latter onto each U(1) charge sector
and by then symmetrizing with respect to the ZC2 group.
(I.e., here we think of expressing the complex Fermions
faσ and f†aσ in terms of their real and imaginary parts
Majorana Fermions, which are those appearing in the
corresponding BDI Hamiltonian. Recall the presence of
the extra spin index, Nc = 2Nf , when comparing to class
AIII.) We collect the level statistics numerically in each
charge sector labeled by the eigenvalue q of the operator
Q. It turns out that the GOE and GSE level statistics ap-
pear alternatively with respect to the parity of both the
topological number Nf and the charge quantum number
q, as summarized in Tab. II(b).

Again, these numerically obtained results for the level
statistics can be understood by analyzing the nature of
the representations of the (U(1) o ZC2 ) × ZS2 symmetry
(which protects the SPT order). In the charge neutral
(q = 0) sector, charge conjugation C is effectively an
identity operator. So the analysis is the same as the
AIII case, which explains the GOE (or GSE) level statis-
tics at Nf (mod 2) = 0 (or 1). For q 6= 0, opposite charge
sectors ±q must again be put together for consideration
since they are connected by the action of C and S. In the
block-diagonal basis of Q, we have

Q =
(−q 0

0 +q

)
, C =

(
0 1
ηC1 0

)
, H =

(
H−q 0
0 H+q

)
. (17)

The form of C is determined by the relation CQ = −QC,
and ηC = C2 = (−1)q. To respect the ZC2 symmetry,
we require the Hamiltonian to satisfy CH = HC, which
implies H+q = H−q. In the present basis (block-diagonal
inQ), the relations SeiθQ = eiθQS and SC = CS translate
into UQ = −QU and UC = CU , so that U must take the
form of

U =
(

0 J
ηCJ 0

)
, (18)

where J is a real matrix to be determined. Upon sub-
stituting Eq. (18) into UU∗ = S2 = (−1)Nf ≡ ηS , it is
found that J2 = ηCηS = (−1)q+Nf . In order to respect
the chiral symmetry (SHS−1 = H), we must have

JH∗q J
−1 = H−q = Hq. (19)

When (q + Nf ) is even (odd), J2 = +1 (−1), then
Eq. (19) implies that Hq is a real symmetric (quater-
nion Hermitian) matrix which leads to the GOE (GSE)
level statistics. This result in combination with the anal-
ysis in the q = 0 sector, thus explains the numerical

results displayed in Tab. II(b). One may extend the
(U(1)oZC2 )×ZS2 symmetry to an SU(2)×ZS2 symmetry;
the SPT classification and the level statistics remain the
unchanged. With full SU(2) symmetry, the level statis-
tics is to be considered in each spin-s sector, where the
spin quantum number s is determined by ~S2 = s(s+ 1).
The even (odd) charge q in Tab. II(b) should then be
replaced by an integer (half-integer) spin s.

An equivalent way of reading the above result arises
from using the (many-body) time-reversal operator, T =
SC = CS, whose square becomes T 2 = S2C2 =
(−1)Nf (−1)q. Since the “charge” q defines the cor-
responding Fermion number parity operator (−1)F =
(−1)q, the square of the many-body time reversal opera-
tor is of the form T 2 = γmb (−1)F , where γmb ≡ (−1)Nf

is a “many-body” phase that may always appear when
considering the time-reversal operator on the Fermionic
(many-body) Fock space. For a general discussion see
Eq. (S17), and the corresponding text in the Appendix.95

V. SUMMARY

In conclusion, we have investigated the many-body
level statistics of the SYK model for the three symme-
try classes BDI, AIII and CII whose SPT phases in 1D
are Z classified in the absence of interactions. The level
statistics varies among the three different Wigner-Dyson
random matrix ensembles periodically with the Fermion
flavor number, which also corresponds to the topologi-
cal index characterizing the interacting 1D SPT phases
in these symmetry classes. There is an interesting in-
terplay between level statistics and symmetry quantum
numbers, as summarized in Tab. I and Tab. II. The pat-
terns of level statistics can be understood from the global
quantum anomalies which are known to characterize the
1D bulk SPT phases, by considering the SYK models as
effective theories for the thermalized boundaries of 1D
Fermionic MBL-SPT states.
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† = −Fa↑. All the previous statements would

of course have been entirely identical after this canonical
transformation.



1

Appendix

VI. PROJECTIVE REPRESENTATION
ANALYSIS FOR SYMMETRY CLASS BDI

In the main text, we have shown that for symmetry
classes AIII and CII, the (projective) symmetry action
on the boundary restricts the boundary Hamiltonian H
to either real, complex or quaternion Hermitian matrices,
and hence exhibiting the three classes of Wigner-Dyson
level statistics. In this appendix, we will show that the
same kind of argument can be applied to symmetry class
BDI as well, which will provide another perspective to
understand the level statistics apart from the Clifford
algebra argument given in the main text.

The projective symmetry representation on the many-
body Hilbert space at the boundary of a 1D Fermion
system in symmetry class BDI case has been thoroughly
studied by Fidkowski and Kitaev in their pioneering
work Ref. 6. Here we will briefly review some results of
Ref. 6, and then discuss the their implications on the level
statisics. For the Fermion chain in symmetry class BDI,
the full symmetry group in consideration is ZP2 × ZT2 ,
where ZP2 is the Fermion parity symmetry and ZT2 is
the time-reversal symmetry. The many-body state of the
boundary Majorana modes form a projective representa-
tion of this symmetry group.

In terms of the Majorana operators χa (a =
1, 2, · · · , Nχ) on the boundary, the Fermion parity op-
erator P can be written as

P =

{
(−iχ1χ2)(−iχ3χ4) · · · (−iχNχ−1χNχ) Nχ ∈ even,

(−iχ1χ2)(−iχ3χ4) · · · (−iχNχχ∞) Nχ ∈ odd,

(S1)
such that the Fermion parity operator anti-commutes
with all Majorana Fermion operators, i.e. ∀a : χaP =
−Pχa, as expected. Note that for odd Nχ, an extra
Majorana mode χ∞ at infinity is added to complete the
physical Hilbert space, and also to make P operator it-
self an even-Fermion-parity operator. As shown in Ref. 6,
there is no non-trivial projective representation associ-
ated to P 2, meaning that one can always make P 2 = 1
by gauge fixing, and such a gauge choice has been made
in Eq. (S1).

For odd Nχ, Ref. 6 also introduces an useful operator
Z by “factoring out” the extra Majorana Fermion χ∞
from the Fermion parity operator P , so that P = iχ∞Z.
One can see that Z is similar to P but does not involve
χ∞,

Z = (−i)(Nχ−1)/2
Nχ∏
a=1

χa (Nχ ∈ odd). (S2)

Z squares to one (i.e. Z2 = 1) and anti-commutes with
P (i.e. ZP = −PZ). Importantly, Z commutes with all
Fermion interaction terms (which are sum of products of

four χa operators), and thus Z also commutes with the
boundary Hamiltonian H. So Z is an additional symme-
try of the Hamiltonian H in the case of odd Nχ.

As an anti-unitary operator, the time-reversal opera-
tor T = UTK can be considered as complex conjugation
K followed by a unitary transformation UT . One needs
to specify the meaning of K (which is basis-dependent)
as follows (following Ref. 6). First we pick a Fermion oc-
cupation number basis (Fock basis) by assuming that the
complex Fermion annihilation and creation operators cm
and c†m (for m = 1, 2, · · · ) are defined as

cm = 1
2 (χ2m−1 + iχ2m), c†m = 1

2 (χ2m−1 − iχ2m). (S3)

For odd Nχ, we will include χ∞ to define the last pair of
complex Fermion operators. Let |0〉 be the state annihi-
lated by all the cm operators. Any Fermion many-body
state |ψ〉 in the boundary Hilbert space can be repre-
sented in the Fock basis as

|ψ〉 =
∑

nm∈{0,1}

Cn1n2···c
†
1

n1
c†2
n2 · · · |0〉. (S4)

Now we define K to be the complex conjugation oper-
ator in this basis of Fock space, which leaves the basis

kets c†1
n1
c†2
n2 · · · |0〉 invariant and acts by complex con-

jugating the coefficients Cn1n2···. With this definition
of complex conjugation, the Majorana Fermion operator
χa will have an alternating sign under complex conjuga-
tion depending on whether the index a is even or odd,
i.e. KχaK = −(−1)aχa. This alternating sign must be
compensated for by the unitary transformation UT via
UTχaU−1T = −(−1)aχa, so that the time-reversal trans-
formation T χaT −1 = χa leaves the Fermion operator χa
unchanged. A unitary operator satisfying this condition

UT = P dNχ/2e+1
∏

a=1:2:Nχ

χa, (S5)

where dNχ/2e denotes the smallest integer larger than
Nχ/2 (“integer ceiling”), and a = 1 : 2 : Nχ means that
a steps from 1 to Nχ with increment 2. When Nχ is
odd, there is an ambiguity in the choice of UT , because
the transform of χ∞ under T is not specified. In this
case we choose T χ∞T −1 = χ∞, which differs from the
choice made in Ref. 6 for Nχ =1 and 5. However, with
our choice, the time-reversal operator has a unified ex-
pression, Eq. (S5), for all Nχ.

Using the explicit representations for P in Eq. (S1), for
Z in Eq. (S2), and for T = UTK in Eq. (S5), their alge-
braic relations can be explicitly calculated, and the result
is summarized in Tab. SI. The projective representations
are fully classified by three invariants: T 2, (PT )2 and
(ZT )2, where the last one (ZT )2 is only defined for odd
Nχ. In particular, (PT )2 distinguishes the topological
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TABLE SI: Projective symmetry group invariants that distin-
guish the Z8 anomaly.

Nχ(mod 8) 0 1 2 3 4 5 6 7

T 2 + + + − − − − +

(PT )2 + − − − − + + +

(ZT )2 + + − −

index ν from −ν (where ν ≡ Nχ(mod 8)). So by combin-
ing the invariant (PT )2 with the level statistics, one can
fully resolve the Z8 anomaly pattern.

Having determined the algebraic relations between P ,
Z and T , we seek the matrix representations of the sym-
metries and the Hamiltonian in the boundary many-body
Hilbert space for all Nχ(mod 8). We can work in the
block-diagonal basis of the Fermion parity operator P ,
so that

P =
(
1 0
0 −1

)
, and Z = ( 0 1

1 0 ) (for odd Nχ), (S6)

satisfy P 2 = Z2 = 1 and ZP = −PZ. In this basis, to
meet the requirements of T 2, (PT )2 and (ZT )2 listed in
Tab. SI, the representations of the time-reversal operator
T = UTK can be determined, as summarized in Tab. SII.
Here, Ω is a real matrix that squares to −1, i.e. Ω2 =
−1. Without loss of generality, we may choose Ω to be
Ω =

(
0 +1
−1 0

)
.

TABLE SII: Representations of UT and H that are consistent
with all the algebraic relations. Here, Ω can be any real ma-
trix that squares to Ω2 = −1. HR, HC, HH stands for real,
complex and quaternion Hermitian matrices. A prime on H ′

indicates H ′ is in general differed from H. The Clifford alge-
bra C`0,Nχ−1 and level statistics (lev. stat.) in each Fermion
number parity sector are also listed.

Nχ(mod 8) 0 1 2 3

UT =
(
1 0
0 −1

)
( 0 1
1 0 ) ( 0 1

1 0 )
(

Ω 0
0 −Ω

)
H =

(
HR 0

0 H′R

) (
HR 0
0 HR

) (
HC 0

0 H∗C

) (
HH 0
0 HH

)
C`0,Nχ−1 R⊕ R R C H
lev. stat. GOE GOE GUE GSE

Nχ(mod 8) 4 5 6 7

UT =
(

Ω 0
0 −Ω

)
( 0 Ω

Ω 0 )
(

0 1
−1 0

) (
1 0
0 −1

)
H =

(
HH 0

0 H′H

) (
HH 0
0 HH

) (
HC 0

0 H∗C

) (
HR 0
0 HR

)
C`0,Nχ−1 H⊕H H C R
lev. stat. GSE GSE GUE GOE

The Hamiltonian H must respect all the symmetries.
From the Fermion parity symmetry PH = HP , we know
H must be block diagonal, and takes the form of

H =
(
H+ 0
0 H−

)
, (S7)

where H+ (H−) is the Hamiltonian that acts in the even
(odd) Fermion parity subspace. If the number Nχ of Ma-
jorana operators is odd, Z is an additional symmetry of
H. Then ZH = HZ further requires H+ = H− for odd
Nχ. Finally T H = HT implies UTH∗U−1T = H. Us-
ing the representation of UT listed in Tab. SII, we can
determine whether H+ and H− are matrices with real,
complex or quaternion matrix elements, and the result is
summarized in Tab. SII. HR, HC, and HH stand for the
set of n × n Hermitian matrices with real, complex and
quaternion matrix elements with some n. The prime on
H ′ indicates that H ′ is in general differed from H. One
can see that the result is consistent with the Clifford al-
gebra analysis (by considering C`0,Nχ−1) discussed in the
main text. So we reach at the same conclusion about the
level statistics from the analysis of the projective sym-
metry representations on the many-body Hilbert space
at the boundary.

VII. SQUARE OF ANTI-UNITARY
SYMMETRIES IN MANY-BODY FOCK SPACE

In this Appendix we discuss in general the action of an
anti-unitary operator Θ such as the time-reversal Θ = T
or the chiral symmetry operation Θ = S on the many-
body Fock space of a system of Fermions. The square of
these operators, as defined by its action on the Fermion
creation and annihilation operators (which determine
their action on the single-particle Hilbert space) is char-
acterized in the familiar way by a number that we call
γsp, which can take only values γsp = ±1 (“single-particle
phase”) - see Eq.s (S9,S14,S16). Here we show that the
action of the square of the same anti-unitary operators on
the many-body Fock space many acquire an additional
many-body phase γmb, see Eq. (S17), whose value is re-
lated to γsp in the manner displayed in Eq. (S18). This
phase can only be a 4th root on unity. The notion of
T 2 = ±i was also discussed in Ref. 79,80.

Consider first a many-body system defined by a set of

Majorana Fermion operators χj = χ†j , where {χi, χj} =
2δij . Let T be the time-reversal operator. The mean-
ing of the time-reversal operation at the single-particle
level is defined by its action on the canonical Majorana
Fermion operators,

T χjT −1 =
∑
k

Wjkχk (S8)

where in order to preserve the canonical anti-
commutation relations, Wjk is an orthogonal matrix. At
the single-particle level, the meaning of the square of the
time-reversal operator, “T 2 = γsp = ±1”, is defined by
its action on the canonical Fermion operators,

T 2χiT −2 = γspχi, (i = 1, 2, ...) (S9)

where the sign factor γsp = ±1 characterizes the square
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of the “single-particle” time-reversal operator. Here∑
j

WijWjk = γspδik. (S10)

Consider now the time-reversal operator T when acting
on the many-body Hilbert space (Fock space). As an
anti-unitary operator, it takes on general grounds the
form

T = UTK, (S11)

where UT is a unitary operator acting on the many-body
Hilbert space, and K denotes the complex conjugation
operator acting on the same space. As a consequence of
Eq. (S9) the square of the time-reversal operator acting
on the many-body Fock space takes in general the form

T 2 = UTKUTK = UTU∗T = γmb(γsp)F , (S12)

where γFsp = (±1)F is the Fermion number parity op-
erator when γsp = −1. The point we want to stress
in this Appendix is that there can be an extra phase
γmb (“many-body phase”) that cannot be removed, or
“gauged away”. Eq. (S12), containing this additional
phase γmb, defines the notion of the many-body time-
reversal operator T 2 that is used throughout this pa-
per. As a consistency check, one immediately sees that
Eq. (S12) is consistent with Eq. (S9), since T 2χiT −2 =
γmbγ

F
spχiγ

−F
sp γ−1mb = γspχi. The many-body phase γmb

always cancels out in this equation as γmbγ
−1
mb = 1.

Moreover, an expression of the form of Eq. (S12) holds
true in general for both17,19 anti-unitary operators in
Fock space, the time-reversal operator T as well as the
chiral symmetry operator S. The former acts on canoni-
cal Fermion creation- and annihilation operators as

T c†jT
−1 =

∑
k

c†k Ukj ; T cjT −1 =
∑
k

(U†)j,kck (S13)

where U is a unitary matrix and

T 2cjT −2 = γspcj , (S14)

with γsp = ±1. The chiral symmetry acts on the same
operators as

Sc†jS
−1 =

∑
k

ck Vkj ; ScjS−1
∑
k

(V †)j,kc
†
k (S15)

where V is a unitary matrix and

S2cjS−2 = γspcj . (S16)

Here (for the chiral symmetry) it is always possible19,81

to choose γsp = 1.
If we now denote a general anti-unitary operator in the

many-body Fock space by Θ, representing either time-
reversal, Θ = T , or chiral symmetry, Θ = S, then, owing
to Eq.s (S14,S16), its square has in general the form

Θ2 = γmb (γsp)F (S17)

where γmb is a phase. We will now demonstrate that in
this general setting the possible choices for the phase γmb

are related to the value of γsp in the following way:{
γmb = +1,−1 if γsp = +1;

γmb = ±1,±i if γsp = −1.
(S18)

Before proving Eq. (S18) let us list the following exam-
ples of this result that apply to systems discussed in this
paper: (i): For the time-reversal operator Θ = T in
symmetry class BDI, for which γsp = +1, its square in
Fock space is T 2 = γmb1 with γmb = +1 or γmb = −1.
(See also Table SI of the Appendix.) (ii): For the Chi-
ral symmetry operator Θ = S in symmetry class AIII,
for which we choose by convention γsp = +1, its square
in Fock space can be S2 = γmb1 with γmb = +1 or
γmb = −1. (See Eq. (9) in the main text.) (iii): For
the time-reversal operator Θ = T in symmetry class CII,
which has γsp = −1, its square in Fock space takes on val-
ues T 2 = γmb(−1)F with γmb = (−1)Nf in the examples
given in the main part of this paper.

Let us now proceed to the proof of Eq. (S18). To this
end, consider

Θ3 = Θ2 Θ = Θ Θ2 = (S19)

= γmb (γsp)F Θ = Θ γmb (γsp)F

where in the last line use was made of Eq. (S17). The
anti-linearity of Θ implies Θγmb = γ∗mbΘ = γ−1mbΘ (since
γmb is a phase), so that Eq. (S19) leads to

Θ = (γmb)2 (γsp)F Θ (γsp)F (S20)

where we have used the fact that (γFsp)2 = (γ2sp)F = 1.

Now, if γsp = +1, Eq. (S20) becomes Θ = (γmb)2Θ, im-
plying (γmb)2 = 1, and hence γmb can only be ±1 when
γsp = +1. On the other hand, if γsp = −1, applying
Eq. (S20) twice, and making again use of using again
(γFsp)2 = (γ2sp)F = 1, yields

Θ = (γmb)2 (γsp)F Θ (γsp)F = (γmb)4 Θ. (S21)

Therefore we conlude that γ4mb = 1, meaning that γmb

must be a 4th root of unity, and hence can only take
the values ±1 and ±i. Note that the sign of (γmb)2

controls the commutation relation between the Fermion
number parity operator and Θ. In particular, when (i):
γmb = ±1, Eq. (S20) implies that, for γsp = −1, the
Fermion number parity operator (γsp)F = (−1)F com-
mutes with Θ. When on the other hand (ii): γmb = ±i,
Eq. (S20) implies that the operator (γsp)F must anti-
commute with Θ. This is only possible when γsp = −1,
and the action of Θ changes the Fermion number par-
ity. These two cases (i) and (ii) are of course again in
line with Eq. (S18). In conclusion, we have demon-
strated the dependence of the many-body phase γmb on
the single-particle sign γsp (which determines the square
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of the anti-unitary operator at the single-particle level),
which was claimed in Eq. (S18).

We close by noting that our discussion in the Appendix
has focused on the properties of the anti-unitary opera-
tors Θ when acting on the Hilbert space of a (0 + 1)-
dimensional system, i.e. on quantum mechanics at a sin-
gle point. These considerations generalize to localized
excitations described by states |s〉 in the Hilbert space of
a quantum system in spatial dimension larger than one.
Our previous analysis in Eq.s (S19),(S20),(S21) still ap-
plies except that these equations now need to act on the

state |s〉, and the many-body phase γmb becomes a diag-
onal operator whose value depends on the state on which
it acts. The result of our previous discussion is then
that also such a many-body phase of a localized state |s〉
must always be fourth root of unity. Systems in which
the many-body phases γmb = ±1 and γmb = ±i occur
have been discussed in Ref. 79,80. A careful discussion
of the notion of the action of the antiunitary operators
Θ on localized states in higher dimensional systems was
provided in Ref. 82.


