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We discuss the entanglement spectrum of the ground state of a (1+1)-dimensional system in a
gapped phase near a quantum phase transition. In particular, in proximity to a quantum phase
transition described by a conformal field theory (CFT), the system is represented by a gapped
Lorentz invariant field theory in the “scaling limit” (correlation length ξ much larger than micro-
scopic ‘lattice’ scale ‘a’), and can be thought of as a CFT perturbed by a relevant perturbation.
We show that for such (1+1) gapped Lorentz invariant field theories in infinite space, the low-lying
entanglement spectrum obtained by tracing out, say, left half-infinite space, is precisely equal to the
physical spectrum of the unperturbed gapless, i.e. conformal field theory defined on a finite interval
of length Lξ = log(ξ/a) with certain boundary conditions. In particular, the low-lying entanglement
spectrum of the gapped theory is the finite-size spectrum of a boundary conformal field theory, and
is always discrete and universal. Each relevant perturbation, and thus each gapped phase in proxim-
ity to the quantum phase transition, maps into a particular boundary condition. A similar property
has been known to hold for Baxter’s Corner Transfer Matrices in a very special class of fine-tuned,
namely integrable off-critical lattice models, for the entire entanglement spectrum and independent
of the scaling limit. In contrast, our result applies to completely general gapped Lorentz invariant
theories in the scaling limit, without the requirement of integrability, for the low-lying entanglement
spectrum. - While the entanglement spectrum of the ground state of a gapped theory on a finite
interval of length 2R with suitable boundary conditions, bipartitioned into two equal pieces, turns
out to exhibit a crossover between the finite-size spectra of the same CFT with in general different
boundary conditions as the system size R crosses the correlation length from the ‘critical regime’
R � ξ to the ‘gapped regime’ R � ξ, the physical spectrum on a finite interval of length R with
the same boundary conditions, on the other hand, is known to undergo a dramatic reorganization
during the same crossover from being discrete to being continuous.

I. INTRODUCTION AND SUMMARY OF
RESULTS

Considerations of Quantum Entanglement have pro-
vided a great deal of insight into the nature of ground1

(and excited2) states of Hamiltonians of complex phys-
ical quantum systems. While the entanglement entropy
is a very useful diagnostic of a quantum state, a vastly
larger amount of information is contained in the spec-
trum of the reduced density matrix, i.e. in the spectrum
of the entanglement Hamiltonian (Eq. (1) below). For
example, a particularly useful case in point is the obser-
vation that the entanglement Hamiltonian of a (2+1)-
dimensional integer3 as well fractional4–8 quantum Hall
state carries a universal fingerprint of an underlying topo-
logical phase. Indeed, this has recently become an impor-
tant tool for identifying the nature of phases of a variety
of microscopic gapped Hamiltonians by computing the
entanglement spectrum numerically.9

Here we consider the entanglement spectrum of the
ground state of a (1+1) dimensional system in a gapped
phase near a quantum phase transition. In particular,
we consider phases in proximity to a continuous quan-
tum phase transition with dynamical critical exponent
z = 1, which is generally10 described by a conformal field
theory (CFT). The system near such a transition is thus
represented by a gapped Lorentz invariant field theory in

the scaling limit (correlation length ξ much larger than
microscopic lattice scale‘a’), and can be thought of as a
CFT perturbed by one or more relevant perturbations.
We consider here primarily the case of a single relevant
perturbation, described by a field φ.

In the present paper we discuss the ground state of
such a gapped (1+1) dimensional Lorentz invariant field
theory in infinite space. It is well known11 that the en-
tanglement Hamiltonian for the ground state of such a
gapped theory, obtained by tracing out, say, left half-
infinite space, is completely local (being the generator
of Lorentz boosts). In this paper we will show that in
general, the low-lying entanglement spectrum of such a
gapped theory is the spectrum of the underlying unper-
turbed gapless, i.e. conformal theory on a finite interval
of length Lξ = ln(ξ/a) when ξ/a � 1, with two bound-
ary conditions: a “free” boundary condition “F” (where
the system simply ends) at the left end of the interval
corresponding to the entanglement cut, and a “hard-
wall” boundary condition which we denote by “Bφ” at
the other, right end of the interval, which corresponds to
an interface of the CFT with a strongly gapped phase de-
scribed by a region of the same theory where the strength
of the relevant perturbation “φ” is by some measure large
(“infinite”). We emphasize that the latter (i.e. right)
boundary condition Bφ thus depends, as indicated, on
the particular relevant perturbation “φ”, and thus on
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the particular gapped phase in proximity of the transi-
tion. The entanglement Hamiltonian of the gapped the-
ory is thus the Hamiltonian of a boundary conformal field
theory (BCFT)12, with these boundary conditions. [We
note in passing that since the entanglement Hamiltonian
is also known to be equal to the generator of Lorentz
boosts11,13,14 of the gapped relativistic theory as well
as to the Hamiltonian of the same theory subject to a
uniform acceleration15 (i.e., in Rindler space-time), both
the boost operator as well as the Hamiltonian in Rindler
space-time also possess this boundary CFT spectrum.]

More explicitly, we show that the entanglement Hamil-
tonian ĤE defined through the reduced density matrix in
half-infinite space, region A = R+ = (0,+∞),

ρ̂A =
1

N
exp{−2πĤE}, (1)

is of the form

ĤE =
π

L

(
L̂0 −

c

24

)
, (2)

with L = Lξ ≡ ln(ξ/a). (3)

Here L̂0 is the chiral (say left-moving) Virasoro generator
(see Eq. (5) below for a more explicit description) and
c denotes the central charge of the unperturbed theory.
The normalization factor of the reduced density matrix
reads

N = Tr exp{−2πĤE} = exp
{
− c

6
L− γ + ...

}
(4)

where γ is a constant16,17. (The ellipsis indicates terms
subleading for large L.) Equation (2) implies that the
spectrum of eigenvalues ε of the entanglement Hamilto-
nian ĤE is of the form

ε− ε0 =
π

L
{h+ n}, (5)

where ε0 denotes the smallest eigenvalue. Here h runs
over a subset of possible conformal weights18 (left-moving
scaling dimensions) of the CFT, which is completely
determined12 by the pair of boundary conditions “F”
and“Bφ” at the two ends of the interval of length L, and
n are non-negative integers corresponding to what are
known as (conformal) descendants18. This is the spec-
trum of a boundary conformal field theory (e.g., the de-
generacies of all levels are known explicitly).

It is only the low-lying entanglement spectrum, de-
scribing the largest contributions in the Schmidt decom-
position of the reduced density matrix, that is in general
universal and described by the spectrum of the BCFT
discussed above. The higher-lying spectrum depends in
general on non-universal details. At the end of section
II we provide a rough estimate of the excitation energy
(ε∗ − ε0) beyond which the conformal spectrum given
in (5) is expected to be no longer applicable, which is
found to be roughly (ε∗ − ε0) ≈ 2πy. Here y > 0 is
the renormalization group (RG) eigenvalue of the rele-
vant perturbation φ, a number of order unity. Since in
view of (5) the level spacing of the low-lying spectrum

is π/L, the number of levels belonging to the low-lying
part of the spectrum increases with L. In section V we
present numerical results for the entanglement spectrum
of a system of gapped non-interacting fermions, illustrat-
ing our general analytical results. We also note that a
reasonably large number of low-lying levels of the entan-
glement Hamiltonian is within the range of today’s nu-
merical tools even for fully interacting systems as seen,
e.g., from the numerical entanglement spectra obtained
for interacting gapless (conformal) field theories in Ref.
[19].20

A similar property as that derived in the present pa-
per for the low-lying entanglement spectrum of a general
gapped (1+1) dimensional relativistic field theory in the
vicinity of the CFT, has been known to hold (for many
years) for an extremely special and fine-tuned class of
theories, namely for gapped ‘Yang-Baxter’ integrable lat-
tice models of 2D classical Statistical Mechanics. Specif-
ically, in these systems Baxter’s so-called corner transfer
matrix21 (CTM) can be viewed as a lattice analogue of
the reduced density matrix in half space, ρ̂A from Eq. (1),
when suitably translated into entanglement language22.
The surprising observation23,24 was then made for a vast
number such integrable lattice systems (see e.g. Ref. [25,
26]), that the entire spectrum of (minus) the logarithm of
the CTM, which turns out to play a role analogous11 to
the entanglement Hamiltonian ĤE in Eq. (1) of the field
theory, equals the spectrum of a (gapless) CFT in finite
size L, with the exact replacement L→ ln(ξ/a), where a
and ξ are the lattice spacing and the correlation length,
respectively, of the integrable lattice model.27 Due to the
fine-tuning arising from integrability this turns out to
hold for all eigenvalues of (minus the logarithm of) the
CTM, and moreover holds true for all, even small val-
ues of ξ/a, not only in the scaling limit.28 The methods
that have been used to demonstrate this fact for these
integrable systems rely on the very special properties of
integrable lattice models, such as the Yang-Baxter equa-
tion. Clearly, there is no reason for such a miraculous
property to hold without the strong fine-tuning provided
by the infinite number of conservation laws present in
these integrable systems. However, what we show in the
present paper is that in the scaling limit the low-lying en-
tanglement spectrum is generically equal to that of the
underlying gapless theory in finite size, and that this is
a property completely independent of the requirement of
integrability. The identity of these two spectra is thus
not a property of the very restricted and special class
of integrable systems, but is a completely general prop-
erty of the entanglement Hamiltonian of gapped (1+1)
dimensional relativistic field theories.

In general, the high-lying excitation spectrum of the
entanglement Hamiltonian contains no robust informa-
tion because it is completely governed by details of the
theory on distance scales comparable to the microscopic
length ‘a’, which vary from case to case. On the other
hand, an integrable system is known to be very special in
this regard, in that even the short distance properties are
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completely fixed by the infinite number of conservation
laws. One way of expressing this fact is to think of the
integrable theory as a fixed point of the renormalization
group (RG), here a CFT, perturbed by an infinite sum
of terms that are ever more irrelevant (in the RG sense),
with coefficients that are completely fixed by integrabil-
ity. This notion has been implemented in practice in the
work of Ref. [29]. At the end of section II, and in partic-
ular in Appendix A, we suggest that by thinking this way
one may view the known results for the CTM of the in-
tegrable systems within the context given in the present
paper.

Another related focus of attention in the existing liter-
ature on the entanglement spectrum of gapped (1+1) di-
mensional theories has been the distribution of eigenval-
ues of the entanglement Hamiltonian in the regime where
the eigenvalues become dense so that the distribution is
described by a continuous curve. Ref. [30] numerically
observed a universal form of the distribution of entangle-
ment eigenvalues. Later it was argued in Ref. [31] that
this distribution has a universal form characterized only
by the central charge. This was supported by numerical
work in that same paper as well as in Ref. [32]. While
these interesting results are related to the discussion in
the present paper, they do not focus on the resolution of
the detailed structure of the entanglement spectrum on
the scale of the individual levels, including their degen-
eracies (which are non-trivial), discussed in the present
paper. All this detailed structure on the scale of the
level spacing represents a rich amount of universal infor-
mation contained in the entanglement spectrum of the
gapped relativistic field theory.

II. DERIVATION OF THE ENTANGLEMENT
SPECTRUM OF THE GAPPED FIELD THEORY

OF HALF-SPACE

We now proceed to provide an explicit derivation of
the entanglement Hamiltonian.

We write the spatial coordinate denoted by x and the
imaginary (Euclidean) time coordinate denoted by y in
terms of z = x + iy and z̄ = x − iy33. We perform a
conformal transformation to a new spatial coordinate u
and a new imaginary (Euclidean) time coordinate v, via
the conformal transformation z → w(z) where w = u+iv
is given by34

z = (x+ iy) = exp(w) = exp(u+ iv), (6)

mapping the complex z-plane into a cylinder - Fig. 1.
As it is well known, there are two equivalent ways of

thinking about this transformation: (i) as angular quan-
tization where the angular variable v is treated as the
imaginary (Euclidean) time variable, or (ii) as the study
of the quantum field theory in Rindler space-time which
describes the original quantum field theory subject to a
constant acceleration (here set to unity in suitable units).

x 

y 

v 

u 

_ 

FIG. 1. Conformal Map

Consider the annulus R1/a < |z| < R2/a, in the com-
plex z-plane (where a is a short distance scale), which is
mapped (see Fig. 1) under the conformal transformation
(6) into a piece u1 < u < u2 of a cylinder (the coordinate
v is periodic with period 2π) of length

L = (u2 − u1) = ln(R2/R1) (7)

where

R1/a = exp(u1), R2/a = exp(u2). (8)

Now consider, as discussed in the Introduction, the imag-
inary (Euclidean) time action of a CFT in the (x, y) co-
ordinate system, perturbed by a primary18 field φ(z, z̄)
of conformal weight (h, h̄) which is relevant in the RG
sense,

Sz,z̄ = S∗ + g

∫
d2z φ(z, z̄), where h̄ = h < 1. (9)

Here S∗ denotes the action of the CFT itself. Sz,z̄ in Eq.
(9) defines the gapped relativistic field theory in infinite
space, described by coordinates (x, y) or (z, z̄). In order
to obtain its entanglement Hamiltonian in half-space, we
need to express this action in (u, v), or (w, w̄) coordi-
nates, describing angular quantization or, equivalently,
Rindler space-time coordinates. To this end we use the
transformation properties of the primary field φ(z, z̄),
which transforms18 in the new coordinates to the new
field Φ(w, w̄) defined by

φ(z, z̄) = Φ(w, w̄)

(
dz

dw

)−h(
dz̄

dw̄

)−h̄
. (10)

Using the explicit form (6) of the map, we obtain(
dz

dw

)(
dz̄

dw̄

)
= exp(w + w̄) = exp(2u)
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which leads to the following form of the action from (9)
when expressed in the (w, w̄) coordinates,

Sw,w̄ = S∗ + δS =

= S∗ + g

∫ ∞
u1

du

∫ 2π

0

dv eyu Φ(w, w̄) =

= S∗ +

∫ ∞
u1

du

∫ 2π

0

dv ey[u−ln(κξ/a)] Φ(w, w̄), (11)

where we made use of the invariance of S∗ under con-
formal transformations. Here y = 2(1 − h) > 0 is the
renormalization group eigenvalue of the relevant cou-
pling constant g, inducing35 a finite (dimensionless) cor-
relation length ξ/a = κ−1 g−1/y (where κ is a non-
universal dimensionless constant), which in turn was used

to write the coupling constant in the form g =
(
κ ξa

)−y
=

e−y ln(κξ/a) . We have considered the limit R2/a → ∞
(implying u2 → ∞, due to Eq. (8)), and u1 was defined
in Eq. (8).

Note that the second term δS in (11) arises from the
presence of the relevant perturbation in (9) which leads
to the lack of invariance of the total action S under the
conformal transformation. In the (w, w̄) coordinates the
term δS describes a “potential” which grows exponen-
tially with the spatial coordinate u and describes an in-
terface between the gapless theory (g = 0), and a gapped
theory in which the coupling g is not small, and the di-
mensionless correlation length ξ/a is not large. The term
δS therefore confines the theory to a finite spatial inter-
val,

u1 < u < L, L = Lξ = ln(ξ/a). (12)

We thus see from Eqs. (11) and (12) that the action Sw,w̄
in the (u, v) coordinates of Fig. 1 describes the gapless
theory but now on a space of finite size L = Lξ, with
certain boundary conditions imposed at the two ends
which will be discussed below. (Since the imaginary (Eu-
clidean) time coordinate v is periodic with period 2π, this
action describes the gapless theory at inverse tempera-
ture β = 2π.) Therefore, the Hamiltonian of the theory
in the (u, v) coordinates, which by construction is pre-

cisely the entanglement Hamiltonian ĤE , is the Hamil-
tonian of the underlying gapless theory, i.e. of the theory
where the relevant perturbation is switched off, g ≡ 0,
but on the finite interval (12) of length L = Lξ. The
boundary condition on the right end u = L = Lξ of the
interval corresponds, as seen from (11), to an interface
between the gapless theory (where g = 0) and the fully
gapped theory emerging when g is not small. This inter-
face is sharp36 when L is large. As mentioned in section I,
since the corresponding gapped theory, appearing when
g does not vanish, clearly depends on the relevant per-
turbation φ, so does the resulting boundary condition,
denoted by Bφ. On the other hand, the boundary con-
dition at the entanglement cut on the left side u = u1 of
the interval is independent of the relevant perturbation

φ, and it is typically37 just a a free boundary condition
(where the system “simply ends”).

In summary, we have shown that the low-lying spec-
trum of the entanglement Hamiltonian ĤE of the gapped
relativistic field theory is simply the finite size spec-
trum of the corresponding gapless (conformal) theory
with boundary conditions “F” and “Bφ” discussed above.
This is the spectrum of the corresponding boundary con-
formal field theory, as displayed in (2), (3) and (5). The
corresponding eigenstates in the u-coordinates are local-
ized within the finite range specified in (12), correspond-
ing in the original x-coordinates, upon using (6), as ex-
pected to a finite region around the entanglement cut
(at x = 0) of spatial extent of the order of the corre-
lation length ξ. - The limitation to the low-lying en-
tanglement spectrum arises from the replacement of the
exponentially increasing potential in (11) by a boundary
condition representing a sharp interface. This replace-
ment is certainly asymptotically valid for the low-energy,
long-wavelength part of the spectrum when L = ln(ξ/a)
is large. More precisely, one expects this replacement
to stop being valid for eigenstates of the entanglement
Hamiltonian varying on wavelengths of order 1/y, the
scale on which the potential rises exponentially38. This
replacement is therefore expected to certainly cease to be
valid for wave vectors kn = n(π/L) with integer n where
n & 2Ly, which roughly corresponds, using (5), to exci-
tation energies ε − ε0 & ε∗ − ε0 = 2πy. Since the level
spacing is π/L, the number of energy levels belonging
to the so-defined low-lying spectrum increases with L,
and can in practice be large in numerical work (see e.g.
Ref. [19], which we mentioned already before; note this
reference chose to address only the entanglement spec-
trum of gapless theories). A brief comment on how one
may view, within the context of the present paper, the re-
sult observed for the logarithm of Baxter’s Corner Trans-
fer Matrix in gapped integrable lattice models, which is
known to reproduce exactly the entire spectrum of the
boundary conformal field theory (i.e. ε∗ → ∞ in the
above equation), is provided in Appendix A.

III. CROSSOVER OF ENTANGLEMENT
SPECTRUM OF HALF-SPACE

It is illuminating to compare the finite-size spectra of
the entanglement and the physical Hamiltonian.

(a): Finite Size Crossover of Entanglement Spectrum.
Let us first define the finite-size entanglement spectrum
for open boundary conditions (also often used in numer-
ical work). Specifically, we consider the gapped theory
on a finite interval −R < x < +R, choosing some, for
simplicity identical boundary conditions B0 at the two
ends which we assume here to yield a unique ground
state on the interval. When tracing over the negative
half −R < x < 0 of the interval, we obtain the density
matrix whose spectrum we are interested in.

In the critical regime where the correlation length is
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much larger than the entire interval, R � ξ, the entan-
glement spectrum is that of the gapless theory (g = 0)
which is known39,40 to be of the form of Eq. (5) where
L = LR = ln(R/a):41 This is the spectrum of the CFT
(g = 0) on an interval of length L = LR with typically42

a free boundary condition “F” on the left end (arising
from the entanglement cut), and the same boundary con-
dition “B0” that was imposed in physical space on the
right end. As we increase R, the level spacing of the
entanglement spectrum initially decreases as π/ ln(R/a),
and ultimately saturates at π/ ln(ξ/a) when we reach the
gapped regime:

In the gapped regime where the correlation length is
much smaller than the length of the interval, ξ � R,
the entanglement spectrum is precisely the one studied
in section II: This is the spectrum of the same CFT
(g = 0) on an interval on length L = Lξ = ln(ξ/a), with
again typically a free boundary condition F on the left
end (arising from the entanglement cut), and the bound-
ary condition Bφ arising from the relevant perturbation
(discussed in section II) imposed on the right end.

We thus see that upon increasing the size of the inter-
val from R � ξ to ξ � R, the entanglement spectrum
evolves from the spectrum of the CFT on an interval of
length L = LR = ln(R/a) and boundary conditions (F ,
B0), to the spectrum of the same CFT on an interval
of length L = Lξ = ln(ξ/a) and boundary conditions
(F , Bφ). This describes the evolution of a boundary
renormalization group (RG) flow, while the bulk theory
describing the entanglement Hamiltonian always remains
gapless. - A simple example is provided by the transverse
field quantum Ising model perturbed by a bulk magnetic
field described by the operator φ = σ (spin field), and a
free Ising-spin boundary condition B0. Upon the above-
described crossover of the entanglement spectrum, the
bulk magnetic field induces a boundary magnetic field
at the free spin boundary condition B0 that flows under
the RG to the new fixed-spin boundary condition Bφ. -
In subsection V A 1 of section V we discuss an example
where the boundary conditions B0 and Bφ are in fact
the same, and only the level spacing changes upon the
crossover. This is confirmed numerically in Fig. 3.

(b): Finite Size Crossover of Physical Spectrum. In con-
trast to the boundary RG flow of the entanglement spec-
trum discussed above, the physical spectrum is known
to evolve completely differently under the analogous
crossover. In particular consider the physical spectrum of
the gapped theory defined on a finite interval of length
R. In order to be able to make a direct comparison we
choose the same boundary conditions as those for the en-
tanglement spectrum, namely a free boundary condition
F on the left end and the boundary condition B0 on the
right end of the interval.

In the critical limit where the correlation length is
much larger than the entire interval, R� ξ, the physical
spectrum is identical to that of entanglement spectrum,
Eq. (5); namely, it is the spectrum of the CFT with the
same boundary conditions (F , B0), upon making the re-

placement LR = ln(R/a) → R. Upon crossover to the
corresponding gapped limit where the correlation length
is much smaller than the system size, ξ � R however,
the physical spectrum of the gapped theory undergoes
a dramatic, highly non-trivial re-organization from the
boundary CFT spectrum with a finite level spacing to
the continuous spectrum in infinite space describing con-
tinuous single- and multi-particle states of the gapped
field theory. In cases where the relevant perturbation of
the CFT defining the gapped theory is integrable, this
reorganization of the physical finite size spectrum has
been extensively studied in great detail43 by means of
the so-called ‘Truncated Space Conformal Field Theory’
approach and the Thermodynamic Bethe Ansatz.44

In summary, the finite size entanglement spectrum and
the finite size physical spectrum exhibit entirely different
behavior upon crossover from the critical to the gapped
regime.

IV. ENTANGLEMENT SPECTRUM OF A
FINITE INTERVAL

For the same gapped field theory, we now discuss the
entanglement spectrum of a spatial interval A = (−R +
a,+R−a) where 0 < a� R (‘a’ is again a short distance
scale), depicted on the real axis with coordinate ζ1 in the
top panel of Fig. 2. We use the conformal map w(ζ) =

ln
(
R+ζ
R−ζ

)
, with inverse ζ(w) = R tanh(w/2), to map

from the complex ζ = (ζ1+iζ2)-plane into a finite cylinder
parametrized by w = u+ iv with −uR ≤ u ≤ +uR where
uR = ln(2R/a), as also shown in Fig. 2.

As before, consider the imaginary (Euclidean) time ac-
tion of a CFT in the (ζ1, ζ2) coordinate system, perturbed
by a relevant primary18 field φ(ζ, ζ̄) of conformal weight
(h, h̄),

Sζ,ζ̄ = S∗ + g

∫
d2ζ φ(ζ, ζ̄), where h̄ = h < 1.

Using

dζ

dw
=
R

2

1

cosh(w/2)
=

R

1 + cosh(w)
,

we obtain for the action in the w-coordinates

Sw,w̄ = S∗ + δS (13)

where

δS =

= gRy
∫ +uR

−uR
du

∫ 2π

0

dv | 1

1 + cosh(w)
|
y

Φ(w, w̄) =

=
(Ra )y

( ξa )y

∫ +uR

−uR
du

∫ 2π

0

dv | 1

1 + cosh(w)
|
y

Φ(w, w̄) =

=

∫ +uR

−uR
du

∫ 2π

0

dv | e(uR−Lξ)

1 + cosh(w)
|
y

Φ(w, w̄), (14)
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FIG. 2. Conformal Map

and (Ra )y = eyuR .
In the critical regime uR � Lξ, where δS is small we ob-
tain the already-known40 entanglement spectrum of the
gapless theory (g = 0) on the finite interval.45

In the gapped regime uR � Lξ, on the other hand,
the “effective u-dependent coupling constant” in the last
equation of (14) is never small unless |u| is ‘close’ to uR,

(uR − |u|)� Lξ, (recall :− uR < u < +uR), (15)

in which case the expression e(uR−Lξ)/|1 + cosh(w)| ap-
pearing in Eq. (14) tends to → e−[Lξ−(uR−|u|)] which is
small when Lξ is large. The condition in Eq. (15) for
δS to be small describes two disjoint intervals, −uR <
u� −(uR−Lξ) and (uR−Lξ)� u < uR; these are two
segments of length Lξ (� uR) each at the right- and the
left- ends of the full interval −uR < u < uR in which u
is defined. Therefore, the entanglement spectrum of the
interval A = (−R+a,+R−a) in this regime is the sum of
two finite size spectra of the corresponding gapless (con-
formal) theory on a space of length Lξ = ln(ξ/a) each.
The boundary condition at the ends u = ±uR of each of
these two intervals is (typically) “free” F , whereas it is
Bφ at the other ends of the two intervals. Therefore, each
of these two spectra is precisely the spectrum discussed
in section II.

V. NUMERICAL RESULTS

In this section we present numerical calculations of the
(low-lying) entanglement spectrum of a chain of spinless
fermions, which confirm the above discussion of Lorentz
invariant quantum field theories.

Let us consider the Su-Schrieffer-Heeger (SSH) model
defined on a one dimensional lattice:

H =
∑
i

Ψ†ih
0Ψi +

∑
i

(
Ψ†i+1h

xΨi + h.c.
)
, (16)

where i labels a site on a one-dimensional chain, and Ψ
is a two-component fermion annihilation operator, which
includes two fermions operators cA and cB defined for
each two-site unit cell:

Ψi =

(
cA
cB

)
i

. (17)

The matrix elements h0 and hx are given by:

h0 =

(
µs t+ δt

t+ δt −µs

)
, hx =

(
0 t
0 0

)
. (18)

where t (”hopping”), δt (”dimerization”), and µs (”stag-
gered chemical potential”) are real parameters. In addi-
tion, a proper boundary condition must be specified (see
below). For convenience, we will choose t = 1 and change
δt and µs (which are properly normalized with respect to
the unit t = 1). When µs = 0, the SSH model is particle-
hole symmetric, and can be thought of as a member of
symmetry class D.[46,47] We will mostly set µs = 0 in
the following. Hence, when µs = 0, the SSH model real-
izes two topologically distinct gapped phases which are
distinguished by a Z2-valued topological invariant. A
topologically trivial phase is realized when

δt > 0 (19)

while a topologically non-trivial phase is realized when

δt < 0. (20)

There is a quantum phase transition separating these
phases when

δt = 0. (21)

In the following, we compute the entanglement spectrum
of these phases and at the critical point between them
numerically.

A. Open boundary conditions (OBC)

We first consider the SSH model defined on a finite
lattice consisting of N unit cells, and with open boundary
condition imposed on both ends. We will take N ∈ 2Z
for convenience.
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FIG. 3. The single-particle entanglement spectrum of the SSH
model with OBC in its topologically trivial phase (δt = 0.01).
The blue dotted lines are guide for eyes.

1. Topologically trivial phase

Let us start with the topologically trivial phase, δt > 0.
In this phase, the SSH model with open boundary condi-
tion has a unique ground state, |Ψ〉. We then consider a
(pure) density matrix ρ = |Ψ〉〈Ψ| made out of the ground
state, and trace out the left N/2 sites to define the re-
duced density matrix for the remaining subsystem (”sub-
system A”). The number of unit cells in subsystem A is
denoted by NA(= N/2). The computed single-particle
entanglement spectrum is presented in Fig. 3. As we
make the system size (and hence the subsystem size) big-
ger, the spectrum approaches the prediction from BCFT.
I.e., the levels of the single particle entanglement spec-
trum are all equally spaced, and the level spacing does
not scale with NA. This spectrum is the spectrum of
the free chiral fermion conformal field theory with anti-
periodic spatial boundary condition, the so-called Neveu-
Schwartz (NS) spectrum.

2. Topologically non-trivial phase

Next let us consider the non-trivial topological phase,
δt < 0. In this case, the SSH model of finite length has
near double-degenerate ground states when open bound-
ary conditions (OBC) are imposed, due to near zero-
energy single particle modes localized near the ends.48 of
the degeneracy, we have several options to define the den-
sity matrix and hence the entanglement spectrum. One
option would be to take a proper linear combination of
the two degenerate ground states. For example, one can
make the linear combination such that the (near) zero-
energy single particle eigen state is localized at a given
end. One motivation for taking such a linear combina-
tion is that the so-constructed state may well be com-

pared with the ground state defined for a semi-infinite
system – the geometry that we considered in the bulk of
the paper for the entanglement Hamiltonian.

In practice, such a ground state can be constructed by
turning on a small µs (near a boundary, say). One should
however note that such a procedure breaks particle-hole
symmetry. In fact, for any finite system size and fi-
nite correlation length, if we take a linear combination of
near zero-energy modes to respect particle-hole symme-
try, they are not localized at a given end. (Note, however
that there is one exception for this: the “zero correlation
length limit” that we can take in the SSH model). Only
in the semi-infinite limit, (one of) the localized zero en-
ergy mode is an exact particle-hole symmetry eigen state
of the Hamiltonian.

In Fig. 4, the entanglement spectrum with this con-
struction of the ground state (i.e., the unique ground
state selected by turning on a finite µs) is shown. As
we make the subsystem size bigger, the entanglement
spectrum ”crosses over”. In particular, while for small
NA, the single-particle entanglement spectrum does not
have a zero mode, as we make the system size bigger, one
level approaches zero from below, and asymptotically the
single-particle entanglement spectrum has one exact zero
mode. We call this entanglement spectrum the Ramond
(R) spectrum (the spectrum of the free chiral fermion
conformal field theory with periodic spatial boundary
condition). The R-spectrum, whose many-body spec-
trum displays a double degeneracy, is what is predicted
from BCFT (in the ‘gapped regime’).

Let now us discuss the “crossover” in more detail. In
fact, one could discuss two kinds of features separately;
one in terms of the scaling of the level spacing, and the
other in terms of the structure of the levels, or more
precisely the presence or absence of the zero mode.

From the former perspective, if a well-defined crossover
region ever appears, the spectrum should follow the crit-
ical scaling, ∼ HL/ logNA, for NA much smaller than
the correlation length ξ (‘critical regime’). On the other
hand, for NA much larger than the correlation length,
the entanglement spectrum should scale as ∼ HL/ log ξ
(‘gapped regime’). However, it is not entirely clear how
to identify such a crossover region in Fig. 4.

From the perspective of the structure of the spectrum,
the entanglement spectrum for small NA looks like the
NS spectrum (i.e., there is no zero mode in the single par-
ticle entanglement spectrum), which crosses over to the
R-spectrum. (However, this ”NS-like” spectrum should
be distinguished from the NS-spectrum that appears in
the topologically trivial case, because of the different scal-
ing of the level spacing.) It is here crucial to recall that,
by our construction of the unique ground state, the en-
tanglement spectrum breaks particle-hole symmetry. In
fact, what would look like a crossover in numerics is possi-
ble because of the particle-hole symmetry breaking. This
should be compared with what we expect for the ideal,
semi-infinite limit. In the semi-infinite limit, the ground
state is unique and respects particle-hole symmetry, and
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FIG. 4. The entanglement spectrum of the SSH model with
OBC in its topologically non-trivial phase (δt = −0.01). The
blue dotted lines are guide for eyes.

so is the reduced density matrix. If so, the entangle-
ment spectrum should be particle-hole symmetric. As a
corrollary, the spectrum cannot cross over from the NS
spectrum to R spectrum in the presence of particle-hole
symmetry. In short, the crossover from the NS spec-
trum to R spectrum in numerics is due to particle-hole
symmetry breaking, which we can think of as a finite
size artifact. On the other hand, as we make the system
size bigger, particle-hole symmetry breaking eventually
goes away, and hence, in this ideal limit, the entangle-
ment spectrum will be particle-hole symmetric. There
should in fact be no crossover from an actual NS to the
R spectrum.49

B. Periodic boundary conditions (PBC)

Let us now discuss the entanglement spectrum for the
case of periodic boundary conditions. With periodic
boundary conditions, the ground state is always unique
as far as there is a spectral gap, irrespective of the sign
of δt. I.e., even in the topological case, one does not
have to choose between ground states. The numerically
computed entanglement spectrum is shown in Fig. 5. As
compared to the case of open boundary conditions, there
is no crossover from the NS to the R spectrum. (As men-
tioned above, such a crossover is not to be expected in
the ideal semi-infinite limit.) One important feature for
the case of periodic boundary conditions, which we ex-
pect from our discussion in the preceding section, is that,
due to the presence of two entangling boundaries, the en-
tanglement spectrum consists of two identical copies of a
BCFT spectrum. I.e., each level in the single-particle en-
tanglement spectrum is doubly degenerate. The double-
degeneracy is indeed confirmed in numerics. In this spe-
cial case of equal bipartition, NB = N −NA = NA, this
double degeneracy turns out to be exact. This is the
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FIG. 5. The single-particle entanglement spectrum of the
SSH model with PBC in its topologically non-trivial phase
(δt = −0.01). The blue dotted lines are guide for eyes. Each
level is doubly degenerate.

consequence of an accidental chiral symmetry that exists
when NA = NB and when there is an symmetry relating
the region A and region B (reflection/inversion symmetry
in our case).50–52 Combined with the sublattice symme-
try that exists when µs is zero, the accidental symmetry
commutes with the entanglement Hamiltonian, resulting
in the double degeneracy. This degeneracy is lifted by
turning on the finite staggered chemical potential µs or
taking NA 6= NB . This can be understood as an “tun-
neling” (coupling) between the two copies of the BCFT
spectrum.

C. Critical scaling

Finally, as an aside, let us take a look at the entan-
glement spectrum at the critical point δt = 0. From the
field theory considerations, we expect that the spectrum
scales as ∼ 1/ logNA instead of ∼ 1/ log ξ. In Fig. 6,
we fit the entanglement spectrum at the critical point,
which roughly follows what we expect; one observes crit-
ical scaling HL/ logNA when NA is large enough.

In gapless systems (critical points) in general, since
there is no spectral gap, there are many (near) degenerate
states. In our numerics, we let our computers choose the
ground state. This procedure in principle may be tricky;
for example, the behavior of the entanglement spectrum
may depend severely on the choice of NA and N . (There
may be an even-odd like effect.) In Fig. 6, we choose open
boundary conditions, and as before, fix NA as NA = N/2.

VI. CONCLUSIONS

In conclusion, we have considered in this paper (1+1)
dimensional gapped relativistic field theories in the scal-
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FIG. 6. The single-particle entanglement spectrum of the
SSH model with periodic boundary conditions at its critical
point (δt = 0). The blue dotted lines are guide for eyes. To
compare with the expected result, we chose the ‘scale’ a0 to
be a0 = 0.1.

ing limit which can be viewed as describing gapped
phases in the vicinity of a quantum phase transition de-
scribed by a CFT. We have shown that the low-lying
entanglement spectrum of such a gapped field theory is
the spectrum of the underlying CFT on a finite interval of
size Lξ = ln(ξ/a) with a free boundary condition F and a
boundary Bφ determined by the relevant perturbation of
the CFT defining the gapped theory. We have also cal-
culated the entanglement spectrum of the gapped field
theory on a finite interval. This result provides, at the
same time, the structure of the entanglement spectrum
of the theory with periodic boundary conditions, i.e. on
a circle of circumference 2R, bipartitioned into two half-
circles of length R each: In the limit where the size R is
larger than the correlation length ξ, in analogy with the
case of an interval, the entanglement spectrum is the sum
of two spectra arising from the two ends of the semicircle.
We would like to mention that interesting features arise
for entanglement spectra of (1+1) dimensional Symme-
try Protected Topological (SPT) phases, and these will
be discussed in a companion paper by the authors which
will appear very shortly.
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Appendix A: Comments on the relationship with the
Corner Transfer Matrix Spectum of Yang-Baxter

integrable 2D classical Statistical Mechanics models

In this Appendix we briefly suggest a way in which
the observation made (many years ago) in the literature
about the spectrum of the logarithm of the CTM of inte-
grable lattice models could be viewed within the context
of the notions used in the present paper about the low-
lying entanglement spectrum of gapped relativistic (1+1)
dimensional field theories. This will also provide some in-
tuition about how the highly special constraints of inte-
grability manage to generate the exact BCFT spectrum
at arbitrarily high excitation ‘energies’ of the entangle-
ment Hamiltonian, even far off the scaling limit, i.e. for
values of the correlation length ξ down to distances of
the lattice scale ‘a’. First, recall that all the many off-
critical integrable lattice models in which the behavior
in question of the CTM was observed, are in fact one-
parameter families of integrable models, which have the
property that the system is critical (ξ/a = ∞) for one
special value λ∗ of the parameter λ, where they represent
lattice realizations of a certain set of CFTs. Moreover,
the deviation δλ = (λ − λ∗) of the parameter from this
special value is a relevant perturbation, and couples to a
particular relevant field φ of the CFT. (This particular
field is also special in the context of the CFT, in that
even in the CFT perturbed by it an infinite subset of the
conservation laws of the CFT survive. Only a few very
special relevant perturbations of the CFT have this prop-
erty.) Second, recall that (i) one can represent the critical
lattice theory at λ = λ∗ as the CFT perturbed by an in-
finite number of irrelevant perturbations. Some of these
irrelevant perturbations include powers of the energy-
momentum tensor of the CFT which lead to non-linear
contributions to the energy-momentum relationship, thus
representing the breaking of Lorentz-invariance present
in the lattice theory. Moreover, (ii), the off-critical lat-
tice model at δλ 6= 0 may be represented by perturbing
the so-represented critical lattice theory at λ = λ∗ by yet
another infinite set of perturbations of the CFT, the most
relevant of which is the field φ discussed above. It is the
constraints arising from the integrability of the lattice
model that fix exactly the infinite number of expansion
coefficients. A practical implementation of this general
principle of representing an integrable lattice theory in
terms of such perturbations of a CFT, can be found e.g.
in Ref. [29]. - Now it is clear that the presence of all
these perturbations (in principle infinite in number) can
be treated in precisely the same way the single relevant
perturbation φ is treated in section II of the present pa-
per: In that section it is shown that a single relevant
perturbation φ, when added to the CFT, leads to a “do-
main wall potential” in the coordinate ‘u’ parametrizing
the coordinate space on which the entanglement Hamil-
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tonian ĤE acts (‘angular quantization’ or ‘Rindler space-
time’). All the additional perturbations that have to be
added to the CFT to represent the lattice theory exactly
will simply modify the shape of that “domain wall poten-
tial” in some way. Since the spectrum of the logarithm
of the CTM of the gapped integrable models is known
to be exactly the entire spectrum of the boundary CFT
with the boundary conditions mentioned in the present

paper, it ought to be the case that the exact “domain wall
potential” being generated in this way in the integrable
theory, exactly describes a conformal boundary condition,
all the way up to arbitrarily high (entanglement) ener-
gies. It may be possible to study explicitly, in the spirit of
Ref. [29] mentioned above, approximations to the entire
entanglement spectrum of the integrable system in terms
of that of a CFT with a finite, but increasing number of
perturbations.
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