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Abstract 

We show that a cylindrical lensing system composed of two metasurfaces with suitably tailored 

non-Hermitian (i.e., with distributed gain and loss) and nonlocal (i.e., spatially dispersive) 

properties can perform magnified imaging with reduced aberrations. More specifically, we 

analytically derive the idealized surface-impedance values that are required for “perfect” 

magnification and imaging, and elucidate the role and implications of non-Hermiticity and 

nonlocality in terms of spatial resolution and practical implementation. For a basic 

demonstration, we explore some proof-of-principle quasi-local and multilayered 

implementations, and independently validate the outcomes via full-wave numerical simulations. 

We also show that the metasurface frequency-dispersion laws can be chosen so as to ensure 

unconditional stability with respect to arbitrary temporal excitations. These results, which extend 

previous studies on planar configurations, may open intriguing venues in the design of 

metastructures for field imaging and processing. 
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I. INTRODUCTION 

Optical metamaterials, artificially engineered so as to exhibit desired responses not readily 

attainable in nature, have been the subject of intense investigations over the past decades [1,2],  

with promises to overcome some of the fundamental limitations of optical instruments [3]. For 

instance, in a seminal work by Pendry [4], it was shown that a slab with negative refractive index 

can create a 2D image with a spatial resolution that is not bounded by the conventional 

diffraction limit [3]. The basic idea can be generalized to cylindrical lenses, in order to achieve 

image magnification [5,6]. The enabling concept for such “perfect lenses” is the possibility to 

recover the subwavelength information encoded in the evanescent waves, which is typically lost 

at wavelength-sized distances from the source. In the quasi-electrostatic regime, for a given 

polarization, a plasmonic material exhibiting negative permittivity (e.g., a noble metal at optical 

wavelengths) is sufficient to attain “superlensing” effects [4]. In the dynamic case, the negative-

refractive-index requirement can be met by metamaterials engineered in various ways [7-9] 

depending on the operational frequency of interest. 

In the superlensing effect, the evanescent-wave enhancement relies on the excitation of surface 

plasmons, and hence the possible applications are limited to near-field effects. To achieve far-

field subwavelength imaging, the “hyperlens” concept was put forward [10,11], which relies on 

hyperbolic metamaterials [12] capable of transforming the (otherwise evanescent) high-

transverse-wavenumber components into propagating waves inside the lens. In conjunction with 

a suitably shaped (e.g., obliquely cut or curved) output surface, this makes it possible to attain 

far-field imaging with subdiffractive resolution and magnification. 

In spite of the promising theoretical predictions, experimental demonstrations of superlenses 

[13,14] and hyperlenses [15-17], have evidenced the inherent practical limitations, and most 
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notably the detrimental influence of material losses [18,19]. On the other hand, alternative low-

loss implementations of superlenses, e.g., based on photonic crystals [20-23], exhibit inherent 

resolution limitations due to the crystal-lattice periodicity. Against this background, the idea of 

exploiting material constituents featuring optical gain has recently emerged as a viable route to 

engineer effectively lossless metamaterials [24,25]. For instance, in [26], a gain-assisted hybrid 

superlens-metalens was proposed, and subdiffraction spatial resolution was numerically 

demonstrated. 

Within this framework, the emerging field of non-Hermitian optics, inspired by the parity-time 

(PT) symmetry concept in quantum mechanics [27-29], has shaken the conventional wisdom of 

gain-induced loss compensation, opening entirely new, and largely unexplored, perspectives in 

the physics and engineering of gain-loss interactions. The reader is referred to [30] for a recent 

review of PT-symmetry in optics, and to [31-49] for a sparse sampling of studies on the 

implications and applications of non-Hermitian optics, including metamaterials, plasmonics and 

lasers, just to mention a few. In particular, of special interest for the present study is a series of 

recent investigations [45,48-51] on the negative-refraction, focusing, and imaging effects 

achievable by means of PT-symmetric metasurface pairs. In particular, in [49], it was 

demonstrated analytically and numerically that a pair of planar metasurfaces featuring balanced 

loss and gain and tailored nonlocal properties can act as a transversely invariant, planar lens with 

the potential to perform volume-to-volume imaging, with reduced aberrations and loss-

sensitivity. In such a system, gain and loss do not merely compensate, but rather interplay in an 

anomalous fashion. More specifically, the passive metasurface is tailored to act as an 

omnidirectional coherent perfect absorber, while the active one acts as an omnidirectional 

coherent emitter. While this general concept looks attractive and promising, the inherent afocal 
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character of the assumed planar configuration prevents the possibility to perform image 

magnification, which may be desirable in many application scenarios. 

To overcome the above limitation, the present study explores the imaging capabilities of non-

Hermitian cylindrical concentric metasurfaces. More specifically, in Sec. II, we describe the 

problem geometry and outline its formulation. In Sec. III, we analytically derive the ideal 

properties of the metasurfaces that are required to attain “perfect” cylindrical imaging. Moreover, 

we illustrate the non-Hermitian and nonlocal properties of the metasurfaces, and address some 

issues concerning the attainable spatial resolution. In Sec. IV, we explore possible 

implementations, numerically validate our theoretical predictions, and address stability- and 

implementation-related issues. Finally, in Sec. V, we discuss implications and perspectives of 

our results. 

 

II. GEOMETRY OF THE PROBLEM 

Referring to the schematic in Figure 1, we consider a cylindrical geometry embedded in vacuum, 

infinitely long and invariant along the z-direction of the associated coordinate system r,φ,z( ) . 

We consider a “source” (virtual) surface at r = Rs  where a transversely magnetic polarized, time-

harmonic field distribution [with implied exp −iωt( )  time-dependence] is assigned in terms of 

the z-directed electric field 

   Ez Rs ,φ( ) ≡ Esz φ( ).  (1) 

As anticipated (see also the schematic in Figure 1), we are interested in reproducing this field 

distribution at an “image” (virtual) surface located at r = Ri > Rs , so as to attain an inherent 

geometrical magnification by a factor Ri Rs > 1, without monochromatic aberrations. By letting 
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  Ez Ri ,φ( ) ≡ Eiz φ( )  (2) 

the field distribution at the image surface, our problem can be stated in mathematical terms as 

attaining the condition 

  Eiz φ( ) = α Esz φ( ),   (3) 

with α  denoting a real-valued constant, henceforth assumed as α = 1.  

To realize the magnified-imaging condition implied by (3), we consider a cylindrical lensing 

system composed of two idealized (zero-thickness) concentric metasurfaces placed at r = R1  and 

r = R2 > R1 , with homogeneous (i.e., φ -independent) surface impedances Z1  and Z2 , 

respectively. While this system may appear, at first glance, as a direct generalization of the 

planar lens considered in [49], there are some important caveats to consider. Most notably, 

although the PT-symmetry condition assumed in [49] (with the two planar metasurfaces 

characterized by balanced positive and negative resistances) admits some possible 

generalizations [52,53] to cylindrical scenarios, these are not apt for our metasurface-based 

formulation and for the magnification goal at hand. Accordingly, although we intuitively expect 

a non-Hermitian and nonlocal character for the required metasurfaces, we do not make any prior 

assumption on their nature. Instead, we analytically derive the general conditions that they need 

to satisfy in order to realize ideal magnification as described by the condition in (3).  

 

 

III. THEORY AND DESIGN IMPLICATIONS 

A. Analytical derivations 

In each of the vacuum regions of interest (Figure 1), the z-directed electric field can be 

represented in terms of a Fourier-Bessel series expansion [54] 
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  Ez r,φ( ) = Aν
n( )Hn

1( ) k0r( ) + Bν
n( )Hn

2( ) k0r( )⎡
⎣

⎤
⎦

n=−∞

∞

∑ exp inφ( ), Rν−1 < r < Rν ,  (4) 

where ν = 1,2,3 , and we have defined R0 ≡ Rs  and R3 ≡ ∞  for notational compactness. 

Moreover, Aν
n( )  and Bν

n( )  are sets of unknown expansion coefficients, Hn
1( ) and Hn

2( )  denote the 

nth-order Hankel function of first and second kind [55], respectively, and k0 = ω c = 2π λ0  is 

the vacuum wavenumber (with c  and λ0  denoting the corresponding speed of light and 

wavelength, respectively). From (4), the corresponding tangential magnetic field follows from 

the relevant Maxwell’s curl equation 

  Hφ r,φ( ) = i
k0η0

∂Ez r,φ( )
∂r

,  (5) 

with η0 = μ0 ε0 ≈ 377Ω  denoting the vacuum characteristic impedance. By enforcing 

impedance matching (i.e., zero reflection in the region Rs < r < R1), so that the source signal is 

not perturbed, and the radiation condition (for r > R2 ), it readily follows that 

  B1
n( ) = B3

n( ) = 0.  (6) 

Moreover, by particularizing the series expansions in (4) at the source ( r = Rs ) and image (

r = Ri ) surfaces, we obtain 

  Esz φ( ) = Ez Rs ,φ( ) = A1
n( )Hn

1( ) k0Rs( )
n=−∞

∞

∑ exp inφ( ),  (7) 

  Eiz φ( ) = Ez Ri ,φ( ) = A3
n( )Hn

1( ) k0Ri( )
n=−∞

∞

∑ exp inφ( ),  (8) 
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respectively, which directly relate the sets of expansion coefficients A1
n( )  and A3

n( )  to the Fourier 

coefficients of the source- and image-field distributions, respectively. By enforcing the 

magnified-imaging condition (3) (with α = 1), we therefore obtain 

  A3
n( ) = A1

n( ) Hn
1( ) k0Rs( )

Hn
1( ) k0Ri( ) .   (9) 

The remaining sets of unknown expansion coefficients need to be calculated by enforcing the 

electric-field continuity and impedance boundary conditions at the metasurfaces, 

    
Ez Rν

− ,φ( ) = Ez Rν
+ ,φ( ), ν = 1,2,  (10) 

  Hφ Rν
+ ,φ( ) − Hφ Rν

− ,φ( ) =
Ez Rν ,φ( )

Zν

, ν = 1,2,  (11) 

where the superscripts “ − ” and “ + ” denote the conventional one-sided limits. This yields four 

(countably infinite) sets of linear equations, with the unknowns A2
n( ) , B2

n( )  and the surface 

impedances Z1  and Z2 . It becomes apparent that for local metasurfaces (i.e., Z1  and Z2  

independent of the angular-momentum order n), the overall system of equations is inherently 

overdetermined, and can only be solved in a weak (e.g., least-square) sense. On the other hand, 

by assuming n-dependent surface impedances (i.e., nonlocal metasurfaces), the system can be 

solved analytically in closed form, and we obtain 

  Z1
n( ) = −Sn

k0η0π R1

4
Hn

1( ) k0R1( ) Hn
1( ) k0Ri( )

Hn
1( ) k0R2( ) ,  (12) 

  Z2
n( ) = Sn

k0η0π R2

4
Hn

1( ) k0R2( ) Hn
1( ) k0Rs( )

Hn
1( ) k0R1( ) ,   (13) 
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where the superscript “ n( )” has been added to highlight the nonlocal character, i.e., the fact that 

the metasurfaces present an impedance that changes with the momentum of the impinging 

harmonic, and 

  Sn =
Hn

1( ) k0 R1( ) Hn
2( ) k0R2( ) − Hn

2( ) k0R1( ) Hn
1( ) k0R2( )

Hn
1( ) k0Ri( ) − Hn

1( ) k0 Rs( ) .   (14) 

By recalling the symmetry properties of the Hankel functions with respect to their order [55], it 

can be verified that 

  Zv
− n( ) = Zv

n( ) , ν = 1,2.  (15) 

B. Nonlocality, non-Hermiticity and resolution issues 

Although it is evident from (13) and (14) that our cylindrical scenario inherently requires 

complex-valued impedances, it is not straightforward to analytically ascertain the non-Hermitian 

requirements in terms of gain and loss distribution, and to assess the actual degree of required 

nonlocality. Accordingly, in what follows we illustrate these effects and their implications on the 

imaging capabilities, by exploring representative numerical examples. 

We start by considering a configuration with source and image surfaces at k0Rs = 10  and 

k0Ri = 20, respectively (i.e., a geometrical magnification factor Ri Rs = 2 ), and metasurfaces at 

k0R1 = 13 and k0R2 = 17 . Figure 2 shows the required surface-impedance values [from (13) and 

(14)] pertaining to the first 31 angular-momentum orders [in view of the symmetry condition 

(15), only n ≥ 0 -orders are displayed]. We observe that the real parts can assume both negative 

and positive values (i.e., gain and loss), thereby confirming the expected non-Hermitian 

character. However, unlike the planar case [49], there is no clear balance and symmetry between 

the inner and outer surface. In fact, due to the nonlocality, it is generally not even possible to 
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associate to the two impedances a clear-cut active or passive character (see, e.g., the sign 

inversions in the impedance real-parts occurring around the modal order n = 10 ). Moreover, the 

nonlocal character appears very pronounced in some regions, and somewhat milder in others. To 

gain some physical insights into this behavior, it is worth recalling that (see Sec. 9.3.1 in [11,55]) 

the generic n-th order angular-momentum mode in the Fourier-Bessel field expansion (4) decays 

as ~ k0r n( )−n   for 

  n >~ k0r,  (16) 

thereby implying that the cylindrical surface k0r = n  effectively represents a caustic, inside 

which the mode is essentially evanescent. The different color shadings in Figure 2 identify three 

regions across the two relevant caustics at n = k0Rs  (source) and n = k0Ri  (image). More 

specifically, the purple-shaded regions ( n < k0Rs ) contain the angular-momentum modes that 

exhibit a propagating character within the entire lens domain ( k0Rs < r < k0Ri ). For these modal 

orders, the nonlocal character does not appear very pronounced, and the two surface impedances 

exhibit a clear-cut passive ( Z1 ) or active ( Z2 ) behavior, with real-parts that are (in absolute 

value) fractions of the vacuum characteristic impedances. Conversely, in the cyan-shaded 

regions ( k0Rs < n < k0Ri ), containing modal orders that exhibit a caustic between the source and 

image surfaces, nonlocality is significantly more pronounced, with wider dynamics and faster 

variations. In this case, the real part of the surface impedances can change sign, thereby implying 

gain at some modal orders and loss at others. Finally, the orange-shaded region ( n > k0Ri )  

contains modal orders that are evanescent within the entire lens domain. In this case, we observe 

vanishingly small real parts of the surface impedances, and asymptotically decreasing imaginary 

parts. As a matter of fact, by exploiting in (12) and (13) the large-order asymptotic expansion of 
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the Hankel functions [55], and retaining the dominant terms, it can be shown that the surface 

impedances pertaining to these higher-order modes behave as  

  Z1
n( ) ~ − iη0

2n
k0R1

RsR2
2

RiR1
2

⎛
⎝⎜

⎞
⎠⎟

n

,   (17) 

  Z2
n( ) ~ i η0k0R2

2n
,  (18) 

thereby confirming the essentially reactive character observed in Figure 2. 

For a deeper understanding, Figure 3 shows the field (magnitude) radial distributions pertaining 

to three representative angular-momentum modal orders, for the parameter configuration as in 

Figure 2. For a low-order mode [ n = 2 , Figure 3(a)], which is propagating everywhere, the two 

non-Hermitian surface impedances act as an open resonating cavity (with a visible standing-

wave pattern), which essentially compensates the cylindrical spreading, so as to recover at the 

image surface the original amplitude (and phase, not shown) enforced at the source surface. For a 

moderately-high order [ n = 15 , Figure 3(b)] mode, whose caustic is located within the lens 

domain, the decaying field is significantly amplified in the cavity region between the two non-

Hermitian surface impedances, and then propagates to the image surface. For a higher-order [

n = 30, Figure 3(c)] mode, which is everywhere evanescent, the amplification effects in the 

cavity region are even more dramatic (note the semi-log scale in the graph), even though in this 

case the two metasurfaces are essentially reactive. 

From the above discussion, it emerges that a perfect reconstruction at the image surface of the 

source-field distribution, including possible subwavelength details transported by high-order 

angular-momentum modes, would require a precise tailoring of the non-Hermitian and nonlocal 

response of the two metasurfaces that appears to be beyond the current and near-future 
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technological capabilities. Within this framework, it should also be highlighted that our 

assumption to enforce an arbitrary source-field distribution is highly idealized. In practice, if we 

realistically assume that the source field distribution at r = Rs  is generated by finite-energy 

current sources contained in the inner cylindrical region r < Rs  filled by a conventional dielectric 

medium, the number of degrees of freedom [i.e., significantly nonzero A1
n( )  coefficients in the 

Fourier series (7)] is inherently limited by the low-pass character of the propagation operator 

(see, e.g., the discussion in [56]). Remarkably, if we neglect the moderate-to-high-order angular-

momentum modes (cyan- and orange-shaded regions in Figure 2), and focus on the modal orders 

that exhibit a propagating character within the entire lens domain (purple-shaded regions in 

Figure 2), the arising metasurface synthesis turns out to be significantly more approachable, 

since the corresponding surface impedances exhibit a milder nonlocality and an unambiguous 

(active or passive) character. Such operational scenario resembles the one considered for the 

planar case [49], in terms of diffraction-limited imaging and implementation complexity, but it 

adds the geometrical-magnification capability. Also in that scenario, in fact, the evanescent 

contribution to the image was neglected, and its reconstruction would have required super-

oscillatory reactive surfaces for the large transverse wavenumbers associated with the evanescent 

spectrum of the spatial distribution to be imaged. 

In what follows, with reference to diffraction-limited magnified imaging, we explore possible 

implementation strategies for the nonlocal cylindrical metasurfaces. 
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IV. REPRESENTATIVE RESULTS 

A. Quasi-local implementation 

The possibly simplest strategy to cope with the inherent nonlocal character of the impedance 

surfaces is to somehow mitigate the degree of nonlocality, so that local metasurfaces can be 

utilized. To illustrate this concept, we define a “nonlocality indicator” 

  

  

F k0R1,k0R2( ) = 1
2N N +1( )

Z1
n( ) − Z1

m( ) 2

Z1
n( ) 2

+ Z1
m( ) 2 +

Z2
n( ) − Z2

m( ) 2

Z2
n( ) 2

+ Z2
m( ) 2

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪n,m=0

m>n

N

∑ ,   (19) 

which quantifies the degree of nonlocality as a nondimensional parameter ranging from zero 

(locality) to one (extreme nonlocality), as a function of the metasurface positions, for given 

electrical radii of the source and image surfaces. Figure 4 shows the nonlocality indicator (on a 

dB scale) for the previously considered parameters k0Rs = 10  and k0Ri = 20 , a maximum 

angular-momentum modal order N = 5 , and with k0R1  and k0R2  spanning geometrically 

feasible ranges. We observe a three-order-of-magnitude dynamic range, with alternating minima 

and maxima for this nonlocality measure. In particular, we identify a specific parameter 

configuration ( k0 R̂1 = 11.64, k0R̂2 = 16.43, marked with a cyan cross in the figure), for which the 

indicator is as small as −35dB , thereby indicating a particularly mild nonlocality. For this 

configuration, a local approximation of the surface impedances in terms of average values, 

  Zν = 1
N +1

Ẑν
n( )

n=0

N

∑ , ν = 1,2,  (20) 

may provide acceptably good results. Here and henceforth, the caret and overline are utilized to 

indicate the “optimal” parameters and their average values, respectively. 
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Figure 5(a) and Figure 5(b) show the ideal surface impedances for the modal orders up to N = 5  

for the case at hand. As expected, the variations are rather mild especially in the real parts of the 

impedances, which are much larger than the corresponding imaginary parts. For this case, the 

local approximation in (20) yields Z1 = 0.418 + i0.102( )η0  and Z2 = −0.599 + i0.109( )η0 . By 

comparison with the planar scenario in [49], we observe that also in our case the surface 

impedances exhibit gain and loss. However, there is no apparent symmetry between gain and 

loss, and a reactive (capacitive) part is also present; these differences can be expected, and 

attributed to the cylindrical spreading of the wave, which breaks the PT symmetry of the desired 

field distribution in the planar scenario (the fact that one metasurface is entirely contained into 

the other rules out the position requirement for PT-symmetry). From the implementation 

viewpoint, similar considerations as in [49] hold. At microwave frequencies, the required gain 

may be attained by exploiting classical amplification schemes based on operational amplifiers 

and Gunn diodes [57-59]; at optical frequencies semiconductor-based active media [60-63] or 

parametric effects may be exploited.  

To test the magnified-imaging capabilities, we consider a diffraction-limited, real-valued source-

field distribution [see (7)] with constant coefficients ( A1
n( ) = 1 for 5, .., 5n = − , and A1

n( ) = 0  

otherwise). The corresponding field profile is shown (red-dashed curves) in Figure 5(c) and 

Figure 5(d) (real and imaginary parts, respectively), and is compared with the imaged field 

profile (blue-solid curves) obtained by exploiting the local approximation above, and calculated 

via the Fourier-Bessel series expansion in (4). To facilitate the comparison, the field profiles are 

plotted as a function of the angle φ ; however, a geometrical-magnification factor Ri Rs = 2  

needs to be accounted for at the image surface. The (dominant) real parts of the source and 

imaged profiles are in excellent agreement, while there is a slight residual imaginary part in the 
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imaged profile (about an order of magnitude smaller than the real-part peak value) attributable to 

the local approximation. Also shown, as a reference (magenta-dotted curves) is the field profile 

at the image surface in the absence of the cylindrical lens ( Z1,2 → ∞ ). It is clear that, in this case, 

results would be drastically different.  

For the same parameter configuration, Figure 6 shows the (real-part) field distributions over the 

entire cylindrical lens domain, in the presence [Figure 6(a)] and absence [Figure 6(b)] of the 

metasurfaces. As already illustrated in Figure 3(a) with reference to a generic propagating mode, 

the two metasurfaces act as an open cavity system which corrects the propagation-induced 

distortions, and re-creates at the image surface a geometrically-magnified version of the enforced 

source-field profile. 

As a further representative example Figure 7 shows the results pertaining to another parameter 

configuration ( k0Rs = 13, k0Ri = 18, k0R1 = 13.40, k0R2 = 15.65), identified via a parametric study. 

By comparison with the previous example, this configuration features a smaller magnification 

factor Ri Rs = 1.38 , and a weaker nonlocality, as clearly observable from the surface 

impedances [Figure 7(a) and Figure 7(b)] and witnessed by the value of the nonlocality indicator 

( F ≈ −50dB). In this case, the local approximation in (20) yields Z1 = 0.557 + i0.205( )η0  and 

Z2 = −0.690 + i0.103( )η0 , and we select a diffraction-limited complex-valued source-field profile 

(with coefficients given in the caption). As a consequence of the particularly weak nonlocality, 

the source and imaged field profiles are now in excellent agreement for both the real [Figure 

7(c)] and imaginary [Figure 7(d)] parts. Once again, this is in stark contrast with the results that 

would be obtained the absence of the lens. 
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Overall, the above results indicate that, within suitable parameter ranges, non-Hermitian, local 

cylindrical metasurfaces can provide magnified imaging with reasonably small aberrations. 

Remarkably, this leads to particularly simple implementations of the required metasurfaces, in 

terms of thin cylindrical layers of homogeneous, isotropic materials featuring loss or gain.   

B. Multilayered implementation 

It is evident from Figure 4 that nonlocality is generally non-negligible, and therefore the quasi-

local approach is not necessarily applicable for arbitrary scenarios. The synthesis of 

metamaterials and metasurfaces with tailored nonlocal (i.e., spatially dispersive) responses has 

recently received considerable attention in view of its increasing relevance in several application 

scenarios. For instance, in [64-66] a systematic approach based on a nonlocal generalization of 

the transformation-optics [67,68] paradigm was proposed. In [49], in order to deal with similar 

nonlocality issues (angle-dependent surface impedances) in the planar case, a multilayered 

implementation of the metasurfaces was successfully carried out, based on a general synthesis 

procedure originally put forward in [69] for the design of computational metamaterials. Here, we 

explore the generalization of this planar implementation to our cylindrical scenario.  

To this aim, as schematized in Figure 8, each of the idealized (i.e., zero-thickness) cylindrical 

metasurfaces is replaced by a physical structure composed of subwavelength material layers. 

With a view toward technological feasibility, the material constituents are assumed as 

homogeneous, isotropic and nonmagnetic, so that the only optimization parameters available are 

the layer thicknesses and their (suitably constrained) dielectric permittivities. Moreover, we 

consider a number of four layers as a reasonable tradeoff between response complexity (and, 

hence, nonlocality-tailoring capabilities) and computational burden (as well as fabrication 

complexity). Details on the synthesis procedure are given in Appendix A. 
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As a representative example, we consider a parameter configuration (green-circle marker in 

Figure 4) with 0 0 0 1 0 210, 20, 11.40, 14.50s ik R k R k R k R= = = = , characterized by a sensibly 

stronger nonlocality ( F ≈ −7dB ), for which the multilayer-synthesis procedure yields the 

parameters given in Table 1. We observe that, for both metasurfaces, the multilayered 

implementation features alternating layers made of lossy negative-permittivity and active 

positive-permittivity constituents, with total thickness of about 0.25λ0 . Although the emphasis 

of this prototype study is on a proof-of-concept demonstration and on the illustration of the 

phenomenology, rather than technological and fabrication-related aspects, the permittivity values 

are constrained within realistic bounds. For instance, the parameters of the negative-permittivity 

constituents are consistent with those of plasmonic materials (e.g., transparent conductive oxides 

[70]) at optical wavelengths, and the level of gain is comparable with those attainable in 

quantum-dot-based active media [62,71]. 

Figure 9 shows the corresponding results. As it can be expected, the ideal modal surface-

impedances [Figure 9(a) and Figure 9(b)] now exhibit more significant variations (i.e., more 

pronounced nonlocality). As a source-field, we consider the same diffraction-limited, real-valued 

profile as in Figure 5. To provide an independent validation, the field imaged by the multilayered 

structure is now computed via finite-element-based numerical simulations (see Appendix B for 

details). As we can observe, the agreement with the source-field profile is excellent for the 

(dominant) real part, with some residual oscillations around the ideally zero imaginary part. It is 

also interesting to observe that, for this parameter configuration, the local approximation [with 

Z1 = 0.017 − i0.056( )η0  and Z2 = − 0.022 + i0.080( )η0 , from (20)], which is used here as a 

reference case like the vacuum case was used in Figure 5 and Figure 7, yields remarkably poorer 

results, as a further confirmation of the non-negligible nonlocal effects.  
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Overall, the four-layer optimized geometry works reasonably well for the moderate degree of 

required nonlocality that we have considered in this example. This demonstrates that, even for 

designs involving non-negligible levels of nonlocality, the metasurface implementation remains 

fairly simple, in terms of few cylindrical layers, without requiring extreme-parameter media. 

Clearly, more complex designs, featuring additional degrees of freedom, may be necessary in 

order to capture stronger desired nonlocal responses.  

C. Stability analysis 

The results illustrated above are derived through a time-harmonic wave-scattering formalism, 

and therefore pertain to the steady-state response of the system. However, the presence of gain in 

our non-Hermitian configuration can give rise to optical instability; in other words, the structure 

may support self-oscillations. In [49], with reference with the PT-symmetric planar counterpart, 

it was shown that the system can be made unconditionally stable by suitably choosing the 

dispersion of the two metasurfaces. A similar analysis is carried out here for our cylindrical 

scenario. To this aim, we revisit the scattering model in (4)-(11), but now assuming the two 

surface impedances Z1 and Z2  as known terms, and the coefficients A1
n( )  and A3

n( )  as unknowns. 

By solving the resulting linear system of equations, we can calculate the scattering parameters 

(transfer-functions) 

  Tn ω( ) =
A3

n( ) Z1 ω( ),Z2 ω( )⎡⎣ ⎤⎦
A1

n( ) Z1 ω( ),Z2 ω( )⎡⎣ ⎤⎦
,  (21) 

which relate the angular-momentum modes at the source and image surfaces [cf. (7) and (8)]. 

The analytical expressions of the transfer functions in (21) are provided in Appendix C. In (21), 

only the frequency dependence is explicitly highlighted, and related to the dispersion models of 

the surface impedances Z1 ω( )  and Z2 ω( ). Such dispersive models are constrained by causality 
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(namely, they respect Kramers-Kronig-like equations), but their specific details inherently 

depend on the physical metasurface implementation. Along the lines of [49], here we consider a 

simple metasurface implementation in terms of a thin, subwavelength cylindrical layer made of a 

homogeneous, isotropic, nonmagnetic material characterized by a causal dispersion law. The 

resulting dispersive model, detailed in Appendix C, is especially suited for the quasi-local 

implementation illustrated in Sec. IV-A. Accordingly, as a representative example, we consider 

the parameter configuration in Figure 7. 

Figure 10 shows an example of causal dispersive laws (see Appendix C for details) for the two 

surface impedances, obtained by enforcing at a center angular frequency ω c  the corresponding 

average values [from (20)], 

  Z1 ω c( ) = Z1 = 0.557 + i0.205( )η0,   (22) 

  Z2 ω c( ) = Z2 = −0.690 + i0.103( )η0.  (23) 

For this configuration, Figure 11 shows the transfer-functions (magnitude) in (21), over the 

complex ω -plane, for the ( 0 ≤ n ≤ 5 ) angular-momentum modal orders relevant to the example 

in Figure 7. As it can be qualitatively observed, the responses are only weakly dependent on the 

modal order, and all poles are confined to the lower half of the complex plane Im ω( ) < 0 , 

which, in view of the implied exp −iωt( )  time-harmonic convention, guarantees that the system 

is unconditionally stable for any temporal excitation. More in detail, we numerically verified the 

presence of poles at ω ≈ 0.83 − i0.6( )ω c , with variations on the second significant digits 

depending on the angular-momentum modal order n . However, it is worth stressing that 

different parameter choices in the dispersion laws, as well as in the lens configuration, may give 

rise to transfer functions exhibiting poles in the upper half-plane Im ω( ) > 0 , thereby driving the 
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system to an unstable (self-radiating) regime. Therefore, care should be exerted in ascertaining 

the stability on a case-by-case basis. Overall, the main indications emerged for the planar 

scenario [49] remain valid for the cylindrical geometry considered here. 

D. Remarks  

In connection with the practical feasibility of our proposed configuration, it should be stressed 

that the infinite extent (along the z-direction) assumed in our study is not a relevant constraint. In 

fact, in view of the assumed z-directed electric field, the structure can be longitudinally truncated 

with two perfectly electric conducting (PEC) parallel planar walls (in the x-y plane) placed at an 

arbitrary distance, without affecting the validity of our in-plane mathematical formulation. In this 

case, the excitation given by (3) may be mimicked by a sheet distribution of axial electrical 

currents enforced at the source surface ( r = Rs ) and extending up to the PEC walls. At 

microwave frequencies, where the PEC condition is well approximated by metals, this parallel-

plate waveguide setup represents a typical implementation of 2-D metamaterial configurations. 

At optical frequencies, where metals behave quite differently, a PEC-like truncation condition 

may be attained by using photonic crystals operating in the bandgap. In a practical scenario, 

provided that the cylinder is sufficiently long, the imaging properties described here would hold 

far enough from the edges of the finite structure. 

Another relevant question is whether the inherently nonlocal and non-Hermitian (with gain and 

loss regions) nature of our proposed configuration poses insurmountable challenges for its 

realization. Within this framework, it makes sense to compare our proposed configuration with 

alternative metamaterial strategies for imaging and magnification, based on transformation optics 

[5,6], negative refraction [7-9] or hyperbolic dispersion [15-17]. From the implementation 

viewpoint, all these strategies eventually rely on multilayered structures featuring thin material 
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layers and/or resonating elements. In addition, transformation-optics-based strategies typically 

require complex spatial tailoring of the constitutive parameters. By comparison, in its simplest 

quasi-local configuration, our proposed strategy can be implemented via only two thin material 

layers. Even in those cases where nonlocality is non-negligible, each metasurface can be 

implemented via only few material layers (e.g., four, in the case considered in Figure 9). 

Therefore, we argue that, in terms of structural complexity, our implementation is certainly 

comparable with the above alternatives; in fact, it could become even simpler than the 

alternatives for those parameter configurations featuring weak nonlocality.  

In connection with the inherent non-Hermitian character of our proposed design and, in 

particular, the presence of gain, it is worth stressing that a comparison with idealized (lossless) 

metamaterial alternatives would be quite unfair. In fact, for all the aforementioned alternative 

strategies, the inevitable presence of losses substantially curtails the resolution and transmittance 

[18,19]. Transformation-optics-based designs leading to negative-permittivity and negative-

permeability media [5,6] are particularly sensitive to the detrimental effects of losses [72,73]. As 

previously mentioned, a possible strategy to overcome these effects is to introduce gain-material 

constituents so as to compensate for losses [24,25]. 

In our design, loss and gain are not considered as second-order effects to compensate for. 

Instead, they are contemplated from the very beginning, and their tailored interplay is 

instrumental to attain the desired functionality. Therefore, we argue that our proposed non-

Hermitian design is comparable with loss-compensated alternative implementations in terms of 

realization complexity, and it broadens the conventional framework of gain-induced effects in 

metamaterials. 
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We also emphasize that our proposed design can readily be extended to other kinds of waves, 

such as acoustics, for which large levels of gain/amplification are easier to attain (see, e.g., [50]).  

A final remark is related to the issue of bandwidth: while passive metamaterials are 

fundamentally limited by constraints on their frequency dispersion stemming from Kramers-

Kronig relations for passive media, and therefore the unusual imaging properties of negative-

index or transformation-optics lenses are typically limited to a narrow range of frequencies, 

active metamaterials may overcome these limitations. While a detailed study on the bandwidth 

performance of the proposed imaging system is beyond the scope of this paper, and the stability 

issues mentioned above may fundamentally limit the overall achievable bandwidth of a practical 

device, it is expected that the bandwidth of operation of the proposed loss-gain cylindrical lens 

may be superior to the one of metamaterial devices based on only passive elements. 

 

V. CONCLUSIONS AND OUTLOOK 

In conclusion, we have shown that magnified, diffraction-limited imaging with reduced 

aberrations can be attained by means of a cylindrical lensing system relying on a pair of non-

Hermitian, nonlocal metasurfaces. Within certain parameter ranges, nonlocality can be suitably 

mitigated so that fairly good results can be achieved by employing local metasurfaces. For the 

more general case, we have demonstrated a multilayered implementation whose nonlocal 

response can be tailored so as to approximately capture the idealized response. We have also 

addressed the relevant issue of stability, showing that metasurface dispersion laws can be chosen 

in such a  way to render the system unconditionally stable for any temporal excitation. 

The above results complement and expand the previous study in [49] on PT-symmetric planar 

lenses, and set the stage for the development of a rather general platform for field-manipulation 

and processing, not necessarily restricted to electromagnetics. Within this framework, current 
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and future investigations are aimed at exploring more in detail the implementation-related issues, 

in terms of specific material constituents and sensitivity to fabrication tolerances. Also of great 

interest are possible extensions of the field-manipulation capabilities, along the lines of the 

computational-metamaterial paradigm introduced in [69]. 
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APPENDIX A: DETAILS ON THE MULTILAYERED IMPLEMENTATION 

Assuming the two metasurfaces in Figure 1 implemented by multilayered structures as 

schematized in Figure 8, the electromagnetic response can still be calculated via the general 

Fourier-Bessel representation in (4) and (5), which needs to be extended in each of the 

homogeneous, isotropic material layers with proper adjustments in the wavenumber and 

characteristic impedances. Instead of the impedance boundary conditions in (11), now the 

electric field continuity must be enforced at each interface. From the computational viewpoint, it 

is expedient to utilize a transfer-matrix method [74,75], which allows to systematically relate the 

field-expansion coefficients at the two ends (source and image) of the structure. By maintaining 

the same notation as in Sec. III-A, we keep referring to A1
n( ) , B1

n( )  and A3
n( )

 as the expansion 

coefficients at the source and image surfaces, respectively, with B3
n( ) = 0  due to the radiation 

condition. Unlike the idealized impedance-surface-based synthesis in Sec. III-A, we are now 

interested in synthesizing the actual multilayers, in terms of the layer thicknesses and 
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permittivities. This renders the problem nonlinear, and not solvable analytically in closed form. 

In other words, the impedance-matching condition at the source-surface [cf. (6)] as well as the 

magnified-imaging condition [cf. (9)] can no longer be enforced analytically, but only in a weak 

fashion. Accordingly, we define a cost function 

  J εr ,d( ) = 1
N +1

A3
n( )Hn

(1) k0Ri( ) − A1
n( )Hn

(1) k0Rs( )
A1

n( )Hn
(1) k0Rs( )

2

n=0

N

∑ + B1
n( ) 2

,   (A1) 

whose global minimum (zero) corresponds to the exact enforcement of the above conditions [cf. 

(6) and (9)]. In (A1), εr  and d  compactly denote two arrays embedding the relative 

permittivities and thicknesses of the two multilayers implementing the metasurfaces, which 

constitute the optimization parameters in our procedure. Due to the aforementioned nonlinear 

character of the problem, the cost function in (A1) is likely to exhibit many local minima 

(corresponding to false solutions), and there is no guarantee that the optimization procedure will 

converge to the sought global minimum. 

Our optimization strategy is similar to that successfully utilized in [49,69], and relies on a 

standard Nelder-Mead (downhill-simplex) unconstrained minimization algorithm implemented 

in the Matlab optimization toolbox [76]. To ensure that the search-space is adequately explored, 

we randomly move the initial guess across a reasonably broad parameter range. Moreover, we 

enforce some feasibility-related constraints on the optimization parameters. In particular, besides 

the aforementioned non-magnetic character, we constrain the positive real-part of the relative 

permittivities within the range 1 ≤ Re ε r( ) ≤ 10 , with the negative imaginary part (representative 

of gain) restricted as − Im ε r( ) ≤ 0.1Re ε r( ) . No explicit constraint is assumed on the negative 

real-part as well as on the positive imaginary-part (representative of losses) of the permittivities, 

but negative-permittivity constituents are constrained to be lossy. The thicknesses are 



 
 

24

constrained within the range 0.015λ0 ,0.1λ0⎡⎣ ⎤⎦ . The above constraints are enforced in a soft 

fashion, by suitably choosing the initial-guess parameter ranges, and discarding a posteriori 

those candidate solutions falling outside the allowed ranges.  

While the convergence to the global minimum cannot be guaranteed, we found that, for moderate 

degrees of nonlocality, the above strategy typically led to reasonably low levels of the cost 

function ( ~ 0.05 ), corresponding to satisfactorily good imaging accuracy. However, we also 

found some particularly high degrees of nonlocality that are not accurately captured by the four-

layer structures, and might require more complex implementations. 

 

 

APPENDIX B: DETAILS ON THE NUMERICAL SIMULATIONS 

The field distributions pertaining to the idealized (zero-thickness metasurface) structures are 

computed via the Fourier-Bessel series in (4), while the one pertaining to the multilayered 

implementation is computed via the finite-element-based commercial software COMSOL 

Multiphysics [77]. In this case, the structure is excited by enforcing at the source surface r = Rs  

the field distribution computed via (7), and a perfectly matched layer is used as a termination, in 

order to avoid fictitious scattering. The structure is discretized by means of an adaptive discrete 

mesh, with size ranging from a minimum of λ0 / 300  (in the thin material layers) to a maximum 

of 0 / 60λ  (in the vacuum regions), resulting into about 3 million degrees of freedom. The 

MUMPS direct solver (with default parameters) is utilized. 
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APPENDIX C: DETAILS ON THE STABILITY ANALYSIS 

The transfer-functions in (21) are computed by solving the linear system of equations arising 

from (10) and (11) [with (6)], by assuming the surface impedances Z1 and Z2  as known terms, 

and the coefficients A1
n( )  and A3

n( )  as unknowns. We obtain 

  Tn = A3
n( )

A1
n( ) = a0

a1
n( ) + a2

n( ) + a3
n( ) ,  (C1) 

with 

  a0 =
16Z1Z2

π 2k0
2R1R2

,  (C2) 

    (C3) 

   (C4) 

  a3
n( ) = − η0 Hn

1( ) k0R2( ) Hn
2( ) k0R1( )⎡

⎣
⎤
⎦

2
,   (C5) 

where the frequency-dependence in the surface impedances is omitted for notational 

compactness, the overdot denotes differentiation with respect to the argument, and all other 

symbols have already been defined. 

The dispersive model of the surface impedances is derived assuming a physical implementation 

in terms of a thin, subwavelength cylindrical layer made of a homogeneous, isotropic, 

nonmagnetic material with relative permittivity ε r . For illustration, we can refer to the schematic 

in Figure 8, assuming only one layer of thickness d , extending over the annular region 

R− < r < R+ , with R− = R − d 2 , R+ = R + d 2 , and R  denoting the nominal radial position of 
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the ideal metasurface. By solving the arising scattering problems, and matching (in the limit 

d << λ0  ) the transmission coefficient relating the angular-momentum modal orders at the 

surfaces r = R−  and r = R+  with that obtained in the presence of an ideal metasurface at r = R , 

we can calculate the equivalent surface impedance      

    (C6) 

with      

  b0
n( ) =

16k0RHn
1( ) k0R( ) Hn

2( ) k0R( )
π 4R2 − d 2( ) ,  (C7) 

    (C8) 

    (C9) 

where k = k0 ε r .   

We observe that the expression in (C6) depends on the angular-momentum modal order n . 

However, for the assumed parameter configuration (as in Figure 7), such dependence is quite 

mild. We verified that by approximating the equivalent surface impedance via local (tangent-

plane) application of the expression utilized in [49] planar case, 

  Z ≈ 1
iωd 1− ε r( )ε0

,  (C10) 

we obtain a reasonably ( ≤ 8%) small error over the parameter range of interest. 
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To introduce a causal dispersion law, we assume for the passive metasurface ( Z1) a Lorentz-type 

dispersion model for the material layer, 

  ε r1 ω( ) = ε r1
∞( ) −

ω p1
2

ω 2 − ω 01
2 + iΓ1ω

,  (C11) 

whereas for the active metasurface ( Z2 ) we consider anti-Lorentz dispersion model, 

  ε r2 ω( ) = ε r 2
∞( ) +

ω p2
2

ω 2 − ω 02
2 + iΓ2ω

.  (C12) 

The dispersion laws in Figure 10 are obtained assuming d = λc 20 (with λc = 2πc ω c  denoting 

the vacuum wavelength at the center frequency) and a parameter configuration in (C11) and 

(C12) (given in the figure caption) that satisfies the nominal-design conditions in (22) and (23) at 

the center angular frequency ω c . Clearly, given the number of adjustable parameters in (C11) 

and (C12), there are infinite parameter configurations that would yield the same desired 

impedance values at ω c . However, the stability of the system is not always guaranteed, and 

should be independently assessed for each case. 
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Table 1. Synthesis parameters for the multilayered implementation of the nonlocal metasurfaces 

(see the schematic in Figure 8), for k0Rs = 10, k0Ri = 20, k0R1 = 11.4 , k0R2 = 14.5 , and N = 5 . 

 

 Metasurface 1 Metasurface 2 

Layer ε r  0/d λ  ε r  0/d λ  

1 4.665 − i0.4658  0.096  5.139 − i0.504  0.089   

2 −0.1402 + i0.379  0.032  −0.727 + i0.325 0.042   

3 5.179 − i0.518   0.100  3.917 − i0.391 0.097   

4 −0.523 + i0.089  0.022  −0.377 + i0.228 0.030   
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Figure 1. Problem schematic: A cylindrical lensing system composed of two concentric 

metasurfaces of radii R1  and R2  and impedances Z1  and Z2 , respectively, embedded in 

vacuum. An assigned field distribution at a surface of radius Rs < R1 is imaged at a surface of 

radius Ri > R2 , thereby attaining a geometrical magnification by a factor Ri Rs > 1. Also shown 

are the associated Cartesian and cylindrical references systems. Geometry and field quantities are 

assumed as invariant along the z-direction. 
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Figure 2. Geometry as in Figure 1, with k0Rs = 10, k0Ri = 20, k0R1 = 13, and k0R2 = 17 . (a), (b) 

Real and imaginary part, respectively, of the surface impedances Z1
n( )  (red circles) and Z2

n( )  (blue 

squares), numerically computed from (12) and (13), respectively, as a function of the angular-

momentum order n [in view of the symmetry condition (15), only n ≥ 0 -orders are displayed]. 

Values are normalized with respect to the vacuum characteristic impedance η0 . Continuous 

curves are guides to the eye only. 
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Figure 3. (a), (b), (c) Electric-field (magnitude) radial distributions pertaining to the angular-

momentum modal orders n = 2 , n = 15 , and n = 30 , respectively, for the parameter 

configuration in Figure 2. Field values are normalized with respect to amplitudes at the source 

surface ( r = Rs ). The red and blue dashed vertical lines indicate the locations of the 

metasurfaces. The corresponding surface-impedance values [from (12) and (13)] are 

Z1
2( ) = 0.162 + i0.270( )η0 , Z2

2( ) = −0.262 + i0.362( )η0 , Z1
15( ) = 0.277 + i0.089( )η0 , 

Z2
15( ) = −1.742 + i0.553( )η0 , Z1

30( ) = −i0.004η0 , Z2
30( ) = i0.344η0 . 
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Figure 4. Nonlocality indicator in (19) (in dB scale) for k0Rs = 10 , k0Ri = 20 , N = 5 , as a 

function of k0R1
 and k0R2

. The cyan-cross marker indicates the parameter configuration 

k0 R̂1 = 11.64, k0R̂2 = 16.43 , which minimizes the nonlocality ( F ≈ −35dB). The green-circle 

marker indicates the parameter configuration k0R1 = 11.40, k0R2 = 14.50 , which yields a sensibly 

stronger nonlocality ( F ≈ −7dB). The study is restricted to metasurface distances k0 R2 − R1( ) > 1

, thereby excluding the grey-motif region. 
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Figure 5. Geometry as in Figure 1, with k0Rs = 10, k0Ri = 20, k0R1 = 11.64 , k0R2 = 16.43. (a), 

(b) Real and imaginary part, respectively, of the surface impedances Z1
n( )  (red circles) and Z2

n( )  

(blue squares), numerically computed from (12) and (13), respectively, as a function of the 

angular-momentum order n, up to N = 5  [in view of the symmetry condition (15), only n ≥ 0 -

orders are displayed]. Values are normalized with respect to the vacuum characteristic 

impedance η0 . Continuous curves are guides to the eye only. (c), (d) Real and imaginary parts, 

respectively, of the enforced source-field profile in (7) (with A1
n( ) = 1  for 5, .., 5n = − , and 

A1
n( ) = 0  otherwise; red-dashed curves), compared with the imaged field profile [computed via 

(8); blue-solid curves] obtained via the local approximation in (20), yielding constant values of 

the surface impedances Z1 = 0.418 + i0.102( )η0  and Z2 = −0.599 + i0.109( )η0 . Also shown, as a 

reference (magenta-dotted curves), is the field profile at the image surface in the absence of the 

cylindrical lens ( Z1,2 → ∞ ). 
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Figure 6. Geometry and parameters as in Figure 5. (a), (b) Real-part field distributions over the 

entire cylindrical lens domain, in the presence and absence of the metasurfaces, respectively. The 

black-dashed indicate the locations of the source and image surfaces, while the white-dashed 

circles indicate the locations of the two metasurfaces. 
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Figure 7. Geometry as in Figure 1, with k0Rs = 13, k0Ri = 18, k0R1 = 13.40 , k0R2 = 15.65. (a), 

(b) Real and imaginary part, respectively, of the surface impedances Z1
n( )  (red circles) and Z2

n( )  

(blue squares), numerically computed from (12) and (13), respectively, as a function of the 

angular-momentum order n, up to N = 5  [in view of the symmetry condition (15), only n ≥ 0 -

orders are displayed]. Values are normalized with respect to the vacuum characteristic 

impedance η0 . Continuous curves are guides to the eye only. (c), (d) Real and imaginary parts, 

respectively, of the enforced source-field profile in (7)  (with A1
−5( ) = A1

−2( ) = A1
1( ) = A1

3( ) = 0.1 , 

A1
−4( ) = A1

0( ) = 0.6,  A1
−3( ) = A1

−1( ) = − A1
4( ) = 0.2,  A1

2( ) = − A1
5( ) = 0.5, and A1

n( ) = 0  otherwise; red-dashed 

curves), compared with the imaged field profile [computed via (8); blue-solid curves] obtained 

via the local approximation in (20), yielding constant values of the surface impedances 

Z1 = 0.557 + i0.205( )η0  and Z2 = −0.690 + i0.103( )η0 . Also shown, as a reference (magenta-

dotted curves), is the field profile at the image surface in the absence of the cylindrical lens (

Z1,2 → ∞ ). 

Z1
Z2

(a)

R
e[

Z 1
,2 (n

) ]/η
0

−0.5

0

0.5

1 (c)

R
e(

E z
) (

a.
u.

)

−1

0

1

2

(b)

Im
[Z

1,
2

 (n
) ]/η

0

0.1

0.15

0.2

0.25

Modal order, n
0 1 2 3 4 5

(d)

Im
(E

z) 
(a

.u
.)

−2

0

1

2

φ (rad)
−1 −0.5 0 0.5 1-π     -π/2     0      π/2     π



 
 

39

 

 

 

Figure 8. Schematic of the multilayered implementation. Each of the idealized (i.e., zero-

thickness) metasurfaces is implemented as a physical structure composed of four layers of 

homogeneous, isotropic, nonmagnetic material constituents, with subwavelength thicknesses dj  

and relative permittivites ε j , j = 1,2,3,4 . 
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Figure 9. (a) Geometry as in Figure 1, with k0Rs = 10, k0Ri = 20, k0R1 = 11.4, k0R2 = 14.5. (a), 

(b) Real and imaginary part, respectively, of the surface impedances Z1
n( )  (red circles) and Z2

n( )  

(blue squares), numerically computed from (12) and (13), respectively, as a function of the 

angular-momentum order n, up to N = 5  [in view of the symmetry condition (15), only n ≥ 0 -

orders are displayed]. Values are normalized with respect to the vacuum characteristic 

impedance η0 . Continuous curves are guides to the eye only. (c), (d) Real and imaginary parts, 

respectively, of the enforced source-field profile in (7) [with A1
n( ) = 1  for 5, .., 5n = − , and 

A1
n( ) = 0  otherwise; red-dashed curves], compared with the imaged field profile (blue-solid 

curves) obtained via multilayered implementation of the metasurfaces (see Figure 8 and Table 1) 

and computed via finite-element simulations. Also shown, as a reference (magenta-dotted 

curves), is the imaged field profile obtained via the local approximation in (20), yielding constant 

values of the surface impedances Z1 = 0.017 − i0.056( )η0 and Z2 = − 0.022 + i0.080( )η0 . 
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Figure 10. Geometry and parameters as in Figure 7. (a), (b) Real and imaginary part, 

respectively, of the dispersive laws pertaining to the surface impedances Z1  (red-dashed curves) 

and Z2  (blue-solid curves). The dispersive models are detailed in Appendix C, and are computed 

via (C10)-(C12), with d = λc 20 , ε r1
∞( ) = 2.852 , ε r 2

∞( ) = 1.674 , ω 01 = ω 02 = ω c , ω p1 = 0.709ω c , 

ω p2 = 0.672ω c , Γ1 = Γ2 = 0.1ω c ; this parameter configuration satisfies the nominal-design 

conditions in (22) and (23) at the center angular frequency ω c . 
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Figure 11. Geometry and parameters as in Figure 7, with surface-impedance dispersion laws as 

in Figure 10. (a), (b), (c), (d), (e), (f) Magnitude of transfer-functions in (21), Tn ω( ) , over the 

complex ω -plane, for angular-momentum modal orders n = 0,1,2,3,4,5 , respectively. The 

complex angular frequency is normalized by its center value ω c , at which the nominal design is 

attained [see (22) and (23)]. 

 


