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Abstract

We investigate the effects related to vortex core deformations when vortices approach each other.

As a result of these vortex core deformations, the vortex-vortex interaction effectively acquires

an attractive component leading to a variety of vortex patterns typical for systems with non-

monotonic repulsive-attractive interaction, such as stripes, labyrinths, etc. The core deformations

are anisotropic and can induce frustration in the vortex-vortex interaction. In turn, this frustration

has an impact on the resulting vortex patterns, which are analyzed in the presence of additional

random pinning, as a function of the pinning strength. This analysis can be applicable to vortices

in multiband superconductors or to vortices in Bose-Einstein condensates.

PACS numbers: 74.25.Wx 74.25.Uv; 64.70.Q−, 64.75.Gh
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I. INTRODUCTION

Vortex-vortex interactions in superfluid atomic gases or type-II superconductors are

purely repulsive, and can be described by a simple pairwise potential for two well-separated

vortices. For dilute vortex matter, the description of the total interaction energy in terms of

pairwise potentials is an approximation that is widely applicable and that describes many

observed phenomena in both superfluids and superconductors, including the formation of

the vortex lattice, vortex dynamics, vortex pinning, etc.1. However, it must be kept in mind

that this approximation leads to results that deviate from the full time-dependent Ginzburg-

Landau (GL) results when (i) the vortex density becomes high (with cores in close vicinity

of each other) or strongly inhomogeneous, or (ii) when the vortices move at a velocity com-

parable to the critical superfluid velocity and a transition from vortex channels to phase slip

lines is possible. Despite these shortcomings, molecular dynamics simulations using pair-

wise potentials have been used very successfully to describe, for example, the vortex ratchet

effect2–4 or quasiperiodic vortex structures5–9.

Due to their spatial extension, the vortex-vortex interaction acquires a threshold that

can be effectively described as a sum of a pure repulsive vortex-vortex interaction potential

and an additional attractive term. This situation is similar to the earlier-studied case of

multiscale vortex-vortex interactions when two or more purely repulsive potentials charac-

terized by different length-scales result in the appearance of an attractive component in

the resulting inter-vortex interaction (see, e.g.,10). The same idea stands behind the simple

interpretation of the origin of an attractive interaction in two- and multi-band supercon-

ductors11–15, where different bands are chracterized by different sets of the characteristics

lengths, the coherence length, ξi, and the magnetic field penetration depth, λi. As a result,

different bands have different GL parameters κi that define the lengthscales of the vortex-

vortex interaction. Furthermore, in the special case of a two-band superconductor (called

“type-1.5 superconductor”12), like MgB2, two different GL parameters, corresponding to the

different bands, can be either smaller or larger than the dual point, κπ < 1/
√
2 (type-I) and

κσ > 1/
√
2 (type-II), thus leading straightforward to a non-monotonic repulsive-attractive

intervortex interaction11–13. Another example of a vortex system that acquires an attractive

term in the intervortex interaction is a layered superconductor in tilted magnetic field16–18.

Vortices become anisotropic, due to the elongation in the direction of the field tilting, and
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interact attractively which may lead to the formation of stable vortex complexes18.

In this context, it is also worth mentioning so-called “low-κ” superconductors, i.e., ma-

terials with κ & 1/
√
2 (called “low-κ” as opposite to the case of κ ≫ 119). The detailed

calculations of the free energy of the vortex state in type-I and type-II superconductors first

have been carried out decades ago 20–23. It was also shown that materials with κ in a very

narrow range close to κ & 1/
√
2 revealed attraction between vortices (this narrow region

close to the phase transition to type-I superconductivity was called “type-II/1”23, to dis-

tinguish it with type-II superconductivity). Recently, the interest to low-κ superconductors

has been renewed thanks to the advances in the studies of new materials and visualization

techniques. Thus recent experiments with ZrB12 and LuB12 with κ & 1/
√
224,25 revealed the

earlier theoretically predicted so-called Intermediate Mixed Phase (IMP) (or State (IPS))

which is a combination of the mixed phase and the Meissner phase. These experiments

confirm that the intervortex interaction in the IMP is repulsive-attractive, and they allow

one to analyze the transition to the type-I superconductivity where vortices are attractive

(see, e.g., the recent experiment26). Note that the appearance of the attraction between

vortices in the IMP (i.e., in the vicinity to the dual point) is related to the onset of the

overlap of the vortex cores. This provides a direct link of our model (described below) to

low-κ superconductors. In addition, the appearance of an effective attractive term has been

recently demonstrated also for non-pairwise vortex-vortex interaction27.

In turn, systems interacting via repulsive-attractive potential (in particular, of Lennard-

Jones type) were extensively studied in physics and were shown to result in a variety of

non-trivial patterns, including stripes, labyrinths, lattices with voids, etc.28,29. For vortices

interacting via non-monotonic repulsive-attractive interactions, vortex pattern formation

has been analyzed10,27,30–36, using various models. In particular, vortex clusters, stripes,

labyrinths, deformed lattices, and lattices with voids were found35. In addition, systems with

non-monotonic interaction were shown to display unusual dynamics, such as size-selective

dynamical cluster formation and re-orientation of longitudinal stripes to transverse stripes36.

Some of the obtained static patterns were employed to explain the observed vortex patterns

in superconductors, either in two-band materials, like MgB2, or in low-κ superconductors.

Let us take a more careful look at the similarities and differences between the calculated

regular vortex patterns (see, e.g.,10,27,35–37) and the observed vortex patterns in multi-band

superconductors12,13,15. The most prominent features that the numerical simulations repro-
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duce are the formation of vortex clusters and vortex stripes. These are at the same time

the most generic types of patterns derived from non-monotonic interactions28,29. Despite

these basic similarities, the measured vortex patterns are much less perfect: e.g., less or-

dered broken stripes12,13,15 or chains of dimers rather than regular stripes38. Clearly, these

discrepancies require improvement of the employed theoretical approaches in order to reach

a better understanding of the factors contributing to the vortex pattern formation.

In this work, we analyze effects related to (i) a short-range effective attraction in the

overall repulsive intervortex interaction, in presence of random pinning, and (ii) frustration

in the vortex-vortex interaction, combined with random pinning. The latter effect, random

pinning, is rather obvious: pinning is inevitably present in superconductors (although it is

less evident in case of vortices in Bose-Einstein condensates (BEC)39), and it clearly has

an impact on vortex pattern formation. The appearance of frustration in the intervortex

interaction can be understood from the fact that, when deformed, vortex cores elongate in the

direction of the closest neighbor resulting in an anisotropy and thus breaking the symmetry

of the interaction in the system40,41. As a result, the interaction of the vortex with elongated

core with a second closest neighbour will depend on the orientation of the vortex core with

respect to the direction to that second closest neighbour. Clearly that in the ideal case of two

equally-close neighbours (like, e.g., in case of antiferromagnetically-interacting spins placed

on vertices of 2D polygons with odd number of vertices or on vertices of 3D tetrahedra)

the vortex-vortex interaction appears to be frustrated: the chosen vortex should “decide”

whether to elongate in the direction of the first neighbour or in the direction of the second

neighbour. Geometrical frustration has been extensively studied in physics42,43 including

condensed matter physics44, liquids and glasses45,46, and superconducting vortices in various

artificial pinning arrays (APS)5,6,34,47. Here we will analyze the effect of frustration that

appears in the vortex-vortex interaction due to deformations of vortex cores being perturbed

by close neighbours.

The paper is organized as follows. The model is introduced in Sec. II. In Sec. III, we

analyze the effects related to core deformations without pinning and in the presence of

pinning, assuming isotropic case not leading to frustration. The calculated vortex patterns

are compared to the experimental images. Effects related to anisotropy and frustration in

the vortex-vortex interaction are discussed in Sec. IV, and a comparison of the calculated

vortex patterns to the experimental patterns is presented. The conclusions of this work are
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summarized in Sec. V.

II. MODEL

We model a 3D column, infinitely long in the z-direction, by a 2D (in the xy-plane)

square simulation cell with periodic boundary conditions. To study the dynamics of vortex

motion, we numerically integrate the overdamped equations of motion (see, e.g., Refs.5,6):

ηvi = fi = fvvi + f
vp
i + fTi + fdi . (1)

Here fi is the total force per unit length acting on vortex i, fvvi and f
vp
i are the forces due

to vortex-vortex and vortex-pin interactions, respectively, fTi is the thermal stochastic force,

and fdi is the driving force; vi is the velocity, and η is the viscosity. All the forces are

expressed in units of f0 = Φ2
0/8π

2λ3, where Φ0 = hc/2e, and lengths (fields) in units of λ

(Φ0/λ
2).

The force due to the interaction of the i-th vortex with other vortices (see, e.g., Refs. 5,

6,30,31,48) is:

fvvi =

Nv
∑

j

f0 K1

( | ri − rj |
λ

)

r̂ij , (2)

where Nv is the number of vortices, K1 is a first-order modified Bessel function, and r̂ij =

(ri−rj)/ | ri−rj | . To study the effects related to vortex-core deformations and frustration,

we modify Eq. (2) by introducing an additional attractive term in the form of a Gaussian

(cp. Ref. 10 for multiscale inter-vortex interaction),

fvvi =

Nv
∑

j

f0

{

K1

( | ri − rj |
λ

)

− βΩexp

[

−γ

( | ri − rj |
λ

− r0

)2
]}

r̂ij , (3)

where the model parameters γ and r0 are fixed (γ = 14, r0 = 0.7), and we vary the attraction

strength β in our simulations. The coefficient Ω is Ω = 1 for an isotropic interaction, and

Ω = | (r̂ij · r̂ik) |, where (... · ...) denotes a scalar product of two vectors, and r̂ik = (ri−rk)/ |
ri − rk | is a unit vector along the direction connecting vortex i and the closest-neighbor

vortex k, in the anisotropic case when frustration in the vortex-vortex interaction is taken

into account. The modified vortex-vortex model potential is illustrated in Fig. 1.

Vortex pinning is modeled by short-range parabolic potential wells located at positions
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FIG. 1: (Color online) Schematic plot of the model vortex-vortex interaction. At large distances,

vortices characterized by unperturbed circular-symmetric cores (as shown in the righ-hand lower

inset), are repelled by the repulsive inter-vortex interaction force (red arrow in the inset). Eventual

vortex core deformations at short distances (as shown in the left-hand lower inset) give rise to the

appearance of effectively multiscale vortex-vortex interaction which, in turn, leads to an additional

attractive term in the vortex-vortex interaction. The degree of the core deformation and the

corresponding strength of the vortex-vortex attraction force is controlled by the parameter β. In

the plot, the curves are shown for β = 0, 0.2, 0.4, 0.6, 0.8, 1.0, and 1.2, γ = 14, and r0 = 0.7.

The left-hand upper inset shows the profile of the vortex-vortex interaction force in the xy-plane,

for an anisotropic interaction, where the direction of the vector r̂ik [see the notations of Eq. (3)]

is shown by the black arrow. The right-hand upper inset illustrates the effect of frustration in

the inter-vortex interaction when two close-neighbour vortices with elongated cores are equally

separated from a given vortex.

r
(p)
k . The pinning force is

f
vp
i =

Np
∑

k

(

fp
rp

)

| ri − r
(p)
k | Θ

(

rp− | ri − r
(p)
k |

λ

)

r̂
(p)
ik , (4)
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where Np is the number of pinning sites, fp is the maximum pinning force of each potential

well, rp is the range of the pinning potential, Θ is the Heaviside step function, and r̂
(p)
ik =

(ri − r
(p)
k )/ | ri − r

(p)
k | .

The temperature contribution fTi is represented by a stochastic term obeying the following

conditions:

〈fT
i (t)〉 = 0 (5)

and

〈fT
i (t)f

T
j (t

′)〉 = 2 η kB T δij δ(t− t′). (6)

To obtain the ground state of a system of vortices, the system starts at some non-zero

value of the “temperature” and gradually decrease it to zero, i.e., we perform a simulated-

annealing simulation. This procedure mimics the annealing procedure in field-cooled exper-

iments.

III. ATTRACTIVE COMPONENT AND PINNING

First we consider the effect of a short-range attractive component in the vortex-vortex

interaction. This may arise from the relaxation deformation of vortex cores when two vortices

come in close proximity50, or from the multiband nature of the underlying superconductor

or superfluid.

Above, in Sec. I, we discussed the origin of the attractive intervortex interaction in the

case of multi-band superconductors. The effective attraction, as explained above, arises from

different lengthscales for the different bands10, or from the different signs of the interaction

in the different bands, in the case of the type-1.5 superconductors11–13. Note that the term

“effective” here means that the interaction force between two vortices might not necessarily

change the sign or even have a local minimum, but only become lower in absolute value

for some r (see Fig. 1), i.e., the force becomes “less repulsive” as compared to the bare

expression, Eq. (2).

In Sec. I, we also discussed the relation between our model and low-κ superconductors. In

the vicinity to the dual point, where κ & 1/
√
2, the size of the vortex core is nearly the same

as its magnetic core. This provides a gentle balance between the repulsive and attractive

contributions and results in a weak repulsion near the dual point (but still in the type-II/1
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region) and, at the same time, makes this state unstable with respect to the phase transi-

tion to the type-I state. It is clear that fluctuations of any nature, e.g., due to the motion

of vortices or due to a sudden trapping of two neighboring vortices by a pinning site, may

locally induce the transition to the type-I state. This occurs due to partial overlapping of the

vortex cores (the source of vortex attraction in type-I superconductors)51. The vortex-core

overlapping may also result from sudden deformations or anisotropy of vortex cores when

two vortices are in close vicinity. This results in the appearance of an attractive compo-

nent in the intervortex interaction in low-κ superconductors even for single-band materials

characterized by a repulsive intervortex interaction far from the type-II/1 to type-I phase

transition. Above, in Sec. I, we mentioned that vortex anisotropy and intervortex attrac-

tion may also result from magnetic field tilting in layered superconductors16–18. However,

this mechnaism leads to the global anisotropy (i.e., all the vortices become elongated and

acquire the attractive interaction) in the direction of the field tilting. This situation can

hardly result in frustration of the intervortex interaction and thus is not considred in the

present work. Instead, we focus on systems where core deformations may occur locally and

thus lead to frustration in the intervortex interaction. These systems include, but are not

limited to, multi-band superconductors or low-κ superconductors where core deformations

at certain conditions, as described above, may lead to or enhance the intervortex attraction.

One more interesting recent example of a physical system, that can be treated within our

model, is a superconducting device that allows for the observation of the transition from

type-II and type-I behavior, in one sample52. The sample has a shape of a superconducting

wedge with a varying thickness that provides a smooth transition from the effective type-II

superconductor (i.e., with κeff > 1/
√
2) to the material with effective type-I parameters

(κeff < 1/
√
2). Using the time-dependent GL equations, the authors showed that current-

driven flux patterns in this device undergo the transition from the Abrikosov vortex lattice

to the mixed state in the type-I supercondutor via a series of transient vortex-molecule

or/and giant-vortex states.

A. Zero pinning case

In our model, the attractive component is characterized by a non-zero parameter β

[Eq. (3)]. Here the pinning strength is set to zero, and we first focus on the effects re-
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FIG. 2: Vortex patterns for β = 0.6 in the absence of pinning and for varying number of vortices

per simulation cell: Nv = 1600 (A), Nv = 2500 (B), Nv = 3025 (C), Nv = 3600 (D), Nv = 4225

(E), and Nv = 5625 (F).

lated to non-zero β and changing vortex density. The results of simulations for β = 0.6

and varying vortex density, or number of vortices per simulation region Nv, are presented in

Fig. 2.

For low vortex densities, when the average intervortex distance is larger than the charac-

teristic distance at which the attractive component in the vortex-vortex interaction comes

into play, vortices arrange themselves in a hexagonal (Abrikosov) lattice [see Fig. 2(A) for
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Nv = 1600]. Increasing the vortex density above this limit (e.g., Nv = 2500) is character-

ized by the appearance of dimers [Fig. 2(B)], due to the symmetry breaking induced by the

attractive interaction. The hexagonal lattice is completely destroyed. Instead, there is a

disordered mixture (liquid phase) of single vortices and dimers showing an onset of stripe

formation. Next, for Nv = 3025, the dimers develop to short stripes, as shown in [Fig. 2(C)]

which further evolve to long branching stripes [see Fig. 2(D) for Nv = 3600]. The stripes be-

come denser with further increasing the vortex density forming labyrinths with some closed

chains as shown in Fig. 2(E) for Nv = 4225. Even higher vortex densities, e.g., Nv = 5625

[Fig. 2(F)], do not support one-dimensional (1D) stripes anymore, and the system undergoes

a transition to kagomé lattice.

A set of vortex patterns for a larger value of β = 1.2 and varying vortex density are

presented in Fig. 3.

As for the above case of smaller value of β, vortices form hexagonal lattice for low vortex

densities [see Fig. 3(A) for Nv = 900]. When increasing the vortex density (e.g., Nv = 2025)

the symmetry of the system becomes broken, and the vortex pattern is represented by

a disordered mixture (liquid) of dimers, 1D straight trimers and 2D trimers as shown in

Fig. 3(B). Thus, unlike in case of a weaker attraction (β = 0.6), the strong attraction

characterized by β = 1.2 facilitates the formation of not only 1D but also 2D vortex clusters

or chains. This can be further seen in Fig. 3(C) and Fig. 3(D) for Nv = 3600 and Nv = 4225,

correspondingly, when the vortices form first small 2D clusters consisting of three or four

vortices which first interconnect by 1D chains (C) and then form 1D-2D chains (D). At high

enough vortex density, Nv = 5625, the chains becomes long and purely 2D [Fig. 3(E)]. For

even higher vortex density, Nv = 6400, the 2D chains break apart and interconnect forming

a mixed state of interconnected 2D chains and 2D kagomé lattices [Fig. 3(F)].

B. Effect of pinning

As one can see from the above results, when the attractive term related to the core defor-

mation is taken into account, a vortex system undergoes a series of phase transitions driven

by the attractive component in the vortex-vortex interaction and increasing vortex density.

In particular, the following phases (or “morphologies”) and their sequence were revealed with

increasing vortex density: (i) a hexagonal vortex lattice, (ii) a liquid of vortex dimers, (iii)
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FIG. 3: Vortex patterns for β = 1.2 in the absence of pinning and for varying number of vortices

per simulation cell: Nv = 900 (A), Nv = 2025 (B), Nv = 3600 (C), Nv = 4225 (D), Nv = 5625 (E),

and Nv = 6400 (F).

short stripes, (iv) long stripes, (v) interconnected stripes and labyrinths, and (vi) kagomé

lattices. All the revealed patterns are rather “perfect” for commensurate vortex densities.

However, with the exception of the hexagonal vortex lattice, which is the most commonly

observed and robust vortex structure in superconductors and Bose-Einstein condensates,

none of the perfect patterns typical for non-monotonic repulsive attractive interactions have

been observed experimentally. The main reason is, as we demonstrate below, that all these
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vortex patterns (except of the hexagonal lattice) are rather sensitive to imperfections in the

system. We analyze the role of imperfections on vortex patterns by introducing a random

pinning and by varying the pinning strength fp.

The effect of pinning is demonstrated in Fig. 4 for β = 0.6. As shown in Fig. 4(A), even

a weak pinning, fp = 0.3, strongly influences vortex patterns other than hexagonal lattice

(a haxagonal lattice is rather robust to random pinning, as follows from our simulations

(not shown) and from previous studies49,53. Thus, the initially well-ordered long stripes

[see Fig. 2(E) for Nv = 4225] turn to rather irregular labyrinths when a weak pinning,

fp = 0.3, is added to the system [Fig. 4(A)]. Note that the morphology of the pattern

is not changed. These are still interconnected stripes (labyrinths) but they become less

ordered and shorter in presence of pinning. This indicates that the vortex-pin interaction is

rather weak as compared to the vortex-vortex interaction, and the vortex stripes are pinned

collectively49,53.

What happens next, with increasing the pinning strength, the junctions between stripes

break, as shown in Fig. 4(B) for the same vortex density, Nv = 4225 and fp = 0.6. This

can be understood if we compare Fig. 2(C) and Fig. 2(D) above. The formation of junc-

tions between stripes requires stronger intervortex attraction [which is achieved in Fig. 2(D)

by decreasing, as compared to (C), the average intervortex distance with increasing vortex

density]. Correspondingly, these inter-stripe junctions appear to be easier to destroy by

disorder. For even stronger pinning, fp = 0.9 [Fig. 4(C)], we observe a change in the mor-

phology of the vortex pattern: not only vortex stripes become shorter and more disordered

but we also observe a mixture of collective vortex pinning events (pinning of stripes) and

individual vortex pinning49,53. Finally, for a very strong pinning force, fp = 1.2 [Fig. 4(D)],

practically all the vortices appear to be pinned by the pinning sites either individually or

collectively, in the form of short stripes that fit into the pinning landscape.

A comparison to typical experimental vortex images [shown in panels (E) and (F)] ob-

tained using scanning Hall probe microscopy in a superconducting MgB2 film at T = 1.7 K

and magnetic fields of 1.7 Oe (E), 5 Oe (F)38, clearly indicates that the experimental patterns

represent a mixture of individual disordered vortices and short stripes (E) or some longer

stripes and individual vortices (F). This comparison allows us to identify the experimental

images as the result of the interplay of two factors, the non-monotonic repulsive-attractive

vortex-vortex interaction (which is due to vortex core deformations or the multi-band nature
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FIG. 4: (Color online) Vortex patterns for β = 0.6 and for varying pinning strength and number

of vortices per simulation cell: fp = 0.3, Nv = 4225 (A), fp = 0.6, Nv = 4225 (B), fp = 0.9,

Nv = 4225 (C), and fp = 1.2, Nv = 4900 (D). Panels (E) and (F) show scanning Hall probe images

(≈ 50 × 50 µm2) of the vortex distribution in a 160 nm thick superconducting MgB2 film at T =

1.7 K and magnetic fields of 1.7 Oe (E), 5 Oe (F)38.

of MgB2) and pinning in MgB2 films.

The effect of pinning is further analyzed in Fig. 5 for β = 0.6 and β = 1.2. As unperturbed

reference vortex patterns we consider long 1D stripes and long 2D stripes shown in Fig. 5(A)

and Fig. 5(B), respectively. The same amount of disorder added to the system, fp = 0.6, is
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FIG. 5: (Color online) Vortex patterns for β = 0.6 and β = 1.2, and for varying pinning strength

and number of vortices per simulation cell: β = 0.6, fp = 0, Nv = 3600 (A), β = 1.2, fp = 0,

Nv = 5625 (B), β = 0.6, fp = 0.6, Nv = 3600 (C), and β = 1.2, fp = 0.6, Nv = 5625 (D). Panels

(E) and (F) show field-cooled images of vortex patterns in MgB2 at 1 Oe (E) and 5 Oe (F)15.

shown to either break up the junctions of the long 1D stripes and shorten them [Fig. 5(C)]

or shorten and partially disorder long 2D stripes (which, however, remain predominantly 2D

stripes, with inclusion of 1D elements, Fig. 5(D).

Panels (E) and (F) of Fig. 5 show field-cooled images of vortex patterns in MgB2 at 1

Oe (E) and 5 Oe (F)15. The morphologies of the experimental images can be referred to as

either 1D stripes, branching 1D to 2D stripes, and disordered individual vortices (E), or 2D

stripes, branching 1D to 2D stripes and disordered individual vortices (F). This analysis of
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morphologies allows us to identify the experimental images as the result of the interplay of

the repulsive-attractive vortex-vortex interaction and pinning in MgB2 films. (Note that the

experimental images show somewhat elongated and curved 1D or 2D vortex stripes, which

is a result of a particular pinning landscape in the measured samples15).

The calculated phases (or morphologies) of vortex patterns as a function of the vortex

density (i.e., the number of vortices per simulation cell, Nv) revealed for varying parameters,

the attraction strength β and the pinning strength fp, are shown in Fig. 6.

IV. FRUSTRATION IN THE VORTEX-VORTEX INTERACTION

Core deformations may lead to a non-monotonic interaction, but this non-monotonicity

may have other sources such as the multiband nature of the underlying superconductor11–14.

However, core deformations can also alter the potential in a more fundamental way: Since

the deformation can be anisotropic, they can introduce orientational frustration in the sys-

tem. Here we modify our model by introducing an orientational order in the vortex-vortex

interaction. We assume that a vortex core elongates only in the direction of the closest-

neighbour vortex, and therefore only this closest-neighbour vortex experiences the effective

attraction to the chosen vortex as well as any vortex situated on the opposite side along

the line connecting the interacting vortex pair. Other vortices experience pure repulsive

interaction from the chosen vortex. In this situation (see the inset in Fig. 1), it is possible

that two neighbour vortices approach the chosen vortex at the same short distance when

the chosen vortex should “decide”, in what direction to elongate: either to the first or to

the second neighbour vortex? This can lead to geometric frustration in the vortex-vortex

interaction (although, in practice, there is always some small difference between the two

short distances in numerical simulations that would eliminate frustration at the annealing

stage). However, a more important expected consequence of the orientational deformation

of the vortex core in the direction to the closest neighbour is a trapping of this neighbour

vortex by the attractive potential and the formation of vortex dimers (and vortex stripes

at higher densities). As we demonstrate in our simulations, frustration in the vortex-vortex

interaction manifests itself in the appearance of instability of vortex stripes with respect to

their fragmentation into vortex dimers. Indeed, fluctuations in the intervortex distance in a

vortex stripe due to elastic deformations of the stripe will result in breaking the stripe apart
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FIG. 6: These diagrams show the various morphologies of the vortex patterns that are encountered

when varying the inter-vortex attraction force strength and the vortex density Nv (upper panel),

and when varying the random pinning strength fp versus the vortex density Nv (lower panel).

16



in favour of vortex dimers.

In Fig. 7 examples of vortex patterns are shown for β = 0.6 and varying vortex density

and the pinning strength. As described above, frustration for high enough densities (for low

densities, vortices form a hexagonal lattice which is not shown) leads to the formation of

vortex dimers and four-vortex stripes (Fig. 7(A)), the morphology that appears to be robust

with respect to increasing the vortex density (Fig. 7(B)). These vortex patterns are a disor-

dered mixture (liquid) of predominantly vortex dimers and four-vortex chains, with a small

fraction of single vortices and three-vortex chains. Disorder, as expected, induces irregular

elastic deformations (i.e., local stretching or squeezing) of vortex chains or eventually plas-

tic deformations (i.e., breaking the chains apart). Therefore, regular chains (four-vortex or

longer with equidistant vortex distribution inside) either melt to disordered vortex dimers

or turn to non-equidistant vortex chains consisting of vortex dimers rather than individual

vortices [Fig. 7(C)]. The revealed features are similar to those seen in scanning Hall probe

image of the vortex distribution in a 160 nm thick superconducting MgB2 film measured at

T = 1.7 K and magnetic field of 2.8 Oe38. This analysis allows us to suggest that the experi-

mental distributions can be understood in terms of the interplay of frustrated non-monotonic

repulsive-attractive vortex-vortex interaction and pinning in MgB2 films.

V. CONCLUSIONS

We analyzed effects related to vortex-core deformations in the vicinity of other vortices.

These deformations result50 in the appearance of an additional attractive term in the overall

repulsive vortex-vortex interaction that leads to the formation of various vortex patterns, like

vortex stripes, labyrinths, deformed lattices, etc., typical for systems with non-monotonic

repulsive-attractive interaction. However, real physical systems as, e.g., vortex matter in

superconductors or in Bose-Einstein condensates, show more complex patterns which are due

to the interplay of non-monotonic interaction (like in two-band or low-κ superconductors)

and other factors among which are disorder (e.g., due to random pinning which is inevitably

present in superconductors) and eventually frustration in the vortex-vortex interaction which

arises from the elongation of vortex cores in the direction of the closest neighbour.

Using molecular-dynamics simulations, the effects related to the presence of random pin-

ning and frustration in the vortex-vortex interaction have been investigated in detail.

17



A

C

B

D

FIG. 7: (Color online) Vortex patterns in case of frustrated vortex-vortex interaction for β = 0.6

and for varying pinning strength and number of vortices per simulation cell: fp = 0, Nv = 3600

(A), fp = 0, Nv = 4225 (B), and fp = 0.3, Nv = 3600 (C). Panel (D) shows scanning Hall probe

image (≈ 50× 50 µm2) of the vortex distribution in a 160 nm thick superconducting MgB2 film at

T = 1.7 K and magnetic field of 2.8 Oe38.

First, we analyzed the zero-pinning case, including non-monotonic interactions but no

orientational frustration. We revealed the following phases (or “morphologies”) and their

sequence for increasing vortex density: (i) a hexagonal vortex lattice, (ii) a liquid of vortex

dimers, (iii) short stripes, (iv) long stripes, (v) interconnected stripes and labyrinths, and

(vi) kagomé lattices.

Next, we introduced a weak random pinning and increased its strength. Our analysis

showed that all the above patterns, except for the hexagonal vortex lattice, appear to be

rather sensitive to imperfections in the system. In particular, we demonstrated that random

pinning in the system leads to disordering and shortening of long vortex stripes (obtained in

an ideal pinning-free system) and breaking the junctions between the stripes in the labyrinth-

like configurations. As a result, the obtained patterns are a mixture of short branching
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stripes and individual vortices or vortex dimers. When the effect of vortex core deformations

is strong (and, therefore, the attractive component in the vortex-vortex interaction is also

strong) the formation of double stripes is observed, and these double stripes are also deformed

and fragmented due to random pinning. We compared the simulated vortex patterns with

the experimental patterns observed in MgB2 films. This comparison of morphologies allows

us to identify the experimental images as the result of the interplay of the non-monotonic

repulsive-attractive vortex-vortex interaction and pinning.

Further, we analyzed the effect of frustration in the vortex-vortex interaction. We demon-

strated that for high enough vortex densities the formation of vortex dimers and four-vortex

stripes is favoured. The resulting vortex patterns are a disordered mixture (liquid) of pre-

dominantly vortex dimers and four-vortex chains, with a small fraction of single vortices

and three-vortex chains. Additional disorder facilitates the breaking apart of vortex chains,

due to elastic deformations of the stripes. As a result, regular chains (four-vortex or longer

with equidistant vortex distribution inside) either melt to disordered vortex dimers or turn

to non-equidistant vortex chains consisting of vortex dimers rather than individual vortices.

Our findings can also be applicable to other vortex systems where the effects related to

non-monotonic vortex-vortex interaction and frustration are applicable, like multi-band and

low-κ superconductors and Bose-Einstein condensates.
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