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We study the preparation (pump) and the detection (probe) of far-from-equilibrium BCS super-
conductor dynamics in THz pump-probe experiments. In a recent experiment [R. Matsunaga, Y.
I. Hamada, K. Makise, Y. Uzawa, H. Terai, Z. Wang, and R. Shimano, Phys. Rev. Lett. 111,
057002 (2013)], an intense monocycle THz pulse with center frequency w ~ A was injected into a
superconductor with BCS gap A; the subsequent post-pump evolution was detected via the optical
conductivity. It was argued that nonlinear coupling of the pump to the Anderson pseudospins of
the superconductor induces coherent dynamics of the Higgs (amplitude) mode A(t). We validate
this picture in a two-dimensional BCS model with a combination of exact numerics and the Lax
reduction method, and we compute the nonequilibrium phase diagram as a function of the pump
intensity. The main effect of the pump is to scramble the orientations of Anderson pseudospins along
the Fermi surface by twisting them in the xy-plane. We show that more intense pump pulses can
induce a far-from-equilibrium phase of gapless superconductivity (“phase I”), originally predicted
in the context of interaction quenches in ultracold atoms. We show that the THz pump method can
reach phase I at much lower energy densities than an interaction quench, and we demonstrate that
Lax reduction (tied to the integrability of the BCS Hamiltonian) provides a general quantitative tool
for computing coherent BCS dynamics. We also calculate the Mattis-Bardeen optical conductivity

for the nonequilibrium states discussed here.

PACS numbers: 74.40.Gh,78.47.J-,03.75.Kk
I. INTRODUCTION

A series of recent optical pump-probe experi-
ments have reignited interest in far-from-equilibrium
superconductivity' 9. Most of the experiments fall into
two broad classes. In the first class, mid-infrared radia-
tion (~ 10 THz) is injected with the goal of enhancing
pairing, either by destabilizing competing orders® or by
exciting optical phonons that participate in pairing®™?.
The essential idea of the latter is that by modulat-
ing the “pairing glue,” one might induce transient
high(er) temperature superconductivity than is possible
in equilibrium!*'2,

A complication of any high frequency excitation with
w > A (A is the BCS gap) is that the radiation can
break Cooper pairs into hot quasiparticles, and these
can serve as an efficient mechanism for rapid dissipation
and thermalization. The second class of experiments®3-
used lower frequency radiation (~ 1 THz), which might
mitigate heating. In Ref.?, a near monocycle pulse
with center frequency w ~ A was injected into a low-
temperature BCS superconductor. Because most of the
spectral weight lies below the optical gap edge 24, a
weak pulse would not be expected to couple strongly
to the sample. However, an intense pulse as used in
Ref.? couples nonlinearly® to the Cooper pairs (“Ander-
son pseudospins”!?) of the superconductor, and it was
argued that this leads to a coherent excitation of the
Higgs amplitude mode A(¢)!31531. The advent of ul-
trafast pump-probe detection can allow the observation

of coherent many-body quantum dynamics in the solid
state within a finite temporal window (“prethermaliza-
tion plateau”3%33). In the experiments®®° detection is
performed over a window of about 10 picoseconds (ps),
well before thermalization occurs (likely due to acoustic
phonons on a timescale of 100 ps3?).

In this paper, we model pump-probe experiments as
typified by Ref.?, using a combination of numerics and
the Lax reduction method?'. We view the THz pump ex-
citation as the preparation of an initial condition to the
subsequent free (unperturbed) BCS time evolution, i.e.
as a type of quantum quench!7-22:24:35-37 We show that
the main effect of the pump is to scramble the orienta-
tions of Anderson pseudospins along the Fermi surface by
twisting them in the zy-plane. We also show that more
intense pump pulses can induce a far-from-equilibrium
phase of gapless superconductivity (“phase I”), originally
predicted in the context of interaction quenches in ul-
tracold atomic systems??23. An intense THz pump can
reach phase I at much lower energy densities than an
interaction quench.

Most existing theoretical studies of coherent far-from-
equilibrium BCS superfluid dynamics focus on interac-
tion quenches of isolated systems, as could be realized
in ultracold atom experiments®®* 4%, Due mainly to the
integrability of the BCS model'®1%2! many asymptot-
ically exact results are already known. The most im-
portant is the identification of three different nonequi-
librium phases (dubbed “I, II, and III” in?84! re-
viewed below), predicted to occur in quenches of an s-
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FIG. 1. The Anderson pseudospin textures and the Lax roots
of the spectral polynomial immediately after the application
of an intense THz pulse. (a), (b), and (c) are the spin textures
after light exposure, corresponding to the roots shown in (d),
(e), and (f) respectively. The pair of roots away from the
real axis are called isolated roots, and these encode the key
properties of the BCS state. The system is a quarter-filled
square lattice tight-binding model with 24-by-24 sites (note
that our subsequent quantitative results obtain from much
larger systems). Ay = 0.2J is the ground state order parame-
ter of the BCS Hamiltonian; J is the tight-binding parameter.
The pump energies [A? defined in Eq. (6)] are A% = 0.1A;
[(a) and (d), very weak deformation from the BCS ground
state], A2 = 2.5A; [(b) and (e), intermediate strength de-
formation], and A2 = 10A; [(c) and (f), strong deformation].
The isolated roots u§ ~ +iA for the deformed spin textures
encode the asymptotic value of A(t—00) = A in the “pre-
thermalization plateau.” (The chemical potential is absorbed
into the dispersion in these plots.) More intense pulses push
the isolated roots towards the real axis. For strong pulses,
the isolated roots merge with the real axis and the system en-
ters a phase of dynamical gapless superconductivity?*?® with
Ao = 0; see the “quench phase diagram” in Fig. 2.

wave superconductor?>?3, p + ip superfluid*' 43, BCS-
BEC condensate?*?836 and spin-orbit-coupled fermion
condensate?445,

Ultrafast pump-probe spectra in BCS superconductors
have been studied numerically using the density matrix
formalism?® 27. These studies revealed asymptotic post-

pump dynamics identical to a small “phase II” interac-
tion quench, in which A(t) approaches a nonequilibrium
value Ay as t — oo (neglecting dissipative processes
that would ultimately induce thermalization). The ap-
proach to A, involves a characteristic damped oscilla-
tion at frequency 2A., 22!, also seen in the experiment?.
The calculations in Refs.?> 27 assumed coupling to the
electromagnetic field due to the finite (but large) photon
wavelength A = 300 um. In the present paper, we classify
the dynamics according to the interaction quench phase
diagram??23:28:41 " and we assume that the strongest cou-
pling to the pump excitation is due to non-quadratic
band curvature’®. A related experiment® shows third
harmonic generation in the steady-state response; this
was studied theoretically in!329.

In this work, we demonstrate that the Lax reduction
method?! (tied to the integrability of the BCS Hamilto-
nian) provides a general quantitative tool for computing
coherent nonlinear BCS dynamics. We also calculate the
Mattis-Bardeen?647 optical conductivity for the nonequi-
librium superconducting states predicted here.

The rest of this paper is organized as follows: In
Sec. I, we review the interaction quench dynamics of s-
wave BCS superconductors. We then highlight our main
findings for THz pump-probe, including the dynamical
phase diagram Fig. 2 and predictions for the optical con-
ductivity. In Sec. III, we provide details on the light-
superconductor interaction that twists Anderson pseu-
dospins during the application of the pump. In Sec. IV,
we calculate the optical conductivity for nonequilibrium
superconductors. In Sec. V, we introduce the “R-ratio”
to quantify the relative energy injected by the pump, and
we compare the threshold energies for reaching phase I in
THz pump versus interaction quenches. We summarize

in Sec. VI.

II. QUANTUM QUENCH VIA PUMP-PROBE:
MAIN RESULTS

In this section, we review the dynamical phases of
nonequilibrium BCS superconductors induced by inter-
action quenches. We then summarize our main results
for THz pump-probe. Details of our calculations appear
in Secs. IIT and IV.

A. BCS model, review of interaction-quench
dynamics, and relation to the “THz pump quench”

The BCS Hamiltonian can expressed in terms of An-

s 14
derson pseudospins™*,

HBCS = Z2ék+%A(t) Si—GZSISE,, (1)
k k,k’

where £k = e — p, ek is the single particle dispersion, p
is the chemical potential, and G is the coupling strength.



The spin operators are
1 _
SE =5 (CI{TCkT + cLch - 1) .5 = cLTctkl, (2)

and s, = (SI)T. In the thermodynamic limit, Eq. (1) is
equivalent to the mean field Hamiltonian,

Hpcs — Hyr = — ng - By, (3a)
K

gk = _2{[5k+§A(t) —M} 2+Ami'+Ayﬂ}. (3b)

The instantaneous order parameter is self-consistently
determined

A(t) = Ay — iy = =G> (s (1)) (4)
k

The equation of motion for an Anderson pseudospin is
§k = —Ek X §k- (5)
The vector potential A(t) will be used to encode the
pump electric field'3.

Previous studies of quench dynamics in superconduc-
tors focused on interaction quenches, in which the ground
state of Eq. (1) with an initial coupling strength G, is
time-evolved according to the post-quench Hamiltonian,
Eq. (1) with “final” coupling strength Gy (and A =0 at
all times). The long-time behavior of the order parame-
ter A(t) following the quench can be predicted with the
Lax reduction method?!, which exploits the integrability
of HBCS-

Interaction quenches from an initial BCS state can
produce three possible nonequilibrium phases?!23; an
interaction-quench dynamical phase diagram can be con-
structed in the A;-Ay plane, where A; (Ay) denotes the
ground state BCS gap of the pre-quench (post-quench)
Hamiltonian, and A; = Ay corresponds to equilibrium
(no quench)?®#!. Small quenches with A; ~ Ay reside
in phase II, wherein A(t) asymptotes to a non-zero con-
stant value A as t — oco. Note that A; # Ay # A for
a quench. Large quenches from strong to weak pairing
(Ay < A;) can induce phase I, in which A(t) — 02%23;
this is a phase of gapless (fluctuating) superconductivity.
Large quenches from weak to strong pairing (A; < Ay)
can induce phase ITI, in which A(t) exhibits persistent
oscillations'™22,  Phase III is a self-generated Floquet
phase without external periodic driving?43, and is con-
nected to the instability of the normal state.

In the THz pump-probe experiments of Refs.?8, the in-
jected pump pulse can be viewed as preparing an initial
condition for subsequent free evolution in the absence of
the field. In this picture, the interaction strength G is not
modified by the radiation. Instead, for a system at zero
temperature, the pump pulse deforms the BCS ground
state into a new pure state over the duration of the pulse
[wherein A(¢) # 0]. The deformed state subsequently
evolves with the original Hamiltonian and A(t) = 0. In
analogy with the interaction quench, we identify the orig-
inal Hamiltonian as the post-quench Hamiltonian, i.e.,
the ground state gap is denoted Ay in the following.
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FIG. 2. The nonequilibrium phase diagram of an s-wave BCS
superconductor subject to an ultrashort (~ monocycle) THz
pulse with center frequency w ~ Ay (“pump quench”). We
consider Eq. (1) on a 2D square lattice with a linear size
L = 1000 (1000x1000 sites) at quarter filling. Values of As
are extracted from the isolated Lax roots corresponding to the
spin configuration immediately after cessation of the pump
pulse. We verified that these results agree with A(t — oo)
extracted from Eq. (4), using the numerical integration of
Eq. (5) to large times. We plot A as a function of the peak
relative field intensity A2 [Eq. (6)] with different values of
Ay/J. Here Ay denotes the ground state BCS gap, and J
is the hopping strength. The polarization angle o = 0 for
all cases, i.e. the radiation is polarized along the x-axis. The
results weakly depend on Ay/J. More intense pulses pro-
duce larger deformations of the pseudospins along the Fermi
surface (see Fig. 1), leading to a suppression of the asymp-
totic BCS gap As. For small values of A, finite size effects
become significant, and it becomes difficult to resolve the iso-
lated roots via the Lax method. For these cases the results
were obtained via numerical integration of Eq. (5). Phase I
(A = 0) can be achieved with A%2/A; > 5.5 (yellow shaded
region) in all cases. The phase boundary for Ay/J = 0.01 is
close to Az/Af =4.5.

B. Pump-pulse quench: Results and phase diagram

Light couples via the vector potential to the z-
component of the Anderson pseudospin B-field [Eq. (3b)].
We neglect the small photon momentum in the following,
and encode the uniform electric field of the THz pump
via E(t) = —(1/¢)dA(t)/dt. The strength of the pump
excitation can measured by the peak field intensity (en-
ergy)

. 2
A? = Ja22—2 max A?, (6)

where a denotes the lattice spacing and J is the hop-
ping strength that sets the electronic bandwidth. For
pump energies A% < .J, the dispersion EkteA(t)/c CAN be
expanded in powers of A. In a clean single band super-
conductor, linear coupling to A(t) does not induce time
evolution from a pure BCS state?®%?; the same is true
for optical subgap excitation at frequency w < 2A in a
dirty superconductor. An intense pump pulse can couple
through the band curvature at order A% so long as the
dispersion is not purely parabolic [see Egs. (8) and (9)].
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FIG. 3. The polarization angle dependence of A for the
pump quench. The system is the same as in Fig. 2. We plot
A as a function of pump energy (A?) with two polariza-
tion angles, « = 0,7/8. Here we set A¢/J = 0.1. Radiation
polarized along the z-axis (o = 0) generates nonequilibrium
dynamics most efficiently, due to the density of states accu-
mulation along the parallel Fermi line segments with k, = 0.
For a = /4, we did not observe phase I dynamics. To deter-
mine whether the latter is possible, it would be necessary to

retain higher order terms O <A4) in Egs. (10) and (11).

We consider a 2D square lattice model at quarter-
filling®. Application of an intense, monocycle pump
pulse with center frequency w =~ Ay (Ay denotes the
ground state gap) generates dynamics that deform the
Anderson pseudospin texture of the initial state. Within
the self-consistent mean field framework Eq. (3), the
light-matter interaction does not break Cooper pairs (re-
move Anderson pseudospins), and the system resides in
a BCS product state at all times (albeit one with time-
evolving coherence factors). In a real experiment such
as Ref.3, the superconductor is disordered and quasipar-
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FIG. 4. The real time evolution of the superconducting or-
der parameter. The system is a square lattice with linear
size L = 2000 at quarter filling. The pump-pulse polariza-
tion angle « is set to 0, and Ay/J = 0.1. The dashed line
corresponds to pump energy A% = 3Aj (phase II); the solid
line corresponds to pump energy A% = 5.5A; (phase I). The
red regions indicate the evolution during the application of
the pump pulse. The blue regions mark the subsequent free
time evolution with the time-independent BCS Hamiltonian.
Inset: The phase T dynamics of A> = 5.5A;. The order pa-

rameter decays exponentially in time?3.
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FIG. 5. The real part of the Mattis-Bardeen conductivity
in phase II. The result depends on A, but also on the full
nonequilibrium distribution function nyx that determines the
occupation of quasiparticle states in the asymptotic steady
state. For this plot and Fig. 6, we use the distribution func-
tion for an interaction quench whose analytical form is exactly
known. We expect that results for the pump quench are qual-

itatively identical. The interaction quench is specified by the

quench parameter 3 = 2 (Gif - GL), where G; (Gy) is the

interaction strength of the pre-quench (post-quench) Hamil-
tonian. Since the Mattis-Bardeen formulae®® assume the dirty
limit A7y < 1 (7ol is the elastic scattering time), we consider
a 2D particle-hole symmetric superconductor with a uniform
density of states. The dynamical phase II-I boundary is lo-
cated at 8 = B. = w. The real part of conductivity shows a
cusp at 2 = 2A for all phase II quenches. Although our
system is specified at all times by a nonequilibrium BCS pure
state, the optical conductivity for a quench “looks” thermal.
In particular, as 8 approaches the phase II-I boundary 8. = 7,
the real part of the optical conductivity behaves the same way
as an equilibrium superconductor at temperature 1" approach-
ing T, from below®”. The steady-state optical conductivity for
phase I is indistinguishable from a normal metal.

ticles are always excited by the linear coupling to A(¢),
since some spectral weight of the ultrashort pump pulse
extends above w = 2A¢. We assume that the effects of
these quasiparticles on the coherent evolution of A(t) can
be neglected on the timescale of the experiment, which
is typically 10 ps?3:°8,

In the presence of the pump-pulse light, we use the
fourth order Runge-Kutta method to numerically inte-
grate the spin equations of motion, Eq. (5). After ces-
sation of the pump, we extract the spin configuration
and construct the corresponding spectral polynomial via
the Lax vector!®!9 (also see Appendix A). The spec-
tral polynomial is a conserved quantity under time evo-
lution with the [unperturbed, A(¢) = 0] BCS Hamilto-
nian; its roots (“Lax roots”) are therefore also conserved.
The isolated Lax roots occur in complex conjugate pairs,
and encode the nature of the nonequilibrium state, and
this is a robust, topological classification scheme?!. In
particular, interaction quenches that produce phases I,
II, and IIT (described above) respectively correspond to
spectral polynomials with zero, one, or two pairs of iso-
lated roots??23. This scheme also applies to topologi-



cal p-wave superfluids*' and strongly paired BCS-BEC
s-wave fermionic condensates?®. The isolated roots ex-
actly determine A(t¢) in the ¢ — oo limit. For phases II
and I, A(t = o) = A, where A, is a nonzero con-
stant (zero) in phase IT (I). In phase II, A, is equal to
the modulus of the imaginary part of the single isolated
root pair.

For the pump-pulse quenches, we found that the spec-
tral polynomial evaluated in terms of the post-pump An-
derson pseudospin texture exhibits one or zero pairs of
isolated roots, depending upon the degree of deforma-
tion from the initial BCS ground state. These results are
consistent with the real time numerical simulations. The
spin textures and the roots of the spectral polynomial are
demonstrated for small system sizes in Fig 1. A quench
phase diagram is constructed using much larger systems
in Fig. 2. In phase II, A, only weakly depends on the
value of Ay/J (see Fig 2); here Ay is the order parameter
of the ground state, and J is the tight-binding parameter
of the square lattice. This result suggests that Eq. (9) is
a reasonable approximation for capturing the nonlinear
light-superconductor coupling. In Fig. 3, the dependence
of A, on the polarization angle of the pump-pulse elec-
tric field is shown.

We have confirmed the isolated root predictions for
phase II numerically up to L = 4000 with 4th order
Runge-Kutta dynamics. (L is the linear size of the square
lattice.) For sufficiently large pump energies, we find
Ao — 0, consistent with phase I dynamics. The time
evolution of the order parameter amplitudes in phases 11
and I are shown in Fig. 4.
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FIG. 6. The prefactor of the imaginary part of the Mattis-
Bardeen conductivity, corresponding to the phase II quenches

shown in Fig. 5. The horizontal axis specifies the quench

parameter 8 = 2 (L - L)

@ T The imaginary part of the
conductivity can be fitted by Im[o11(Q2)]/on = C(B) Ax/Q2
for <« 2A~. The value in equilibrium with T" <« T, is
C(0) = 7. B = 7 is the critical value of the quench parame-

ter that separates phase II and phase I.

C. Optical conductivity in phases I and II

Besides the mechanism of the pump pulse quench,
we have investigated the optical conductivity in phases
IT and I. The steady-state optical conductivity in the
prethermalization plateau can be determined by the ab-
sorption or reflection of the probe pulse. Real low-
temperature superconductors typically reside in the dirty
limit, wherein A7e < 1. Here 7 is the lifetime due to
elastic impurity scattering. We reformulate the Mattis-
Bardeen formulae*S for the real and imaginary parts of
the optical conductivity in dirty superconductors, adapt-
ing them to steady-state nonequilibrium superconductiv-
ity.

For phases II and I, the generalized Mattis-Bardeen
formulae depend on A, but also on the full nonequi-
librium quasiparticle distribution function ng. Here we
employ the exact result for n; previously determined??
for interaction quenches. The optical conductivity for the
pump-probe quench will be qualitatively the same within
each dynamical phase.

For a small phase II quench, the order parameter ap-
proaches to A, # 0 in the long time limit. The real
part of the optical conductivity exhibits a cusp at fre-
quency €2 = 2A,, but spectral weight extends down to
zero (filling the gap) frequency for any nonzero quench.
This is very similar to an equilibrium superconductor at
finite temperature T' < T, despite the fact that our sys-
tem is described by a pure nonequilibrium BCS state at
all times. In fact, we find that the steady-state Mattis-
Bardeen formulae for phase II are identical to the equi-
librium finite-temperature results with A(T') replaced by
Ao and the thermal quasiparticle distribution replaced
by the nonequilibrium one ng. The real part of the
Mattis-Bardeen optical conductivity for phase II inter-
action quenches is presented in Fig. 5. The imaginary
part of the optical conductivity exhibits a Q! power law
decay. The prefactor of the imaginary part depends on
A. Results are shown in Fig. 6. These Mattis-Bardeen
results for nonequlibrium superconductors in phase II are
consistent with the experimental observations via optical
measurements>S.

For phase I (strong deformation), the optical conduc-
tivity o7(€?) becomes indistinguishable from the normal
metal. Namely, Re[or(Q)] = oy and Im[o7(£2)] = 0. The
approach to the phase II-I boundary from within phase II
is qualitatively similar to an equilibrium superconductor
with T — T, see Figs. 5 and 6. Although A, van-
ishes, it is known that phase I is not equivalent to a zero
temperature metallic state or any thermal ensemble; in-
stead, it is a pure state with anomalous coherences, e.g.
St + 1) = {c_k (t) ek (t')) # 0. The order parame-
ter A(t) vanishes due to dephasing between the different
momenta contributing to Eq. (4). We also show that the
superfluid density (defined via the London penetration
depth) vanishes in phase I, see Appendix D. Our results
for the Mattis-Bardeen conductivity and superfluid den-
sity indicate that a different type of measurement (e.g.



momentum-resolved) is required to reveal the anomalous
coherences that persist in phase 1.

IIT. PUMP: TWISTING ANDERSON
PSEUDOSPINS

In the THz pump-probe experiments®, a pump pulse
is injected into a superconductor (with ground state BCS
gap Ay ~ 0.5 THz) at the beginning. If we consider a
system at zero temperature, then the superconducting
state is deformed from the ground state by the pulse.
After the light exposure, the new state evolves under the
original BCS Hamiltonian, Eq. (3) with A(t) = 0. In this
section, the effect of the pump pulse is discussed in detail.
The coupling between light to the superconducting order
parameter can only arise in the nonlinear order%3!. We
also discuss the connection between A, and the twisting
of the Anderson pseudospin texture by the pump pulse.

A. Light-superconductor coupling

The electric field of the pump pulse in the self-
consistent Hamiltonian Eq. (3) is given by E(t) =
—(1/c) dA(t)/dt. We choose a Gaussian envelope,

8A%(t —m/Ay)? -

s

A(t)=nA exp [—

for 0 <t < 2w/Ay, and zero outside of this window. Here
7 is the unit polarization vector and A is the peak am-
plitude of the vector potential. The detailed shape of the
pulse only modifies the results quantitatively. We select
a particular pulse profile to simulate the experimental
setup in Ref. 3. Different from the previous numerical
Bogoliubov approaches?® 27, we assume that the linearly
polarized THz pump pulse excitation acts on the sys-
tem uniformly due to the large wavelength of THz light
(= 300 pm). If the initial state is a parity-symmetric
BCS ground state, then we can rewrite the Anderson

pseudospin Hamiltonian in Eq. (3a) using a different B
field!3,

_ Ek—2A + EkteA | R R
Bpump,k = -2 (%Z + Az T+ Ay y>, (8)

where we have expressed B in terms of a symmetric com-
bination that only admits even powers of A. The linear
coupling vanishes, as expected for a clean single-band
superconductor®3!. For a 2D dispersion with e = e_y,
we expand (fx—ca + §k+%A)/2 to the A% order,

Ek—cA +EktcA

2
- e .
5 Xk + —202 E AaAb(r“)ka 6;%51(. (9)

a,b=z,y

For a pure isotropic quadratic dispersion, the effect of
the light can be viewed as a time-dependent chemical

potential shift that does not alter the amplitude of the
order parameter. It is therefore crucial to adopt a disper-
sion with energy-dependent curvature. Throughout this
paper we study a square lattice nearest-neighbor tight-
binding model at quarter filling®®. The dispersion rela-
tion is sl((SL) = —2J [cos (kga) + cos (kya)] where J > 0 is
the nearest-neighbor hopping strength and a is the lattice
constant. Eq. (9) becomes
~(SL) (SL)

En_ea T EL,L & ~
A R S g 4 A2 R), (10)

Fi(a) = [cos® () cos (kza) + sin® () cos (kya)], (11)

where « is the relative angle between the polarization
axis of A and z direction, and A? defined by Eq. (6) is
the pump energy that characterize the strength of light-
superconductor coupling.

The function Fy(a) encodes the anisotropy of the dis-
persion curvature, which depends on the lattice struc-
ture. The effect of such coupling induces a momentum-
dependent z-component magnetic field for the Ander-
son pseudospins. The Anderson spins with different mo-
menta precess differently under the light exposure. In all
cases, the time-evolving order parameter reaches a steady
value A(t) = Ay and Ay < Ay, where Ay is the ground
state BCS gap. The results are insensitive to Ay/J (See
Fig. 2). This suggests that the quadratic coupling to A
captures the mechanism of the pump-pulse quench. The
values of A, depend strongly on the polarization angle.
In Fig. 3, polarization angles = 0 and o = 7/8 give
quantitatively different but qualitatively similar results.
The angular dependence is not generic but is determined
by the underlying lattice structure. We do not expect
the same angular dependence in the THz pump-probe
experiments™3.

B. Twisted spin configurations and A,

After the pump pulse, the real time dynamics of the
superconducting order parameters in Fig. 4 exhibit be-
havior consistent with interaction quenches!'” 19:21-23 ip
phases IT (A, # 0) and phase I (Ao — 0). In Ap-
pendix A we construct the Lax vector and spectral poly-
nomial that can be employed to determine the Lax roots
of the post—pulse-quench Anderson pseudospin texture.
We find two possible situations, zero (phase I) or one
pairs (phase II) of isolated roots. For the phase II, the
values of the isolated roots u(jf = loo £ 1Ay, where
oo and A, correspond to the asymptotic values of the
nonequilibrium chemical potential and amplitude of the
order parameter in the long time limit.

In Fig. 1, the Anderson pseudospin textures with differ-
ent pump energies are plotted for a small L = 24 square
lattice system at quarter-filling. The main effect of the
pump pulse is to twist the Anderson pseudospins near the
Fermi surface in the xy plane. We can mimic this twist-
ing with a simple construction that leads to Ay < Ay,



discussed in Appendix. A. We have also confirmed that
the isolated root predictions with the numerical simula-
tions of the real-time pseudospin dynamics. Due to finite
size effects, it is difficult to locate the phase boundary
between phase II and phase I from the isolated roots
alone. We numerically simulate systems with linear sizes
L = 1000, 2000, and 4000. The pump-pulse quench phase
diagram is given in Fig. 2

Some numerical evidence for vanishing A(t) in THz
pumped self-consistent mean field dynamics was previ-
ously reported in Ref.°!, although this was not inter-
preted in terms of phase I. Moreover, the nature of the
excitation in that work was different, since the ultra-
short pump pulse assumed in®' had center frequency
greater than the ground state optical gap, Q@ > 2A;.
Our pump pulse in Eq. (7) has center frequency roughly
equal to Ay, and most of the spectral weight falls be-
low 2A; (similar to the experiment?). Our idea is that
by exciting the “Higgs dynamics” entirely through the
band nonlinearity, we are driving Anderson pseudospins
in a way that would minimize linear absorption in a real,
non—mean-field superconductor and maximize coherence.
Understanding pair-breaking and decoherence by incor-
porating integrability-breaking terms would be necessary
to prove this argument, an important avenue for future
work. Our identification of the pump-quench induced
phase II-I boundary with the disappearance of the iso-
lated Lax root pair unifies the interaction and pump-
quenches within the Lax classification?! of BCS dynam-
ics.

IV. PROBE: OPTICAL CONDUCTIVITY

In this section we extend the Mattis-Bardeen
formulae*® for the real and imaginary parts of the op-
tical conductivity of a dirty superconductor to the phase
IT and I nonequilibrium steady states.

A. Brief review: Mattis-Bardeen formula

We start with a brief review of the Mattis-Bardeen
formula®® for a superconductor at zero temperature. In
the presence of elastic impurity scattering, momentum
conservation is violated but energy conservation is pre-
served. Instead of deriving the explicit expression of
the current-current correlation function in the presence
of disorder, Mattis and Bardeen computed the ratio of
the ac conductivity of a superconductor to the constant
conductivity of a normal metal. The zero-temperature
Mattis-Bardeen formula for the ac conductivity is
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where oy is the conductivity for the normal metal, u,
and v, are the ground state coherence factors for single
—p)® + A2, and 7 is an
infinitesimal positive number. Eq. (12) assumes a con-
stant density of states. This generalization can be un-
derstood as follows. In the absence of the translational
invariance, one can replace the labels k and k + q in
Eq. (B4) by independent energy labels e and 2. The
matrix elements of the current operators are random-
ized, and absorbed into the normal state conductivity
on. This level of approximation neglects quantum inter-
ference corrections.

The real part of Eq. (12) shows a gap for Q <
2Ay, an essential signature of zero temperature
superconductivity?”. In order to evaluate the imagi-
nary part of Eq. (12), one has to regularize the for-
mula by subtracting the normal metal contribution at
zero frequency?®. The result can be approximated by
UMB/UN ~ WAj’/Q for Q <« 2Af; limg_o [—ZQ O'MB(Q)]
is proportional to the superfluid density. Despite the sim-
plifying assumptions made to obtain the Mattis-Bardeen
formula, the finite temperature version is consistent with
experimental observations for BCS superconductors?”

particle energy €., E, = 1/(cq

B. Weak quench: Phase II

The long-time steady state of phase II can be expressed
in terms of time-dependent coherence factors. These sat-
isfy the asymptotic Bogoliubov-de Gennes equation,

d [ u(t) —&c Ao | [ u(t)
el 13
i { w® | | Ae & | w1
where {x = €k — lhoo, and fio and A, are the long time
asymptotic values of the nonequilibrium chemical poten-
tial and the order parameter, respectively.
The state is a pure BCS product wavefunction at all
times,
[rr(t)) = H [uk(t) + Uk(t)siﬂ |0). (14)

k

The time-dependent coherence factors are

uk(t) = V1 —nicuy O)gigwt _ /m v ekt (15a)
oe(t) = VT = e oV et 4 g uf{O ekt (15b)

where ny is the nonequilibrium quasiparticle distribution

function (see Appendix C) and & = /& — AZ. The

time-independent coherence factors are

Seté& 0 & &

- 265 Tk T 26k
On can compute the two-time paramagnetic current
polarization function for any BCS state of the form in
Eq. (14); the result is given by Eq. (B6). The current po-
larization function II(¢,¢'; q) corresponding to Eq. (14) is



a function separately of ¢ and t’. For the optical conduc-
tivity in the long-time asymptotic state, we only retain
terms that can be expressed as functions of ¢t — t/; terms
that oscillate with (¢ + t')/2 average out. The Mattis-
Bardeen version of the ac conductivity then follows,

011 =01l,a + O11,b (17a)
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and n, = n(e,) is the nonequilibrium quasiparticle dis-
tribution function. The energy (e7,2) integrations each
run over the real line; the chemical potential can be set
equal to zero for the constant (disorder-averaged) density
of states.

The Mattis-Bardeen conductivity consists of two com-
ponents. orr,, contains “ground state Cooper pair” and
“excited state Cooper pair” contributions proportional
to (1 —n1)(1 —n2) and nyna, respectively. The real part
of o71,4 is zero for Q < 2A, while o1, contributes to all
frequencies. In fact, Eq. (17) turns out to be identical to
the form obtained in thermal equilibrium at temperature
T46 if we replace A(T) — A and the thermal quasipar-
ticle distribution function by the nonequilibrium one ny;
see Egs. (C4)—(CT).

The real and imaginary parts of the ac conductivity
for asymptotic phase II states are summarized in Figs. 5
and 6. The detailed calculations are discussed in Ap-
pendix C. Since the results depend upon both A, and
the full nonequilibrium distribution function nx, we em-
ploy the exact analytical result for the latter that applies
to instantaneous interaction quenches. We expect that
the results are qualitatively unchanged for the THz pump
quench. For interaction strength quenches, it is useful to
introduce the quench parameter 3 to locate the position

in the phase diagram. This is defined via

where G; (Gy) is the interaction strength of the pre-
quench (post-quench) Hamiltonian. For a 2D particle-
hole symmetric superconductor with a uniform density of
states, . = 7 is the critical point that separates phase
I (B > B.) and phase 11?223, The real part of the ac
conductivity is very similar to that of a finite tempera-
ture superconductor with optical gap 2A(T') replaced by
2A . With a quench parameter 8 < ., a peak arises
at zero frequency, identical to the equilibrium situation
with T' < T.. When the quench strength § approaches
B¢, the ac conductivity converges to the normal metal
result. The imaginary part of the conductivity exhibits
1/ behavior for Q <« 2A,,. We fit the imaginary part
to

C(B) A

Im[an(Q)]/oN = 9)

(20)
In Fig. 6, the prefactor C(3) as a function of the quench
parameter (3 is plotted. For 0 < 8 < 8., C(8) = =«
(which is the equilibrium result for T < T¢). C(8) de-
viates from 7w as 3 approaches [.; the exact behavior
depends upon the explicit form of the nonequilibrium
quasiparticle distribution function n(e).

C. Strong quench: Phase 1

For strong quenches, the order parameter vanishes to
zero dynamically. In Eq. (16), & reduces to |£k|. More-
over, the time-dependent coherence factors in Eq. (15a)
and (15b) become

i (t) = V1 — nye et (21a)
vk (t) = /ng ekt (21b)
The Mattis-Bardeen conductivity for phase I is
O'I(Q) = — ’LO'_N dEldEQ (1 — nl) N9
)
1 1
X . — . , (22)
Q+in+e1—e9 Q4in—e1 +e2

where we have used the same short-hand notations as in
Eq. (17).

Eq. (22) depends only on the nonequilibrium distribu-
tion function n(e,). For an interaction quench, this is
known explicitly and takes the same for as in phase 1123,
One can show that the real part of Eq. (22) is equal to
oy and the imaginary part vanishes, so long as n(g) de-
cays faster than 1/|¢| in the limit || — oco. This is true
for all phase I interaction quenches, including the quench
to zero pairing strength. In the latter case the result can
be obtained analytically. Since the pump-pulse quench



induces phase I mainly by twisting pseudospins near the
Fermi surface, and does so at much lower energy densities
than an interaction quench (demonstrated in Sec. V, be-
low), we unfortunately conclude that the optical conduc-
tivity will not distinguish a thermalized normal metallic
state from the quantum coherent phase I of gapless su-
perconductivity.

D. Relation to experiments

In the pump-probe experiments®®, the value of the su-
perconducting order parameter A(t) was extracted from
the kink in the real part of the measured optical con-
ductivity. Our results (Fig. 5) confirmed that this inter-
pretation is consistent for the coherent nonequilibrium
steady states discussed here. We only compute the long
time asymptotic behavior in this work, but the full two-
time paramagnetic current polarization function neces-
sary to monitor linear response at all times can be de-
termined using the Mattis-Bardeen version of Eq. (B6).
We have neglected inelastic processes such as electron—
acoustic-phonon scattering that are ultimately responsi-
ble for thermalization.

V. INTERNAL ENERGY OF
NONEQUILIBRIUM STATES

So far, we have only considered the post-pump dy-
namics of an integrable model for nonequilibrium su-
perconductivity, i.e. time evolution according to the re-
duced BCS Hamiltonian in Eq. (1). Real superconduc-
tors contain many integrability-breaking perturbations
such as inelastic electron—optical-phonon and electron—
acoustic-phonon scattering, as well as Cooper pair break-
ing due to residual quasiparticle interactions. Thermal-
ization to an equilibrium state always occurs on suf-
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FIG. 7. The R-ratio for the pump-pulse quench. We consider
the square lattice with linear system size L = 1000 at quarter
filling. The red dashed line marks R = 1. The phase II-I
boundary is at A%/A; ~ 5.5 (A?/A; ~ 4.5) for Ay/J = 0.1
(A¢/J = 0.01). In particular, the ratio R ~ 1 at the phase
boundary (A%/A; ~ 4.5) for A;/J = 0.01. All the phase I
states show R > 1. The polarization angle a = 0.

ficiently long time scales; the novelty of the ultrafast
“pump quench” in® is the ability to probe many-body
dynamics on time scales shorter than this (i.e., within
the pre-thermalization plateau). Of recent interest®® 54
are two different thermalization schemes: (a) The system
thermalizes as a generic (nonintegrable), but closed sys-
tem, and (b) The system equilibrates with the external
heat bath.

Here we pose the following interesting thermalization
scenario. Suppose the pump-quench-induced nonequilib-
rium superconductor thermalizes to an equilibrium state
before the external bath acts to absorb the excess heat.
Since the pump dumps a large amount of energy into the
system, the thermalized state can be either an equilib-
rium superconductor with 7" < T,, or a normal metal.
We can distinguish these alternatives by comparing the
injected internal energy of the nonequilibrium supercon-
ducting pure state to the internal energy of the equilib-
rium superconductor at the critical temperature, relative
to the ground state (zero temperature) energy. We define
the “R-ratio” as follows,

_ (), (),

R= . (23)

where <ﬁ f> denotes the expectation of the post-
7

is the

ground state energy of the post-quench Hamiltonian, and

quench Hamiltonian in the pumped state, <ﬁ f>

<ﬁ f> is the thermal average of the post-quench Hamil-
T.

tonian (internal energy density) at the critical tempera-

8.0 : ‘
o 1/4filled, A;/J =0.1
6ol O 1/4Afilled, Ap/J =0.01
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FIG. 8. The R-ratio for the interaction quench. The blue
circles (green squares) correspond to a quarter-filled square
lattice with Ay/J = 0.1 (Ay/J = 0.01). J is the strength
of the nearest-neighbor hopping. The blue line (green line)
corresponds to a 2D particle-hole symmetric model with
Ay/A = 1/40 (Ay/A = 1/400). In the latter, the single
particle energies are uniformly distributed over —A to A. The
red dashed line marks R = 1. The phase II-I boundary is
at Ai/A; ~ 4.6 (A;/A; = e™/? ~ 4.8) for the quarter-filled
square lattice (2D particle-hole symmetric model). All the
data plotted here belong to phase II, and there is a sizable
range with R > 1. All the phase I states show R > 1 in the
interaction quench.



ture. The post-quench Hamiltonian flf corresponds to
Eq. (1) with A = 0. If the nonequilibrium state carries
more energy than the energy of a critical superconductor
(R > 1), the system will thermalize to a normal state.
Otherwise, it will thermalize to a finite temperature su-
perconductor (R < 0).

For the pump pulse quench, we plot the R-ratio as a
function of the pump energy in Fig. 7. We found that all
phase I states show R > 1. This indicates that thermal-
ization in a closed system will not produce a supercon-
ducting equilibrium state. Some of the phase II states
close to the phase boundary also show R > 1. The
R > 1 region decreases for smaller Ay/J. Interestingly,
the phase II-I boundary shows R = 1 for the smallest
studied Ay/J = 0.01.

In order to better understand the internal energy de-
pendence of the nonequilibrium phases, we also compute
the R-ratio for two types of interaction quenches: (a)
2D square lattice with quarter filling and (b) 2D uni-
form particle-hole symmetric model with a finite band-

width 2A. Here, <fl f> denotes the expectation value of
v

the post-quench Hamiltonian in the pre-quench ground
state. The results are shown in Fig. 8. Although in-
teraction quenches (a) and (b) give near identical values
of R throughout most of phase II, both exceed R = 1
far from the phase II-phase I boundary. In other words,
the injected internal energy of interaction quenches ap-
proaching phase I is much larger than for the pump pulse
quench. It means that the internal energy alone is not
a good indicator for the dynamical boundaries between
the nonequilibrium phases. This is not surprising, be-
cause the integrable nonequilibrium BCS dynamics are
constrained by an infinite number of conserved quanti-
ties.

The pump-pulse quench reaches phase I at much lower
energy densities than the interaction quench. This is be-
cause the former strongly scrambles the Anderson pseu-
dospin texture for states near the Fermi energy, but
barely modifies those away from it; see Fig. 1. On
the other hand, the interaction quenches affect all pseu-
dospins regardless of the single particle energy. The
interaction quench injects more energy than minimally
required to generate nontrivial nonequilibrium dynam-
ics. Due to the lower internal energy, one should expect
that the window for observing nonequilibrium dynamics
is larger in the pump pulse versus interaction quench pro-
tocols. In addition, the minimal required R-ratio might
encode information about the phase II-I boundary. It is
possible that R = 1 at the phase II-I boundary for the op-
timized initial state(s) without any “redundant” internal
energy.

VI. DISCUSSION AND CONCLUSION

In this paper, inspired by the experiments in Refs.8
we have studied quantum quench dynamics following the
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exposure of a BCS superconductor to an intense, ap-
proximately monocycle THz pulse. We connected the
“pump-pulse quench” protocol to the interaction quench
protocol using the Lax reduction method'®!'?. We con-
structed the quench phase diagram in Fig. 2. Ultrafast
spectroscopy with intense THz sources opens a new vista
for solid state physics: the study of coherent, many-body
quantum dynamics.

Due to the large wavelength (= 300 pm) of the THz
light, we assumed that the pump-pulse light couples to
the entire system uniformly in space. Such coupling
can be described in the Anderson pseudospin language.
We focused on the second order (in vector potential
amplitude) coupling, which is a curvature-dependent z-
component effective magnetic field. We simulated the
pump-pulse quench on a square lattice model at quarter-
filling. We showed the possibility of accessing a gapless
phase of fluctuating superconductivity (phase I) by in-
creasing the pump energy.

To connect the pump-pulse quench to the existing
experiments>®8, we estimate the parameters including
bandwidth, superconducting gap, and pump energy. The
bandwidth of NbN is roughly 9.53eV>®. One can estimate
the tight binding parameter J ~ 1.2 eV. The optical su-
perconducting gap in NbN is 2A = 5.2 meV. This gives
Af/J ~ 2 x 1073 In Ref. 3, the reported pump ener-
gies vary from A% = 1A +—HA ¢ for generating nonequilib-
rium superconductivity in phase II. The phase diagram
in Fig. 2 shows weak dependence upon the value of Ay /J.
Our predicted phase boundary for the quarter-filled 2D
square lattice model is A? ~ 4.5A ¢ with the polarization
angle « = 0. We expect that phase I can be generated
with the comparable magnitude of pump energies in the
THz pump-probe experiments.

Optical conductivity is the quantity measured in
Refs.?38, We computed the Mattis-Bardeen optical con-
ductivity for dirty superconductors in phases II and I.
The phase II result is the same as the prediction for an
equilibrium superconductor with 7" < T, except that it
depends on the asymptotic nonequilibrium order param-
eter Ay, and the nonequilibrium quasiparticle distribu-
tion function. These results back up the gap-extraction
procedures employed in the existing experiments®®. The
phase I optical conductivity cannot be distinguished from
a normal metal. In Appendix D, we show that the super-
fluid density (defined via the London penetration depth)
also vanishes in phase I.

We have assumed integrable post-pump dynamics
throughout this work. Integrability-breaking processes
induce thermalization and limit the time window (pre-
thermalization plateau) for observing quench dynamics.
Moreover, phonons®27°6-58 and other coexisting collec-
tive modes*>:°9 %4 might modify the evolution in a super-
conductor. A detailed study of thermalization and deco-
herence out of the far-from-equilibrium superconductor
states discussed here remains a challenging project for
future work. Based on the results in Sec. V, the pump-
pulse quench is a much more efficient protocol for ac-



cessing nonlinear nonequilibrium dynamics, compared to
interaction quenches. It would be interesting to try to
reach other dynamical phases (e.g. the quench-generated
Floquet phase III) by engineering different ultrafast ex-
citation schemes. One possibility would be to design a
sequence of pump pulses of variable duration and delays.
Realizing the pump-pulse quench protocol in an ultracold
fermion condensate might also yield more understanding
for THz pump-probe experiments.
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Appendix A: Lax construction and spectral
polynomial; twisted pseudospins

For a classical system consisted of N pseudospins, we
define the Lax vector components'®

N 2
z S 1
L (u)EZu_JE - & (A1)
j=1 Y
N g N
)= LY(u) = A2
R P PEE
7j=1 7j=1

where G is the strength of the BCS interaction in Eq. (1)
and u denotes a complex parameter. The Lax norm is

defined as
L2 (u) = [L7(u)] + [LY ()] + [L* (u)]? .

We impose the canonical Poisson bracket relation for the
pseudospins,

(A3)

{5, sk} = djpe®® s,

Based on the above condition, one can show that the Lax
vector components satisfy

(A4)

{E%), E%)} —0. (A6)
We define the spectral polynomial
Qon (u GQH u—e;)? L?(u). (A7)
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Qo (u) is a polynomial of degree 2N in the parameter u;
it is conserved under evolution by the BCS Hamiltonian
in Eq. (1) with A = 0. The spectral polynomial for the
BCS ground state can be written as

Qanlu) = (5 ) [(w=m? +18,F] Phstw), (a9
Pr1w) = | T[] Flw, (A9)
Flu) = ! (A10)

; (u—e;) /2 + A2

There are 2(N — 1) real roots and 2 complex roots in
Qsn. The two complex roots (isolated roots) encode the
ground state BCS gap Ay,

ut = p i Ayl (A11)

For interaction quenches, it has been shown that most
of the roots of the spectral polynomial lie along the real
axis in the thermodynamic limit. The complex roots (iso-
lated roots) determine the asymptotic long time behavior
A(t) following the quench. The procedure used to ex-
tract this behavior is called Lax reduction?!. Interaction
quenches from a BCS initial state exhibit 0, 1, or 2 pairs
of isolated roots, associated to exactly solvable 0, 1, or 2
collective-pseudospin problems?! 23, These respectively
correspond to phases I, II, and IIT discussed in Sec. 1T A.
In phase II, Ay, is encoded in the single isolated root
pair u(jf = oo T 1Aso, Where fis is the effective nonequi-
librium chemical potential.

As demonstrated by the Anderson pseudospin textures
exhibited in Fig. 1, the main effect of the THz pump
pulse is to twist pseudospins along the Fermi surface in
the zy pseudospin plane. This “scrambling” induces an
asymptotic A., which is strictly less than the ground
state gap Ay, as shown in the dynamical phase diagram
Fig. 2

We can mimic the pump-induced twisting with the fol-
lowing simple construction. We consider a situation such
that the z- and y-components of the pseudospin texture
are deformed relative to the BCS ground state configura-
tion. We write down the Lax vector as a sum over equal
energy sectors,

(A12)

RO B W R

where e, indicates the n'!" distinct energy level, 5, is the

kth spin with energy e,,, and M, is the net polarization
of the spins with energy e,,.



The Lax vector for the twisted configuration is defined
via

. A MY
LyV(u) =) | 2 (A14)

1 -1 A A®Y
;;u—en 2 \/(en_ﬂ)2+|Af|2 s

L{(u) = L*(u), (A15)
where A, < 1 characterizes the degree of twisting in the
sector of single energy e,,. For simplicity we take A\, = A
(independent of e,,). Then the spectral polynomial for
the twisted texture can be written as

oy (u) = <§) [(u — )+ A2|Af|2] P2, (u), (A16)

where Py_1(u) is the same degree N — 1 polynomial that
appears in the ground state [Eq. (A9)]. The isolated roots
give uf = p+iX\As|. The asymptotic value of the order
parameter is therefore AJAy| < |Af|. This suggests that
one can achieve phase I (effective 0 spin problem with
A — 0) by increasing the degree of the twisting.

Appendix B: Linear response theory and Kubo
formula

We obtain the general expression for the Kubo conduc-
tivity associated to a generic, time-evolving pure BCS
product state in this section. In the continuum limit, the
paramagnetic current operator is expressed as

I(ta) == (k+3) ey (ewcrart), (B
k,o

where m is the effective mass of electron. Linear response
theory gives

t

) =3 [T A, (B2

— 00

where

Iy (t. ' q) = =i ([J*(t, q), J"(t', =q)])o O(t = 1)
(B3)

is the retarded paramagnetic current polarization func-
tion. A¥ = (cEH*/iQ)) exp(—i§2t) is the vector potential
for a monochromatic source with frequency 2. The ex-
pectation (- -- ) is performed in terms of the initial BCS
ground state, while the Heisenberg picture current oper-
ators incorporate the effects of the pump pulse as well as
the subsequent free time-evolution under the BCS Hamil-
tonian.

In the ground state, Iy (¢,t';q) = (¢t — t',q) is
translational invariant in time. The retarded polarization
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function in the frequency-momentum space is*®

(9, q)=—2 (%)2 Zk: (k“ + %) (k” + %)

* * * *
X [uk+quk+qvkvk — ukJrq’Uk_;,_quuk}

1 1
X — .
|:Q+’L77 +Ek+Ek+q Q+Z77 _Ek_Ek+q:|

(B4)
The optical conductivity is
@=L oo+t @y
7 a Q qlg%) R 4 m ’

where the second term is the diamagnetic contribution.
Since IT;(Q,q — 0) = 0, the real part of the optical con-
ductivity is exactly zero for a clean (single band) super-
conductor. Low-temperature superconductors typically
reside in the dirty limit due to the presence of quenched
disorder. Relaxing momentum conservation in Eq. (B4)
leads to the Mattis-Bardeen formulae*S.

For the BCS wavefunction in Eq. (14) with generic
time-dependent coherence factors, the polarization func-
tion can be evaluated. The result is

i) = -2 () Y <ku+%> <k+%>

k;o,0’
Uje () taetq () vic () v (')

—Ujey () Vkrq () v (B)ux(t')
—(t e t!)

x 0(t—1t'). (B6)

Again this vanishes for q — 0. Since it applies to any
state of BCS form, Eq. (B6) determines the paramag-
netic current polarization function for all three phases
(I, 11, III) of quench-induced nonequilibrium supercon-
ductivity, reviewed in Sec. ITA. In the asymptotic steady
state (quasi-steady state) of phases IT or I (phase IIT), we
can average IT%(¢,t'; q) over the center-of-time (¢t +¢')/2
to obtain an effective formula that depends only on
t — ¢’ (similar to the ground state). Incorporating disor-
der ala Mattis and Bardeen, one obtains the frequency-
dependent optical conductivity for these nonequilibrium
phases.

Appendix C: Mattis-Bardeen conductivity in phases
IT and I

We express the nonequilibrium quasiparticle distribu-
tion function nx in terms of a function y(k) via nx =
[1+~(k)] /2. For an interaction quench with strength
B [Eq. (19)] and initial BCS gap A;, the latter is given



by23:28

V(ew) = s(ex) (el

l (ex) \/N2 (ex) 727”;38("51? B}
h/(gk)' = 1- [WV(Ek)]Q )
(C1)
where
_ o v(e)
0= er)

is the dimensionless density of states (ep is the Fermi
energy) and E;(e) = /(e — ps)” + A? where p; ~ ep is

the prequench chemical potential. The function N (g) is
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given by
N(e)=[(e — i) fr(e)+ B+ [Ai fr(e)+ 725 (), (C2)

where

7(e) .

(e — mi)® + A2

fr(u) =P / ds( (C3)

u—¢)

Finally, the function s(¢) = +1 in Eq. (C1) determines
the sign of y(g). Eq. (C1) applies to interaction quenches
in all three dynamical phases I, II, and III, but the sign
s(e) = +1 must be carefully determined for any quench
such that 7 is a smooth function of . This is relevant
for phase I quenches, since y(¢) — +1 [y(e) — —1] for
states far below (above) the Fermi energy.

The Mattis-Bardeen version of Eq. (B6) for the phase
IT coherence factors [Eq. (15)] was given above by
Eq. (17). Using o11 = 011,4 + 0116, EQ. (17) can be rewrit-
ten as

Re [o11.4] () :;’_g devdes [y1 + o] [1 - ?1—;] B(QU+E +E)—6(Q—E — &), (C4)
Tm [011,4] () =8% / derdes [y1 + 2] [1 = égg‘; @ fgilg;fi e _95: 515;)51 = (C5)
Re [o11.] ;’_g derdes [y1 — o] [ 51;] B(QU+E —E)—6(Q—E +8&), (C6)
1 om4] (©) =% devdea o =) |1+ £ e rwncd R

where short-hand notations have been used. E.g., &, =
E(eq) and v, = 7(e,) with a = 1,2. Egs. (C4)—(C7)
are identical to the finite temperature 1" Mattis-Bardeen
result*® if we replace A(T) — A, and the thermal dis-
tribution function by n(e) = [1+(g)]/2. The imaginary
part of the conductivity in Egs. (C5) and (C7) contains
a UV-divergent contribution that can be regularized by
subtracting the normal metal contribution at = 046, In

Re [o1] () :Z—g /d€1d<€2 [Y(e1) =v(e2)] [0 (U + €1 —€2) =0 (2 — &1 +e2)],

tfon] () =% [ derdeay(er) —1(ea)

7

The imaginary part of the conductivity again needs to be
regularized by subtracting the normal metal contribution

the dirty limit captured by the Mattis-Bardeen formulae,
the phase IT distribution function «(e) is taken to be that
of a particle-hole symmetric metal with a constant den-
sity of states. This gives Eq. (C1) with 7(¢) = 1 and
s(e) = —1.

For a phase I interaction quench, () is still given by

(Q+€1 —82)2"1‘772

Eq. (C1), but now we must take s(¢) = —sgn(e). The
Mattis-Bardeen formula Eq. (22) is

(C8)

Q+e1—e _ QA —e1+eo (C9)

(Q—e1+e2) + 12

at © = 0. In the quench to zero pairing strength [free
fermion limit, Gy = 0 and § — oo in Eq. (19)], the phase



I distribution function reduces to
€= Hi
(e — )" + A2

lim [y(e)] = — (C10)

B—o00

The free fermion quench results can be evaluated ana-
lytically. For the generic situation, one must evaluate
the optical conductivity numerically. As discussed in the
text, the phase I conductivity is identical to the conduc-
tivity of a normal state.

Appendix D: Vanishing superfluid density in phase I

In this appendix, we show that the superfluid density
that determines the London penetration depth vanishes

(@) = — TR0 = 0,q) A”(a) +

(J5(q—0))

Here J is the hopping strength and V! is a nearest-
neighbor vector for the 2D square lattice; 1 < A < 4
indicates the four nearest-neighbor sites. The band en-
ergy is 55{ b= g Y oncos(k-Vy). In a generic time-
dependent BCS state [Eq. (14)], the diamagnetic current
J4' can be evaluated using

> el o (1) o (£)) = 2Jun(t) 2. (D3)

In phase I, Eq. (21) implies that this is independent of
time and gives |vk(t)|*> = nx. Here ny is the average
electron occupation of the states |k, 1) and |-k, }). Thus

Y (Q=0,q) =
AN

Now, we assume that ny, = n(af(SL))

e Z/ o] /:)o dt (e, (1) i (1)) cos(le- V) VSV A (1),
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in phase I. This is consistent with the observation that
the Mattis-Bardeen optical conductivity is that of a nor-
mal metal (Secs. ITC and IV C), although the optical con-
ductivity and Meissner effect obtain from different (and
in general non-commuting) limits of the paramagnetic
current-current correlation function.

To be precise, we consider the linear response to a
static vector potential A(q) in the asymptotic post-
quench steady state. We will compute the screening cur-
rent in the clean 2D square lattice model employed in
the pump-pulse quench, but our results are more gen-
eral. The current is

(J5(a)),

the diamagnetic current is

2e2.J d?k Vo
(J5) = _TZ/WW cos(k - V) VI vy AY.
(D4)

For a generic time-evolving BCS state, the re-
tarded paramagnetic current-current correlation function
%y (t,t';q) is the lattice version of Eq. (B6). Using the
phase I coherence factors [Eq. (21)] gives a function only
of (t —t'). The zero frequency Fourier transform on the
square lattice is

2(eJ) Z/ @k 3V Vv sm[(k—l— 2) -VA} sin{(k—l—g) -VA/} (nk — Ni+q) ﬁ

k+q ~ Fk
(D5)

only. This is certainly true for an interaction quench; we also expect it to hold

for the pump-pulse quench, since the main effect of the pump is to twist Anderson pseudospins in the xy plane. In

the q — 0 limit, this gives

&2k
Y = 2(e.J) Z/ VIV sin (k- V) sin (k- Vi) n/(e57),

AN

where n'(g) = (d/de) n(e). Eq. (D1) becomes

2 2
(JM) = _%/(dk {ZV” sin(k-V)) [Z;Z”

(D6)

(e }LZV“VX cos(k - V) n(e <SL>)} AY =0. (D7)

A



The last equality follows after integrating by parts.

Our result is different from that obtained previously in
Ref.??, which found that the superfluid density is half
that of the superconducting ground state. We have
verified our result that the superfluid density vanishes
in phase I for the continuum particle-hole symmetric
model as well. Moreover, we have also computed the
superfluid density in phase II; we omit details here.

15

We find that the superfluid density deviates from the
ground state value (equal to the total electron density)
for any nonzero quench in phase II, and goes to zero
as the quench strength approaches the dynamical phase
II-phase I boundary. These results are completely con-
sistent with our findings for the Mattis-Bardeen (dirty
limit) optical conductivity in phases II and I.
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