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Abstract

We present a theory of parametric mixing within the coplanar waveguide (CPW) of a super-

conducting nonlinear kinetic-inductance traveling-wave (KIT) amplifier engineered with periodic

dispersion loadings. This is done by first developing a metamaterial band theory of the dispersion-

engineered KIT using a Floquet-Bloch construction and then applying it to the description of

mixing of the nonlinear RF traveling waves. Our theory allows us to calculate signal gain vs. sig-

nal frequency in the presence of a frequency stop gap, based solely on loading design. We present

results for both three-wave mixing (3WM), with applied DC bias, and four-wave mixing (4WM),

without DC. Our theory predicts an intrinsic and deterministic origin to undulations of 4WM

signal gain with signal frequency, apart from extrinsic sources, such as impedance mismatch, and

shows that such undulations are absent from 3WM signal gain achievable with DC. Our theory is

extensible to amplifiers based on Josephson junctions in a lumped LC transmission line (TWPA).

PACS numbers: 07.57.Kp,03.67.Lx,74.25.nn,85.25.Oj,85.25.Pb

Keywords: superconducting, amplifier, kinetic inductance, traveling wave, frequency dispersion, three-wave
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I. INTRODUCTION

Superconducting amplifiers with wide frequency bandwidth, high dynamic range, and low

noise are used in both quantum computing1 and photon-detector2 research. They have util-

ity to measure large arrays of quantum-limited frequency-multiplexed microwave supercon-

ducting resonators, with recent strides made using nonlinear amplifiers based on Josephson

junctions.3–10 In particular, a near-quantum-limited Josephson traveling-wave parametric

amplifier (JTWPA) recently has been fabricated with a quantum efficiency of 75% and a

signal gain greater than 20 dB over a 3 GHz bandwidth.10 Focus of the present discussion is

the nonlinear kinetic-inductance traveling-wave (KIT) amplifier, first realized by Eom and

co-workers.11 In the coplanar waveguide (CPW) of the KIT, degenerate four-wave mixing

(4WM) can occur between RF input pump and signal, resulting in signal amplification and

generation of an idler product. This parametric mixing of traveling RF waveforms is analo-

gous to 4WM realizable in the optical frequency regime,12,13 as in recent nonlinear resonance

experiments involving strongly pumped, high-Q optical microcavities made from nonlinear

media.14 In this 4WM-mode of operation the KIT possesses signal gain of ∼ 20 dB, a band-

width of ∼ 9 GHz (centered about the pump tone), and a dynamic range of the order of −100

dB, comparable to microwave transistor amplifiers. Another promising mode of operation

of the KIT is when a DC bias is applied: additional parametric three-wave mixing (3WM)

may ensue, producing signal gain of ∼ 15 dB over an exploitable bandwidth of ∼ 6 GHz,

centered about half the pump tone.15 This latter 3WM gain is achieved with less pump input

power than the 4WM mode due to DC biasing of the Kerr-like nonlinear kinetic inductance

of the waveguide. Unwanted higher pump harmonics and shock waves, prevalent at higher

pump powers, may be intentionally inhibited by proper CPW loading design, and additional

dispersion loading may be engineered to customize the onset, magnitude, and bandwidth of

the resulting signal gain. In this paper we present a quantifiable model of the dispersion

engineering and parametric mixing of the KIT amplifier, taking into account DC biasing,

showing how optimal amplifier design may be achieved.

KIT devices have been fabricated from superconducting TiN and NbTiN films on Si.2,16

These materials are used to construct a CPW of a meter and more length, `T , with width

typically S = 2 microns. As in Fig. 1 (a), engineered loadings of repeat length `o, where

`T/`o ∼ 103, are introduced that represent regions of increased width of the CPW–as much
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FIG. 1. (a) Schematic of KIT CPW of length `T depicting example dispersion loadings of pattern

length `o = λP /2, with non-loading width S and pump wavelength λP . With no DC applied,

pump ωP and signal ωS tones are input and an additional 4WM idler ω3 is observed on output.

(b) Corresponding periodic unit cell of length `o with R = 7 regions, representing the loading

pattern of (a). Showcased is loaded region r = 5 at distance x5 from start of cell, of length ∆x5,

capacitance per unit length C5, and linear kinetic inductance per unit length L5.

as 3 times wider than S. Loadings are designed with lo = λP/2, where λP is the wavelength

of a propagating RF pump, to maximize destructive interference. If the pump propagates

along the unloaded line with wavenumber k and dispersion frequency Ω(k) = vgk, where vg =

1/
√
LoCo is the group velocity and Lo and Co are the unloaded inductance and capacitance

per unit length, respectively, then one effect of the loadings is to open gaps in Ω(k) as a

function of k. Loadings designed in this way are often referred to as frequency stops, and

their corresponding gaps are known as stop gaps, since a tone will not propagate down
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the waveguide if its frequency falls within a gap. For example, if Lo = 1.05 pH/µm and

Co = 0.540 fF/µm in the unloaded line, such that vg = 4.2× 107 m/s, then loadings placed

at intervals of `o = 2565 µm introduce a first stop gap at frequency vg/λP = 2vg/`o ∼= 8.2

GHz. Two additional loadings may be introduced between those of spacing `o, such that

the spacing between nearest loadings becomes `o/3, as pictured in Fig. 1 (a). The lengths

of these additional loadings can be made greater than the initially described loadings, as

suggested in the figure. This has the effect of broadening stop gaps at every third gap,

starting with the third stop gap at 6vg/`o ∼= 24.6 GHz. The advantage of this design is

that if a strong pump tone is placed just above or below the first stop gap, at ∼ 8 GHz,

then the higher third harmonic of the pump, which is prevalent in the KIT amplifier when

operated in a 4WM nonlinear regime, can be suppressed, increasing efficiency of parametric

amplification.

Geometries such as a double spiral and a meandering line have been used to create very

long KIT CPWs, on chips of area ∼ 4 cm2. At low temperature, traveling RF waves, con-

sisting of a strong pump of fixed frequency ωP and a smaller-amplitude signal of adjustable

frequency ωS, input to one port of the CPW, undergo degenerate 4WM along the direction

x of the CPW due to the Kerr-like nonlinear kinetic inductance per unit length, L(x, t), of

the underlying superconducting film, viz.

L(x, t) = Lo(x)

{
1 +

[
I(x, t)

I∗

]2
}
, (1)

where Lo(x) is the linear kinetic inductance per unit length, made dependent on x to account

for engineered loadings, I(x, t) is the total time-dependent electrical current of the mixing

waveforms, and I∗ is a constant scaling factor.2,11 The CPW may be modeled as a straight

LC ladder circuit where the total current I(x, t) and voltage V (x, t) satisfy the equations

∂

∂x
I(x, t) + C(x)

∂

∂t
V (x, t) = 0, (2)

∂

∂x
V (x, t) + L(x, t)

∂

∂t
I(x, t) = 0, (3)

within the waveguide. The model assumes perfect impedance matching between end nodes

of the CPW, although in practice high inductance of the thin lines can lead to mismatch,

making it difficult to obtain a smooth transfer function, S21, on output. The solution of

Eqs. (2) and (3) for traveling-wave boundary conditions produces output from the second
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port of the amplifier that includes the amplified signal (ωS) and the pump (ωP ), as well as a

generated idler product of frequency ω3. In the spectral output, ωS and ω3 are equidistant

from ωP , as sketched in Fig. 1 (a), in accordance with energy conservation, i.e., ωS + ω3 =

2ωP . The output is analogous to the products of degenerate 4WM that are encountered in

nonlinear optical fibers.12

A. Implications of a Periodic Loading Design

In 4WM of pump, signal, and idler within nonlinear optical fibers, the electromagnetic

fields are described by plane waves. Signal gain arises on output by satisfying the three

criteria of (i) energy conservation, i.e., ωS + ω3 = 2ωP ; (ii) linear momentum conservation,

i.e., the respective plane-wave wavenumbers satisfy kS + k3
∼= 2kP ; and (iii) overall phase

matching of the constituent waveforms. In the last criterion, phase matching is tunable by

adjusting the input power of the pump, which alters the extent of self-phase modulation

of the waveforms, as well as the cross-phase modulation between them.12 The RF pump,

signal, and idler currents that propagate along the CPW of the KIT amplifier also must

obey these same criteria in order to achieve signal gain. However, due to the engineered

periodic loadings, which necessitate Lo(x + `o) = Lo(x) and C(x + `o) = C(x) in Eqs. (2)

and (3), the RF waveforms of the KIT amplifier cannot be described by plane waves. This

has particular implication for the definitions of both momentum conservation and phase

matching, and thus, parametric mixing as a whole, within the KIT.

A quantifiable theory of KIT operation, which addresses the magnitude and bandwidth

of parametric signal gain without introduction of ad hoc fitting parameters, must account

for the reduced translational symmetry imposed by periodic loadings. For example, in the

linear limit, where L(x, t) ∼= Lo(x), with `T � `o, a solution of the voltage and current of

Eqs. (2) and (3) is properly formed using Floquet-Bloch functions, viz. Vk(x, t)

Ik(x, t)

 =

 Vk(x)

Ik(x)

 eikx−iΩ(k)t, (4)

where Vk(x) and Ik(x) are Floquet-Bloch coefficients periodic in `o. This construction intro-

duces a Bloch wavenumber k, analogous to the wavenumber of a plane wave, but unique to

the first of an infinite number of one-dimensional Brillouin zones. Any other wavenumber
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may be reduced to one within the first Brillouin zone by translation via a reciprocal lat-

tice vector 2πn/`o, where n is an integer.17 In the KIT amplifier, momentum conservation

between parametrically mixing waveforms is defined in terms of these Bloch wavenumbers,

instead of their plane-wave counterparts. Additionally, the dispersion frequency Ω(k), as

a function of k, forms one of a manifold of bands of dispersion frequencies that comprise

the metamaterial band structure of the KIT amplifier. These engineered photonic bands are

separated by the stop gaps we described earlier, and each band can have a distinctly different

group velocity as a function of k. As we shall see from our theory, the parametrically mixing

waveforms may be described as superpositions of these band states, which has important

consequences for how overall phase matching is defined and achieved within the KIT.

Application of the Floquet-Bloch equation to the study of elementary excitations in the

bulk of solid materials is well known, where the arrangement of atoms on a periodic lattice

dictates solutions of the form of Eq. (4). Introductory texts, such as those of Ref. (17),

provide the reader with solutions for lattice vibrations (acoustic and optical phonons) and

magnetic-moment precession (spin waves), to name a couple of examples. In particular,

electronic states of the bulk formed in this way are the basis for determination of the elec-

tronic band structure of solids, and thus, account for the fundamental electronic properties

of these materials. Similarly, the metamaterial bands engineered via loading design dictate

the parametric behavior of the KIT amplifier, and resemble in principle the development

of photonic crystals to manipulate light through the control of dispersion and formation of

photonic band states.18

Thus, the periodic variations in CPW width depicted in Fig. 1(a), designed to create

frequency stops, also control, in a more general sense, the dispersion of RF traveling waves as

they propagate along the KIT. A similar concept has been developed for Josephson junctions

in a lumped LC transmission line (TWPA) using resonator-based dispersion engineering.19,20

The engineered loadings are realized within our theory via the definitions we construct

for both the periodic linear kinetic inductance per unit length, Lo(x), and the periodic

capacitance per unit length, C(x), as these functions enter Eqs. (2) and (3).

Figure 1(b) shows a schematic of a single loading pattern, or unit cell, of length `o. The

unit cell is representative of the repeated loadings of Fig. 1(a), and accounts for changes in

inductance and capacitance attributable to variations in the width of the CPW. Specifically,

within Fig 1(b), there are R regions of different inductance and capacitance pairs, labeled by
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index r = 1, 2, . . . , R, and denoted by Lr and Cr, respectively. To simplify matters, we confine

our attention to unit cells of even symmetry, such that regions r and R− r+ 1 of Fig. 1(b)

possess the same loading sizes, and therefore, the same inductance and capacitance values.

Thus, there exists a center region (R + 1)/2 that may be defined as a non-loading region,

with alternating loading and non-loading regions to either side, with the total number of

regions R always an odd number. We then model C(x) and Lo(x) of a unit cell (0 ≤ x < `o)

as  C(x)

Lo(x)

 =
R∑
r=1

 CrLr
Θ (x− xr) [1−Θ (x− xr −∆xr)], (5)

where xr and ∆xr are the starting position and length of region r, respectively, and Θ(x)

is the conventional Heaviside step function. The definition in Eq. (5) may be extended to

the entire length of the waveguide using C(x+ `o) = C(x) and Lo(x+ `o) = Lo(x). To first

approximation it is reasonable to model the waveguide as straight, with tens to thousands

of repeated unit cells along the length.

B. Parametric Multiwave Mixing within the KIT Amplifier

As mentioned, application of a DC bias, IDC , to the KIT amplifier can induce 3WM

processes, as well as additional 4WM processes.15 We refer to this scenario as parametric

multiwave mixing. Specifically, with IDC > 0, mixing of a pump of frequency ωP and a

signal of frequency ωS produces three idlers of frequencies ω1, ω2, and ω3. Figure 2(a)

summarizes the six parametric scattering processes that occur with onset of IDC . Only the

degenerate 4WM process of ωS + ω3 = 2ωP (bright red), when IDC = 0, and 3WM process

of ωS +ω1 = ωP (cyan), when IDC > 0, contribute to broadband signal gain since only these

processes achieve momentum conservation: kS + k3
∼= 2kP and kS + k1

∼= kP , respectively,

over a broad range of signal frequencies near the bottom of the amplifier dispersion-frequency

manifold.

To see this for the case of IDC > 0, one can make a simple estimate of the total momentum

of each of the six scattering processes as a function of ωS, using the unloaded dispersion

frequency Ω(k) = vgk. Conservation of energy for the six parametric processes is assumed as

in Fig. 2(a). Recall that, within the loaded KIT, momentum conservation of parametrically

mixing waveforms requires the use of Bloch wavenumbers. This necessitates folding Ω(k)
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FIG. 2. (a) Sketch of six parametric mixing processes of KIT with DC bias, involving pump

(ωP ), signal (ωS), and idler (ω1, ω2, ω3) frequencies. Degenerate 4WM (bright red) and topmost

3WM (cyan) produce broadband signal gain when IDC = 0 and IDC > 0, respectively. Additional

processes are: 4WM (dark red and orange) and 3WM (blue and purple). (b) Simple depiction of

the low-lying frequency-dispersion bands of the KIT amplifier approximated as a CPW with no

engineered loadings, where vg is the magnitude of the approximate group velocity, assumed the

same in each band. (c) Total momentum of the six parametric processes of (a) as a function of ωS

when ωP is at the first stop gap, as obtained using the approximate band structure of (b).
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into the first Brillouin zone so that every wavenumber k is a reduced-zone wavenumber,

as pictured in Fig. 2(b). In folding Ω(k), we place the pump of tone ωP at the first stop

gap, such that its corresponding wavenumber kP is representative of the zone edge, i.e.,

π/`o, such that folding of Ω(k) is done with respect to kP . Thus, for example, the 4WM

idler of frequency ω3, matching to the second dispersion-frequency band, has the dispersion

frequency vg (2kP − k3), as illustrated in the figure. Because the simple approximate of Fig.

2(b) involves unloaded dispersion frequencies, there are technically no gaps in its manifold,

and the magnitude of the group velocity is the same in each dispersion-frequency band. This

is not the case in reality, but is useful for the present discussion.

For the case of the 3WM scattering process of ωS+ω1 = ωP , we have ωS ∼= vgkS, ω1
∼= vgk1,

and ωP ∼= vgkP , such that kS + k1− kP ∼= (ωS + ω1 − ωP ) /vg = 0. Hence, assuming a pump

tone placed near the first stop gap, momentum is conserved for this process across the range

of signal frequencies ωS that lie within the first dispersion-frequency band. As another

example, consider the 4WM process of ωS + ω3 = ω1 + ω2, where we note ω1
∼= vgk1 and

ω2
∼= vg (2kP − k2). In particular, we have k2

∼= 2kP − ω2/vg, and also k3
∼= 2kP − ω3/vg.

Thus, the total momentum in this case is kS +k3−k1−k2
∼= (ωS − ω3 − ω1 + ω2) /vg. From

Fig. 2(a) we have ω1 = ωP − ωS, ω2 = ωP + ωS, and ω3 = 2ωP − ωS, so alternatively

we may write the total momentum as kS + k3 − k1 − k2
∼= −2ωP/vg + 4ωS/vg, which

represents a straight line as a function of ωS, with slope 4/vg and intercept −2ωP/vg. The

total momentum of the other four processes may be approximated similarly. Figure 2(c)

summaries the approximate total momentum of the six parametric scattering processes as

a function of signal frequency. Apart from incidental momentum conservation of the 4WM

process of ωS +ω3 = ω1 +ω2, at half the pump frequency, the 3WM process of ωS +ω1 = ωP

is the source of signal amplification when IDC > 0, over the range of signal frequencies

ωS of the lowest-lying dispersion-frequency band. This exercise illustrates the importance

of working within the reciprocal-lattice construct dictated by the underlying translational

symmetry.

To understand the behavior of parametric multiwave mixing, let us define the current

of the amplifier as I(x, t) = IDC + IRF (x), where IRF (x, t) is the total current of all RF

waveforms: pump, signal, and three idler products. Substituting this expression into Eq.
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(1) we have a nonlinear kinetic inductance given by

L(x, t) = Lo(x)

{
1 +

[
IDC
I∗

]2

+ 2

[
IDC
I∗

] [
IRF (x, t)

I∗

]
+

[
IRF (x, t)

I∗

]2
}
, (6)

where the term proportional to IDC /I∗ is associated with the three 3WM processes of Fig.

2(a). The three 4WM processes correspond to the term involving the square of IRF (x, t) /I∗ .

Noting the energy of kinetic inductance per unit length: EI(x, t) = L(x, t) IRF (x, t)2/2, as

RF input power increases from zero with DC bias applied, it is the 3WM processes that

activate first, generating the three idler products. Only after RF input power is increased

further, beyond a threshold of amplitude IRF (x, t) ∼ 2IDC , do the three 4WM processes

begin to dominate, with the two additional 4WM processes arising secondarily, after 3WM

processes have generated the new idlers ω1 and ω2. When IDC > 0 and ωP is situated just

above the first stop gap, one finds the 3WM process of ωS + ω1 = ωP initiates broadband

signal gain centered about half the pump frequency, i.e., ωS ∼= ω1
∼= ωP/2.15 In this case,

as sketched in Fig. 2(c), the total momentum kS + k1 − kP (cyan) is essentially zero, i.e.,

kS + k1
∼= kP , for a range of signal frequencies ωS about ωP/2.

Because the energy of 3WM contributions is one integer exponent less in the RF current

amplitude than 4WM contributions, it takes less pump input power to operate the amplifier

in this 3WM mode. However, if the input power is increased too high, the amplitude of

traveling-wave current will increase beyond the IRF (x, t) ∼ 2IDC threshold, allowing 4WM

to dominate and thus wash out the effect of 3WM broadband gain. In particular, incidental

momentum conservation of the 4WM process of ωS +ω3 = ω1 +ω2, as approximated in Fig.

2(c), will become more prevalent for ωS ∼= ωP/2. Hence, the 3WM mode of the amplifier

is limited to a range of RF input powers. Similarly, if the waveguide length is made too

long then the increased run length of the traveling waves will also lead to current amplitude

exceeding the 4WM threshold. Thus, when operated in 3WM mode, the signal gain of

the KIT does not exhibit exponential growth with waveguide length; to the contrary, the

amplifier has a waveguide length limitation.

C. Nonlinear Forward-Traveling Waves and the Floquet-Bloch Supermode

Periodic loadings create stop gaps in the dispersion-frequency spectrum of the KIT am-

plifier, but they also modify the group velocity of RF traveling waves as they propagate
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along the CPW. In our theory we assume the dispersive propagation is monochromatic,

such that, for example, an RF signal of frequency ωS injected into the amplifier can be

matched to a specific dispersion frequency of the amplifier, as in Fig. 2(b), i.e., one has

ωS = ΩαS(ks), where ΩαS(kS) is the matching dispersion frequency, governed by the loading

design, kS is the Bloch wavenumber of the signal as it propagates within the CPW, and αS

is the index of the matching band. If the the signal is injected at sufficiently low power,

i.e., small amplitude, and the waveguide length is not too long, then the traveling wave

will retain a linear form throughout the waveguide, with current and voltage satisfying the

Floquet-Bloch condition of Eq. (4). Since the coefficients Vk(x) and Ik(x) of Eq. (4) are

periodic in the unit cell length `o, each may be expanded in a discrete Fourier series. Hence,

in the linear limit of KIT operation, the voltage and current of the forward-traveling-wave

signal assume the form VkS(x, t)

IkS(x, t)

 =
∞∑

n=−∞

 Vn(kS)

In(kS)

 ei(kS+2πn/`o)x−iωSt + c.c., (7)

where Vn(kS) and In(kS) are Fourier coefficients.

On the other hand, if the input power is sufficiently high, or the waveguide length is

long enough, then L(x, t) becomes nonlinear due to its dependence on the total current,

and therefore Eq. (7) is no longer a viable solution of Eqs. (2) and (3). In this case, if

the resulting nonlinear forward-traveling wave propagates adiabatically, then we may still

assume the form of Eq. (7), except that the Fourier coefficients now take on a slowly varying

dependence on x, i.e., Vn(kS)→ Vn(kS, x) ≡ V
(S)
n (x) and In(kS)→ In(kS, x) ≡ I

(S)
n (x). This

nonlinear Floquet-Bloch forward-traveling-wave solution is then of the form VkS(x, t)

IkS(x, t)

 =
∞∑

n=−∞

 V
(S)
n (x)

I
(S)
n (x)

 ei(kS+2πn/`o)x−iωSt + c.c., (8)

where the slowly varying coefficients satisfy the condition∣∣∣∣∣∣ ∂
2

∂x2

 V
(S)
n (x)

I
(S)
n (x)


∣∣∣∣∣∣�

∣∣∣∣∣∣(kS + 2πn /`o )
∂

∂x

 V
(S)
n (x)

I
(S)
n (x)


∣∣∣∣∣∣ . (9)

Additionally, as we shall show in the development of the theory, the coefficients V
(S)
n (x)

and I
(S)
n (x) can be further written as superpositions of the dispersion-frequency band states
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at kS. In this later expansion, the nonlinear Floquet-Bloch forward-traveling-wave solu-

tion of Eq. (8) may be referred to as a Floquet-Bloch supermode construction, and is

not unlike the description of the plane-polarized electric field of nonlinear arrays of cou-

pled optical waveguides.21 The nonlinear response of these latter optical superlattices admit

transverse-propagating soliton and gap-soliton solutions.22 These collective supermode ex-

citations, referred to as Floquet-Bloch solitons, have been demonstrated experimentally in

optical waveguide arrays.23

In the KIT amplifier, the parametric mixing of supermodes of pump, signal, and idler

products makes for a complex description of overall phase matching, particularly as the band-

superposition of each supermode evolves with increasing x. Each band-component waveform

of a given supermode corresponds to its own characteristic group velocity, which compounds

the description of self-phase and cross-phase modulation between these components. In

our theory we are able to account for this complex overall phase matching and obtain a

quantifiable result for the magnitude and bandwidth of signal gain of the KIT amplifier

directly from the loading design.

In the preceding remarks we introduced several important concepts:

(i) KIT amplifiers are engineered with periodic loadings to create frequency stops to

inhibit higher pump harmonics, as well as to modify dispersion characteristics of RF

traveling waves. The loading design is incorporated into our theory.

(ii) Periodic loadings reduce the translational symmetry of the amplifier, which neces-

sitates introduction of a band structure of dispersion frequencies and the Bloch

wavenumber of a first Brillouin zone, as in Fig 2(b). In our theory the band structure

contains the stop gaps of the loading design, as well as group velocity that may vary

from Brillouin zone center to Brillouin zone edge, as well as from band to band.

(iii) The criteria for parametric amplification is altered by the reduced translational sym-

metry: momentum conservation must be expressed in terms of Bloch wavenumbers

and overall phase matching between parametrically mixing waveforms must include

dispersion-frequency bands with varying group velocities. Our theory incorporates

these modified criteria.

(iv) In our theory nonlinear, parametrically-mixing RF forward-traveling waves may be
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expressed as Floquet-Bloch supermodes constructed from slowly-varying superposi-

tions of dispersion-frequency band states. As these dispersive forward-traveling waves

propagate along the CPW, the evolution of the components of their respective super-

positions defines the phase matching between them.

(v) In this way our theory allows us to calculate the magnitude and bandwidth of para-

metric signal gain directly from the loading design, without need to introduce ad hoc

fitting parameters.

In what follows we first derive the metamaterial band theory of the KIT amplifier and use

it as a basis for the theory of parametric multiwave mixing of nonlinear traveling waves.

We then present results of calculations using a specific even-symmetry loading design for

a KIT amplifier. The parameters of our model are those of Eq. (5), i.e., the set of xr,

∆xr, Cr, and Lr, which determine the band structure. With band structure calculated, we

show the dispersion of a single nonlinear forward-traveling wave as it propagates down the

CPW of the KIT. We then present calculations of the signal gain of the KIT as a function

of signal frequency, both without and with DC bias. We conclude with remarks about

the extensiblility of our theory to other ladder-type, equivalent-circuit models of nonlinear

traveling-wave parametric amplifiers.

II. THEORY

A. Band Theory of the KIT Amplifier

We consider a KIT amplifier with engineered dispersion loadings as in Fig. 1(a), modeled

as a straight LC ladder-type transmission line of total length `T . The variable x measures

position along the length of the CPW. A unit cell of length `o of the loading design is

sketched in Fig. 1(b) and expressed via Eq. (5). We first confine our attention to the linear

limit of L(x, t) ∼= Lo(x), and with `T � `o we look for band solutions of Eqs. (2) and (3)

using the Floquet-Bloch construction of Eq. (4). The current and voltage defined in this

way satisfy periodic boundary conditions where k is the Bloch wavenumber and Ω(k) is the

band frequency.

Like Lo(x) and C(x), the Bloch amplitudes Vk(x), Ik(x) of Eq. (4) are periodic in x with

periodicity `o. Thus, we have four periodic functions that may be expanded in a discrete

13



Fourier series, i.e., each may be transformed in the manner

f(x) =
∞∑

n=−∞

fn e
2πinx/`o , (10)

fn =
1

`o

∫
0

`o

f(x) e−2πinx/`o dx, (11)

where f ∈ {Vk, Ik, C, Lo}. We also introduce discrete Fourier transforms C−1
n and Lo

−1
n ,

which are elements of matrix inverses corresponding to Cn and Lon, respectively. These may

be written explicitly as

C−1
n =

1

`o

∫
0

`o 1

C(x)
e−2πinx/`o dx, (12)

Lo
−1
n =

1

`o

∫
0

`o 1

Lo(x)
e−2πinx/`o dx, (13)

from which one may easily show
∑∞

m=−∞C
−1
n−mCm−n′ = δn,n′ and

∑∞
m=−∞ Lo

−1
n−mLom−n′ =

δn,n′ .

If we now substitute Eq. (4) for I(x, t) and V (x, t) in Eqs. (2) and (3), make use of the

discrete Fourier transform pair of Eqs. (10) and (11) for each of our four periodic functions,

and apply the matrix inverses of Eqs. (12) and (13), we may decouple voltage and current

in the transform space, obtaining the result

∞∑
n′=−∞

D†
n,n′(k)Vn′(k) = Ω(k)2 Vn(k), (14)

∞∑
n′=−∞

Dn,n′(k) In′(k) = Ω(k)2 In(k), (15)

where we have introduced a non-Hermitian dispersion matrix with elements given by

Dn,n′(k) =
∞∑

n′′=−∞

Lo
−1
n−n′′ C

−1
n′′−n′ (k + 2πn′′ /`o ) (k + 2πn′ /`o ) . (16)

Diagonalization of the matrix of Eq. (16) produces the metamaterial band structure of the

KIT amplifier.

Since the above dispersion matrix is non-Hermitian, we must introduce left, u
(α)
n′ (k), and

14



right, e
(α)
n (k), eigenvectors and express the diagonalization formally as

∞∑
n′=−∞

u
(α)
n′ (k)Dn′,n(k) = Ωα(k)2 u(α)

n (k), (17)

∞∑
n′=−∞

Dn,n′(k) e
(α)
n′ (k) = Ωα(k)2 e(α)

n (k). (18)

Here α refers to a band index, of which there are an infinite number at each value of k. For

orthonormality and completeness we define

∞∑
n=−∞

u(α)
n (k) e(β)

n (k) = δα,β, (19)

∑
α

e(α)
n (k)u

(α)
n′ (k) = δn,n′ , (20)

which presupposes the existence of a non-unitary similarity transformation diagonalizing

Eq. (16). Several notable properties of the dispersion matrix, which are easily verified, are

Dn,n′(−k) = D−n,−n′(k), Ωα(−k) = Ωα(k)∗, (21)

u(α)
n (−k) = u

(α)
−n(k)

∗
, e(α)

n (−k) = e
(α)
−n(k)

∗
. (22)

These relations are consistent with reciprocity of linear waveform propagation in either

direction of the waveguide.

Appendix B shows how one may apply Eq. (5) to Eq. (16) to obtain a useful formulation

of Dn,n′(k) for arbitrary loading design of even symmetry. The result is the real-valued

dispersion matrix element of Eq. (B8), which we may write as

Dn,n′(k) =
1

L(R+1)/2C(R+1)/2

(
k + 2πn /`o

)2

δn,n′

+

[
Dn−n′({Lr} , {Cr})

(
k+2πn /`o

)
+Dn−n′({Cr} , {Lr})

(
k+2πn′ /`o

)](
k+2πn′ /`o

)
,

(23)

where we have introduced coefficients

Dn({Lr} , {Cr}) =
1

2πn

(R−1)/2∑
r=1

(
1

Lr
+

1

Lr+1

)(
1

Cr
− 1

Cr+1

)
sin

(
2π

r∑
r′=1

∆xr′ n /`o

)
. (24)

Note that Dn({Cr} , {Lr}) is just Eq. (24) with Lr, Lr+1 interchanged with Cr, Cr+1. The

generality of Eq. (23) allows us to explore the band structure of a wide range of loading

designs of even symmetry.
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For the remainder of our discussion we adopt a specific convention for labeling the bands

α of the KIT amplifier. Figure 3 provides a comparison of reduced-zone scheme (−π/`o <

k < π/`o) and extended-zone scheme (−∞ < k < ∞) representations of KIT dispersion

frequencies, using the no-load limit of constant C(x) ≡ Co and Lo(x) ≡ Lo to illustrate

how the extended-zone dispersion curve Ω(k) = k/
√
LoCo is mapped to bands. The dashed

vertical blue lines represent Brillouin zone boundaries defined by reciprocal lattice vectors

Gα = 2iπα/`o. The black (blue) line segments of the reduced zone, corresponding to specific

positive (negative) indexes α, map to the extended-zone dispersion curve of k > 0 (k < 0).

Our convention is to label the bands α = ±1,±2, . . . such that in the reduced zone we

have the ascending order Ω0(k) < Ω−1(k) < Ω1(k) < Ω−2(k) < . . . , for 0 < k < π/`o, and

Ω0(k) < Ω1(k) < Ω−1(k) < Ω2(k) < . . . , for −π/`o < k < 0. In this way the mapping of

extended to reduced zone follows as Ω(k + 2πα/`o) = Ωα(k), for any loading design. The

red and green dashed lines show several examples of mapping, involving the wavenumbers

±q of the reduced zone. This labeling convention is useful to the understanding of the effect

of a loading design on parametric mixing.

B. Theory of Multiwave Mixing within the KIT Amplifier

If dispersion loadings of the KIT are engineered to inhibit formation of pump harmonics

and shock waves then we may confine our solution of Eqs. (2) and (3) to forward-traveling

RF waves, labeled by index µ, consisting solely of the pump (µ = P ), signal (µ = S), and

idlers (µ = 1, 2, 3), with corresponding frequencies ωµ, as depicted in Fig. 2(a). Inside the

waveguide we approximate voltage and current of the µ-th forward-traveling wave in terms

of a Floquet-Bloch-like function, as in the example of Eq. (8) for the case of µ = S, again

introducing a Bloch wavenumber, defined as kµ. Assuming monochromatic dispersion, kµ is

determined by matching frequency ωµ to a specific band αµ of the KIT, i.e., ωµ = Ωαµ(kµ),

as in Fig. 2(b). Like Eq. (8), we allow the Fourier-like coefficients of each traveling wave to

assume a slowly-varying dependence on x. Specifically, we may write

 V
(µ)
kµ

(x, t)

I
(µ)
kµ

(x, t)

 =
∞∑

n=−∞

 V
(µ)
n (x)

I
(µ)
n (x)

 ei(kµ+2πn/`o )x−iωµt + c.c., (25)
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FIG. 3. (a) Comparison of reduced-zone scheme (−π/`o < k < π/`o) and extended-zone scheme

(−∞ < k < ∞) representations of KIT dispersion frequencies, as described in the text. (b) The

five types of multichannel parametric scattering associated with multiwave mixing within the KIT

amplifier, also discussed in the text.

where the assumption of a slowly-varying-amplitude may be expressed as

∣∣∣∣∣∣ ∂
2

∂x2

 V
(µ)
n (x)

I
(µ)
n (x)


∣∣∣∣∣∣�

∣∣∣∣∣∣(kµ + 2πn /`o )
∂

∂x

 V
(µ)
n (x)

I
(µ)
n (x)


∣∣∣∣∣∣ , (26)
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as in Eq. (9). Allowing for a DC bias IDC the full solution, including all mixing waveforms

and DC, may be expressed as

V (x, t) =
∑
µ

V
(µ)
kµ

(x, t) + c.c., (27)

I(x, t) = IDC +

[∑
µ

I
(µ)
kµ

(x, t) + c.c.

]
(28)

Equations (27) and (28) may be substituted into Eqs. (2) and (3) to obtain an expression

of the current coefficients I
(µ)
n (x) decoupled from those of the voltage, V

(µ)
n (x). The steps of

derivation are similar to those we outlined for the linear limit, with the caveat that we may

also leverage the canonical transformation implied by Eqs. (19) and (20). For example, the

current coefficients may be expanded as

I(µ)
n (x) = I∗

∑
α

A(µ)
α (x) e(α)

n (kµ), (29)

where the dimensionless current amplitudes A
(µ)
α (x) also are slowly varying in x, in the

manner of Eq. (26). Equation (29) expresses the fact that, although an initial boundary

condition may be imposed on the slowly-varying amplitude at x = 0, the effect of disper-

sion will cause the waveform to hybridize with other states of kµ as it evolves in x along

the waveguide. These assumptions regarding the form of our solution hold as long as the

traveling wave propagates adiabatically along the waveguide.

With application of the canonical transformation, solution of the current I(x, t), in partic-

ular, follows by solving an infinite set of coupled differential equations involving amplitudes

A
(µ)
α (x), expressed in terms of eigenvalues and vectors of our band theory. Appendix C gives

a general derivation of the coupled equations. Our focus will be restricted to dynamics of

the six mixing processes of Fig. 2(a). These involve the phases

∆β
(1)
3wm = k1 + kS − kP , (30)

∆β
(2)
3wm = kS + kP − k2, (31)

∆β
(3)
3wm = k1 + kP − k3, (32)

∆β
(1)
4wm = kS + k3 − 2kP , (33)

∆β
(2)
4wm = k1 + k2 − 2kP , (34)

∆β
(3)
4wm = kS + k3 − k1 − k2, (35)
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which measure the extent of momentum conservation for each process, respectively. Hence,

defining ADC = IDC/I∗, we have directly from Eq. (C10) the coupled subset of pump, signal,

and idler amplitude equations given by

− i ∂
∂x
A(P )
α (x) ∼=

∑
α′

f
(P )
α,α′(ADC)A

(P )
α′ (x) + 2ADC

∑
α′,α′′

[
f

(P,S,1)
α,α′,α′′ A

(S)
α′ (x)A

(1)
α′′ (x) ei∆β

(1)
3wmx

+ f
(P,S̄,2)
α,α′,α′′ A

(S)
α′ (x)

∗
A

(2)
α′′ (x) e−i∆β

(2)
3wmx + f

(P,1̄,3)
α,α′,α′′ A

(1)
α′ (x)

∗
A

(3)
α′′ (x) e−i∆β

(3)
3wmx

]

+
∑

α′,α′′,α′′′

{[
f

(P,P̄ ,P,P )
α,α′,α′′,α′′′ A

(P )
α′ (x)

∗
A

(P )
α′′ (x) + 2f

(P,S̄,S,P )
α,α′,α′′,α′′′ A

(S)
α′ (x)

∗
A

(S)
α′′ (x)

+ 2f
(P,1̄,1,P )
α,α′,α′′,α′′′ A

(1)
α′ (x)

∗
A

(1)
α′′ (x) + 2f

(P,2̄,2,P )
α,α′,α′′,α′′′ A

(2)
α′ (x)

∗
A

(2)
α′′ (x)

+ 2f
(P,3̄,3,P )
α,α′,α′′,α′′′ A

(3)
α′ (x)

∗
A

(3)
α′′ (x)

]
A

(P )
α′′′ (x)

+ 2f
(P,P̄ ,S,3)
α,α′,α′′,α′′′ A

(P )
α′ (x)

∗
A

(S)
α′′ (x)A

(3)
α′′′(x) ei∆β

(1)
4wmx

+ 2f
(P,P̄ ,1,2)
α,α′,α′′,α′′′ A

(P )
α′ (x)

∗
A

(1)
α′′ (x)A

(2)
α′′′(x) ei∆β

(2)
4wmx

}
, (36)

− i ∂
∂x
A(S)
α (x) ∼=

∑
α′

f
(S)
α,α′(ADC)A

(S)
α′ (x)

+ 2ADC
∑
α′,α′′

[
f

(S,1̄,P )
α,α′,α′′ A

(1)
α′ (x)

∗
A

(P )
α′′ (x) e−i∆β

(1)
3wmx + f

(S,P̄ ,2)
α,α′,α′′ A

(P )
α′ (x)

∗
A

(2)
α′′ (x) e−i∆β

(2)
3wmx

]

+
∑

α′,α′′,α′′′

{[
f

(S,S̄,S,S)
α,α′,α′′,α′′′ A

(S)
α′ (x)

∗
A

(S)
α′′ (x) + 2f

(S,P̄ ,P,S)
α,α′,α′′,α′′′ A

(P )
α′ (x)

∗
A

(P )
α′′ (x)

+ 2f
(S,1̄,1,S)
α,α′,α′′,α′′′ A

(1)
α′ (x)

∗
A

(1)
α′′ (x) + 2f

(S,2̄,2,S)
α,α′,α′′,α′′′ A

(2)
α′ (x)

∗
A

(2)
α′′ (x)

+ 2f
(S,3̄,3,S)
α,α′,α′′,α′′′ A

(3)
α′ (x)

∗
A

(3)
α′′ (x)

]
A

(S)
α′′′(x)

+ f
(S,3̄,P,P )
α,α′,α′′,α′′′ A

(3)
α′ (x)

∗
A

(P )
α′′ (x)A

(P )
α′′′ (x) e−i∆β

(1)
4wmx

+ 2f
(S,3̄,1,2)
α,α′,α′′,α′′′ A

(3)
α′ (x)

∗
A

(1)
α′′ (x)A

(2)
α′′′(x) e−i∆β

(3)
4wmx

}
, (37)
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− i ∂
∂x
A(1)
α (x) ∼=

∑
α′

f
(1)
α,α′(ADC)A

(1)
α′ (x)

+ 2ADC
∑
α′,α′′

[
f

(1,S̄,P )
α,α′,α′′ A

(S)
α′ (x)

∗
A

(P )
α′′ (x) e−i∆β

(1)
3wmx + f

(1,P̄ ,3)
α,α′,α′′ A

(P )
α′ (x)

∗
A

(3)
α′′ (x) e−i∆β

(3)
3wmx

]

+
∑

α′,α′′,α′′′

{[
f

(1,1̄,1,1)
α,α′,α′′,α′′′ A

(1)
α′ (x)

∗
A

(1)
α′′ (x) + 2f

(1,P̄ ,P,1)
α,α′,α′′,α′′′ A

(P )
α′ (x)

∗
A

(P )
α′′ (x)

+ 2f
(1,S̄,S,1)
α,α′,α′′,α′′′ A

(S)
α′ (x)

∗
A

(S)
α′′ (x) + 2f

(1,2̄,2,1)
α,α′,α′′,α′′′ A

(2)
α′ (x)

∗
A

(2)
α′′ (x)

+ 2f
(1,3̄,3,1)
α,α′,α′′,α′′′ A

(3)
α′ (x)

∗
A

(3)
α′′ (x)

]
A

(1)
α′′′(x)

+ f
(1,2̄,P,P )
α,α′,α′′,α′′′ A

(2)
α′ (x)

∗
A

(P )
α′′ (x)A

(P )
α′′′ (x) e−i∆β

(2)
4wmx

+ 2f
(1,2̄,S,3)
α,α′,α′′,α′′′ A

(2)
α′ (x)

∗
A

(S)
α′′ (x)A

(3)
α′′′(x) ei∆β

(3)
4wmx

}
, (38)

− i ∂
∂x
A(2)
α (x) ∼=

∑
α′

f
(2)
α,α′(ADC)A

(2)
α′ (x) + 2ADC

∑
α′,α′′

f
(2,P,S)
α,α′,α′′ A

(P )
α′ (x)A

(S)
α′′ (x) ei∆β

(2)
3wmx

+
∑

α′,α′′,α′′′

{[
f

(2,2̄,2,2)
α,α′,α′′,α′′′ A

(2)
α′ (x)

∗
A

(2)
α′′ (x) + 2f

(2,P̄ ,P,2)
α,α′,α′′,α′′′ A

(P )
α′ (x)

∗
A

(P )
α′′ (x)

+ 2f
(2,S̄,S,2)
α,α′,α′′,α′′′ A

(S)
α′ (x)

∗
A

(S)
α′′ (x) + 2f

(2,1̄,1,2)
α,α′,α′′,α′′′ A

(1)
α′ (x)

∗
A

(1)
α′′ (x)

+ 2f
(2,3̄,3,2)
α,α′,α′′,α′′′ A

(3)
α′ (x)

∗
A

(3)
α′′ (x)

]
A

(2)
α′′′(x)

+ f
(2,1̄,P,P )
α,α′,α′′,α′′′ A

(1)
α′ (x)

∗
A

(P )
α′′ (x)A

(P )
α′′′ (x) e−i∆β

(2)
4wmx

+ 2f
(2,1̄,S,3)
α,α′,α′′,α′′′ A

(1)
α′ (x)

∗
A

(S)
α′′ (x)A

(3)
α′′′(x) ei∆β

(3)
4wmx

}
, (39)

− i ∂
∂x
A(3)
α (x) ∼=

∑
α′

f
(3)
α,α′(ADC)A

(3)
α′ (x) + 2ADC

∑
α′,α′′

f
(3,P,1)
α,α′,α′′ A

(P )
α′ (x)A

(1)
α′′ (x) ei∆β

(3)
3wmx

+
∑

α′,α′′,α′′′

{[
f

(3,3̄,3,3)
α,α′,α′′,α′′′ A

(3)
α′ (x)

∗
A

(3)
α′′ (x) + 2f

(3,P̄ ,P,3)
α,α′,α′′,α′′′ A

(P )
α′ (x)

∗
A

(P )
α′′ (x)

+ 2f
(3,S̄,S,3)
α,α′,α′′,α′′′ A

(S)
α′ (x)

∗
A

(S)
α′′ (x) + 2f

(3,1̄,1,3)
α,α′,α′′,α′′′ A

(1)
α′ (x)

∗
A

(1)
α′′ (x)

+ 2f
(3,2̄,2,3)
α,α′,α′′,α′′′ A

(2)
α′ (x)

∗
A

(2)
α′′ (x)

]
A

(3)
α′′′(x)

+ f
(3,S̄,P,P )
α,α′,α′′,α′′′ A

(S)
α′ (x)

∗
A

(P )
α′′ (x)A

(P )
α′′′ (x) e−i∆β

(1)
4wmx

+ 2f
(3,S̄,1,2)
α,α′,α′′,α′′′ A

(S)
α′ (x)

∗
A

(1)
α′′ (x)A

(2)
α′′′(x) e−i∆β

(3)
4wmx

}
. (40)
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In the above equations we have defined µ̄ = −µ and k−µ = −kµ, as introduced in Appendix

C. Boundary conditions corresponding to injected pump and signal may be expressed as

A
(µ)
α (0) = Āµδα,αµ , where ĀP and ĀS are constants defined by the RF input power. For the

idler products we set Ā1 = Ā2 = Ā3 = 0.

The mixing coefficients f
(µ)
α,α′(ADC), f

(µ,µ′,µ′′)
α,α′,α′′ , and f

(µ,µ′,µ′′,µ′′′)
α,α′,α′′,α′′′ of the above coupled equa-

tions are given by Eqs. (C11) through (C13), respectively. These are the hybridizing coeffi-

cients

f
(µ)
α,α′(ADC) =

1

2
Λ̃−1
α,α′(kµ)

[
Ωαµ(kµ)2 (1 + A2

DC

)
− Ωα′(kµ)2] , (41)

the nonlinear 3WM coefficients

f
(µ,µ′,µ′′)
α,α′,α′′ =

1

2
Ωαµ(kµ)2

∑
n,n′,n′′

(n′+n′′=n)

∑
β

Λ̃−1
α,β(kµ)u(β)

n (kµ) e
(α′)
n′ (kµ′) e

(α′′)
n′′ (kµ′′), (42)

and the nonlinear 4WM coefficients

f
(µ,µ′,µ′′,µ′′′)
α,α′,α′′,α′′′ = 1

2
Ωαµ(kµ)2 ∑

n,n′,n′′,n′′′

(n′+n′′+n′′′=n)

∑
β

Λ̃−1
α,β(kµ)u

(β)
n (kµ) e

(α′)
n′ (kµ′) e

(α′′)
n′′ (kµ′′) e

(α′′′)
n′′′ (kµ′′′),

(43)

where, from Eq. (C9), we also have

Λ̃α,α′(kµ) =
∑
n,n′

Λn,n′(kµ)u(α)
n (kµ) e

(α′)
n′ (kµ). (44)

Note that the mixing coefficients depend on a matrix of elements Λn,n′(k) defined in Eq.

(C7). Similar to the derivation in Appendix B for the dispersion matrix Dn,n′(k) of Eq.

(23), we may write Λn,n′(k) as

Λn,n′(k) =
1

L(R+1)/2C(R+1)/2

(
k + 2πn /`o

)
δn,n′

+Dn−n′({Lr} , {Cr})
[
k + π (n+ n′) /`o

]
+Dn−n′({Cr} , {Lr})

(
k + 2πn′ /`o

)
, (45)

appropriate for a unit cell of even symmetry.

As can be deduced from Eqs. (23) and (45), an important limiting form of the mixing

coefficients is obtained when engineered loadings are absent from the waveguide; in this case

we have

f
(µ)
α,α′(ADC) =

(kµ + 2παµ /`o )2 (1 + A2
DC)− (kµ + 2πα /`o )2

2 (kµ + 2πα /`o )
δα,α′ , (46)

f
(µ,µ′,µ′′)
α,α′,α′′ =

1

2
(kµ + 2πα /`o ) δα,α′+α′′ , (47)
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f
(µ,µ̄′,µ′′)
α,α′,α′′ =

1

2
(kµ + 2πα /`o ) δα+α′,α′′ , (48)

f
(µ,µ̄′,µ′′,µ′′′)
α,α′,α′′,α′′′ =

1

2
(kµ + 2πα /`o ) δα+α′,α′′+α′′′ . (49)

The limiting forms of the mixing coefficients are comparable to textbook formulations of

plane-wave parametric mixing, provided comparisons are made in the limit kµ`o � 1, as

mentioned earlier.

As a last topic of theory discussion we note the five types of parametric scattering pro-

cesses implied by Eqs. (36) through (40). Figure 3(b) illustrates these processes, where

a photon is labeled by forward-traveling-wave subscript µ, µ′, µ′′, µ′′′ ∈ {P, S, 1, 2, 3}, with

state described by both a Bloch-wavenumber momentum (kµ, kµ′ , kµ′′ , or kµ′′′) and a band

index (α, α′, α′′, or α′′′). For instance, diagram (i) expresses both the DC-induced self-phase

modulation (SPM), corresponding to α = α′, and the DC-enhanced inter-band cross-phase

modulation (XPM), corresponding to α 6= α′, that can occur between superposed compo-

nents of a single traveling wave µ. This process arises as a consequence of hybridization of

the initial waveform into a supermode as it propagates down the waveguide. The process is

mediated by mixing coefficient f
(µ)
α,α′(ADC) of Eq. (41), whose strength may be augmented

by application of a DC bias. Equation (46) is the limiting form of f
(µ)
α,α′(ADC) in the absence

of loadings.

In Fig. 3(b) the 4WM one-loop diagram of (ii) contributes to SPM of a given traveling

wave µ, as well as XPM between mixing traveling waves, µ 6= µ′. These processes are

mediated by a 4WM coefficient f
(µ,µ̄′,µ′,µ)
α,α′,α′′,α′′′ , as defined in Eq. (43). Diagram (iii) describes

the diffusive momentum transfer of 4WM, as in the example of two pump photons (2kp),

a signal photon (kS), and an idler-3 photon (k3), where the phase satisfies ∆β
(1)
4wm
∼= 0. In

particular, the phase condition of momentum conservation does not preclude photons of

the collision from being in different band states. The viability of scattering from different

bands ultimately depends on the extent of symmetry breaking of the loading design, which

dictates the strength of the 4WM coefficient of Eq. (43) that mediates the process. Inclusion

of bands in the description introduces multiple channels of scattering, which leads to a much

richer description of 4WM signal gain in the KIT than in fiber-optic textbook treatments of

4WM.12 Note that Eq. (49) represents the limiting form of all the 4WM coefficients in the

absence of loadings. In particular, diagrams (ii) and (iii) reduce to the parametric scattering

processes of the textbook if kµ`o � 1.
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TABLE I. Summary of important mathematical symbols employed in the formulation of the theory.

Symbol Description

ADC ratio of DC to scaling factor I∗

fP , fS , f1, f2, f3 frequencies of traveling waves

ωP , ωS , ω1, ω2, ω3 angular frequencies of traveling waves

kP , kS , k1, k2, k3 Bloch wavenumbers of traveling waves

n, n′, n′′, n′′′ Fourier indexes

α, α′, α′′, α′′′ dispersion-frequency band indexes

µ, µ′, µ′′, µ′′′ traveling-wave indexes

αP , αS , α1, α2, α3 index of band matching traveling wave

Dn,n′(k) non-Hermitian dispersion matrix

Ωα(k) band dispersion frequency

u
(α)
n (k), e

(α)
n (k) left and right eigenvectors, respectively

∆β
(1)
3wm, ∆β

(2)
3wm, ∆β

(3)
3wm 3WM phase factors

∆β
(1)
4wm, ∆β

(2)
4wm, ∆β

(3)
4wm 4WM phase factors

A
(µ)
α (x) dimensionless amplitude of traveling-wave current

Λn,n′(k), Λ̃α,α′(k) lambda and canonically-transformed lambda, respectively

f
(µ)
α,α′(ADC), f

(µ,µ′,µ′′)
α,α′,α′′ , f

(µ,µ′,µ′′,µ′′′)
α,α′,α′′,α′′′ hybridization, 3WM, and 4WM coefficients, respectively

Similarly, with onset of DC, diagrams (iv) and (v) of Fig. 3(b) are associated with

diffusive 3WM momentum transfer. For example, when ∆β
(1)
3wm
∼= 0, diagram (iv) describes

a signal photon (kS) recombining with an idler-1 photon (k1), as mediated by the 3WM

coefficient f
(µ,µ′,µ′′)
α,α′,α′′ of Eq. (42), such that a pump photon (kP ) is created. In the absence of

loadings this 3WM coefficient is given by Eq. (47). Conversely, as in diagram (v), a pump

photon (kP ) can scatter into a signal photon (kS) and an idler-1 photon (k1), mediated by

a 3WM coefficient f
(µ,µ̄′,µ′′)
α,α′,α′′ , which has the no-loading limit given by Eq. (48). As in the

case of 4WM scattering these 3WM processes are multichannel contributors to 3WM signal

gain, dependent on the loading design.

Table I summarizes mathematical symbols used in our description of the theory. Several

important observations arise from our theory:
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(i) A metamaterial band theory of the KIT amplifier follows from engineered periodic

loadings. The band theory is obtained via diagonalization of the non-Hermitian dis-

persion matrix of Eq. (23).

(ii) The band theory, via Eq. (29), serves as a basis for representing the current of forward-

traveling waves as Floquet-Bloch supermodes.

(iii) Dimensionless amplitudes A
(µ)
α (x) of parametrically mixing supermodes satisfy a set of

coupled, nonlinear first-order differential equations, not unlike those derived in simple

treatments of parametric mixing.

(iv) The mixing coefficients f
(µ)
α,α′(ADC), f

(µ,µ′,µ′′)
α,α′,α′′ , and f

(µ,µ′,µ′′,µ′′′)
α,α′,α′′,α′′′ that enter these cou-

pled equations are calculated solely from knowledge of the KIT band theory, i.e., the

engineered loading design.

We now turn to a discussion of the results of calculations of forward-traveling waves and the

signal gain that ensues from their parametric mixing.

III. RESULTS AND DISCUSSION

We present numerical computations using an example loading design of even symmetry

consisting of R = 7 regions, as in Fig. 1 (b). Model parameters for this design are shown in

Table II, where Lr and Cr of regions r = 1 through r = 7 are defined as in Eq. (5), and the

unit cell corresponds to length `o = 2565 µm. This particular design inhibits every third

harmonic of a pump tone placed at ∼ 8 GHz, in proximity to the first stop gap. While the

design was optimized for 4WM we will use it throughout our discussion, for both 4WM and

3WM calculations, to maintain the closest comparisons between results.

In our approach to numerical solution we introduced a cutoff dimension Nc for the matri-

ces of Dn,n′(k) and Λn,n′(k) of Eqs. (23) and (45), respectively, such that −Nc/2 ≤ n, n′ ≤

Nc/2. Consistent with this approximation, all sums over n, n′, n′′, and n′′′ in our formulation

of mixing coefficients were evaluated using this same cutoff. This allowed us to numerically

diagonalize the matrix of Dn,n′(k), invert the matrix of Λ̃α,α′(k) of Eq. (44), and evaluate

the mixing coefficients of Eqs. (41) through (43), for any k of the first Brillouin zone. Calcu-

lations presented for the loading design of Table II used Nc = 251, which gives convergence
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TABLE II. Model parameters of an example loading design of R = 7 regions, like that of Fig. 1

(b), with unit cell of length `o = 2565 µm, and Lr and Cr defined as in Eq. (5).

r xr (µm) ∆xr (µm) Lr (pH/µm) Cr (fF/µm)

1 0 17.5 2.10 0.335

2 17.5 805 1.05 0.540

3 822.5 65 2.10 0.335

4 887.5 790 1.05 0.540

5 1677.5 65 2.10 0.335

6 1742.5 805 1.05 0.540

7 2547.5 17.5 2.10 0.335

to ∼ 0.1% error in the ten lowest-lying dispersion-frequency bands. To evaluate the coupled

amplitude equations of Eqs. (36) through (40) we employed a Dormand-Prince eighth-order

(853) adaptive-corrective Runge-Kutta method.24 We introduced a cutoff value of Nb for the

number of lowest-lying bands used to solve these coupled equations, such that sums over

band indexes α, α′, α′′, and α′′′ were restricted to a count of Nb. We then analyzed the

convergence of our amplitude solutions as we increased Nb. For the loading design of Table

II we found Nb = 6 produced decibel signal gain with less than 10% error in most cases.25

In a few instances, as we varied the signal frequency to obtain signal gain, we found the

Dormand-Prince algorithm would not converge; in these cases, breaks appear in plots of

signal gain as a function of signal frequency.

Figure 4(a) is a reduced-zone-scheme plot of the four lowest-lying bands of dispersion

frequencies Ω0(k) < Ω−1(k) < Ω1(k) < Ω−2(k), denoted by the blue, orange, green, and red

curves, respectively. The inset depicts the vicinity of the first stop gap at higher resolution.

Table III summarizes the lower bounds and sizes of the first 9 stop gaps of this band structure,

those stop gaps that lie at the bottom of the dispersion-frequency manifold.

Figure 4(b) shows the same dispersion frequencies plotted as a function of wavenumber

in the extended-zone scheme (blue curve), with frequencies read from the left vertical scale.

This plot is an unfolding in k-space of the reduced-zone-scheme representation of Fig 4(a),

as in the sketch of Fig. 3(a). The locations of stop gaps in k-space are indicated by jump

discontinuities in the dispersion-frequency curve. In Fig. 4(b) we also plot the group velocity
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TABLE III. List of lower bounds and sizes of the 9 lowest stop gaps, corresponding the the loading

design of Table II.

Gap No. Lower Bound (GHz) Size (GHz)

1 8.013 0.1307

2 16.00 0.2658

3 23.20 2.153

4 32.16 0.4735

5 40.01 0.6274

6 46.57 4.119

7 56.53 0.7114

8 64.15 0.8717

9 70.19 5.780

as a function of wavenumber, with velocities read from the right vertical scale. The group

velocities go to zero at every stop gap. For the lowest-lying bands the group velocity is

nearly constant across the length of the band, although it diminishes on average from one

band to the next as one traverses higher and higher bands. At higher bands the group

velocity shows more variation across the length of a band as gap size invariably increases,

particularly at every third stop gap. Every third stop gap shown in the figure was designed

especially large to encompass 4WM harmonics of the pump frequency, as mentioned earlier,

so at these locations we see a particularly strong variation of group velocity across the length

of a given band.

Having solved for the metamaterial band structure of the KIT amplifier we now explore

the nonlinear regime of its operation in the presence of these bands. This includes calculating

the mixing coefficients f
(µ)
α,α′(ADC), f

(µ,µ′,µ′′)
α,α′,α′′ , and f

(µ,µ′,µ′′,µ′′′)
α,α′,α′′,α′′′ of Eqs. (41) through (43) using

this very band structure. We will first consider the effect of engineered loadings on a single

pump tone as it propagates down the waveguide. We then turn to the results of calculations

of signal gain, both with and without applied DC.
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FIG. 4. Metamaterial band structure of the example loading design of Table II, as described in

the text. (a) The lowest four bands of dispersion frequencies. The inset is a close-up view of the

first stop gap of 130 MHz size. (b) Group velocity as a function of wavenumber (orange), read

from right vertical scale, with extended-zone dispersion frequencies overlayed (blue), read from left

vertical scale.

A. Loading-Induced Dispersion of a Single Pump Tone

We consider the effect of engineered frequency dispersion on a single forward-traveling

pump tone injected into the CPW of Fig. 1. In this case Eq. (36) may be approximated as

−i ∂
∂x
A(P )
α (x) ∼=

∑
α′

f
(P )
α,α′(ADC)A

(P )
α′ (x) +

∑
α′,α′′,α′′′

f
(P,P̄ ,P,P )
α,α′,α′′,α′′′ A

(P )
α′ (x)

∗
A

(P )
α′′ (x)A

(P )
α′′′ (x), (50)

with initial boundary condition A
(P )
α (0) =

√
Po δα,αP , where Po is the relative input power

of the RF tone. We also match frequency ωP of the injected pump to a dispersion frequency

ΩαP (kP ) of Fig. 4, i.e., we set ωP = ΩαP (kP ), where kP and αP are the Bloch wavenumber
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and band index, respectively, of the matching dispersion frequency.

First note simple limiting forms of the solution of Eq. (50). When nonlinearity is negligi-

ble then the solution is simply A
(P )
α (x) =

√
Po δα,αP . If we neglect off-diagonal components,

i.e., we set A
(P )
α 6=αP (x) = 0, then we may approximate the solution of Eq. (50) as

A(P )
α (x) ∼=

√
P o exp

{
i
[
f (P )
αP ,αP

(ADC) + f (P,P̄ ,P,P )
αP ,αP ,αP ,αP

Po

]
x
}
δα,αP . (51)

This approximation illustrates self modulation of the pump, where, in the absence of load-

ings, via Eqs. (46) and (49), we have

f (P )
αP ,αP

(ADC) + f (P,P̄ ,P,P )
αP ,αP ,αP ,αP

Po =
1

2
(kP + 2παP /`o )

(
A2
DC + Po

)
. (52)

The sum of kP + 2παP /`o is the extended-zone wavenumber, and the modulation is propor-

tional to both the DC and RF input powers, resembling a plane-wave solution.

Figure 5 shows a more general numerical solution of Eq. (50) using the Dormand-Prince

eighth-order (853) adaptive-corrective Runge-Kutta method.24 Calculations were performed

with increasing DC bias, with pump frequency fP = ωP/2π set below the first stop gap,

at (a) fP = 8 GHz (kP = 1221 m−1, αP = 0) and (b) fP = 8.013 GHz (kP = 1225 m−1,

αP = 0), corresponding to the very bottom of the gap. The real (blue) and imaginary (red)

parts of the relative amplitude of the lowest-lying band, A
(P )
0 (x), are shown as a function of

x/`T , where `T = 2.0 m is the length of the waveguide. The boundary condition was set to

A
(P )
0 (x) =

√
Po, with relative input power at Po = 0.01, i.e., A

(P )
0 (0) = 0.1.

Figure 5(a) depicts a jagged amplitude profile at fP = 8 GHz and zero DC bias. As

DC is increased the profile shows a more sinusoidal-like modulation, with steep changes in

amplitude as a function of x/`T , and a pronounced envelope appearing by ADC = 0.4. The

envelope exhibits a 90◦ phase relationship between real and imaginary parts, as well as a

period that decreases as ADC increases. In Fig. 5(b), where fP is increased by only 13

MHz, to fP = 8.013 GHz, one sees distinct changes in the amplitude profile, owing to a

sharp drop-off of group velocity near the gap. Recall from Fig. 4(b) that the group velocity

rapidly decreases to zero near a stop gap. Thus, at fP = 8.013 GHz, where fP is at the

bottom of the first stop gap, A
(P )
0 (x) as a function of x corresponds to near-zero group

velocity. Here, the imaginary part of the amplitude is also very nearly zero, everywhere in

x. The real part of A
(P )
0 (x) is more square-like in shape at zero DC, but becomes more

sinusoidal and of shorter period as ADC is increased. Though not shown, the results for

28



FIG. 5. Real (blue) and imaginary (red) parts of relative amplitude A
(P )
0 (x) of first dispersion-

frequency band as a function of relative position x/`T along KIT. Amplitude corresponds to pump

frequencies (a) fP = 8 GHz and (b) fP = 8.013 GHz (bottom of first stop gap), for values of

ADC = IDC/I∗ from zero to unity. Waveguide length is `T = 2.0 m and input power is set to

Po = 0.01, i.e., A
(P )
0 (0) = 0.1.

A
(P )
−1 (x), corresponding to the second dispersion-frequency band, as a function of x/`T , are

similar to those of A
(P )
0 (x), except for an overall phase difference of 180◦. At Po = 0.01, the

maxima of higher-band amplitudes are no greater than 1% of those of the first two bands,

so the supermode traveling wave is well approximated by just the first two bands.

Figure 6(a) shows plots of the real (blue) and imaginary (red) parts of amplitude A
(P )
0 (x)

of the first band as a function of x/`T for incremented values of RF input power Po. The
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FIG. 6. Real (blue) and imaginary (red) parts of relative amplitude correspond to (a) first band,

A
(P )
0 (x), and (b) second band, A

(P )
−1 (x), as a function of relative distance x/`T along KIT, for

incremented values of RF input power Po. Waveguide length is `T = 2.0 m, pump frequency is

fP = 8.013 GHz, at bottom of first stop gap, and no DC bias is applied.

DC bias is set to zero and the pump frequency is fP = 8.013 GHz, at the bottom of the first

gap, and again the length of the waveguide is `T = 2.0 m. From Fig. 6(a) we see that the

amplitude envelope, prevalent in the fP = 8.0 GHz results of Fig. 5(a), now also appears

at fP = 8.013 GHz with increasing input power Po, with envelope period decreasing as Po

increases. As in Fig. 5(a), there is a 90◦ phase difference between the real and imaginary

parts of the amplitude. For comparison, Fig. 6(b) depicts a similar set of plots for the

amplitude A
(P )
−1 (x) of the second band. The results of Fig. 6(b) show a 180◦ phase difference
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from those of Fig. 6(a), such that the real and imaginary parts of the two amplitudes are

more or less interchanged. However, at low power, Po = 0.01, the amplitude A
(P )
−1 (x) of the

second band has a triangle-shaped profile, in contrast to the square-like profile of A
(P )
0 (x)

of the first band, and its maximum amplitude is slightly greater in magnitude. Recall the

jagged profile from the zero-bias result of Fig. 5(a), which appears to resemble a combination

of square and triangle shapes as a function of x. While the maximum amplitudes of A
(P )
0 (x)

and A
(P )
−1 (x) tend to differ somewhat at low input power, as Po is increased they both converge

to
√
Po.

In our calculations we varied the number of lowest-lying bands Nb used to solve the

coupled amplitude equations of Eq. (50), considering values of Nb = 2 to Nb = 8. As

mentioned, in our results for Po = 0.01, the maximum amplitude of the two lowest-lying

bands was max |A(P )
0 (x)| ∼= max |A(P )

−1 (x)| ∼=
√
Po, with the maxima of amplitudes of higher

bands no greater than 1% of
√
Po. Thus, at low input powers, the first two bands were

sufficient to describe the supermode traveling wave. However, as Po was increased toward

unity, we found amplitudes of the higher-lying bands became more significant, indicating the

need to incorporate more and more bands into the supermode solution. Generally speaking,

for the loading design of Table II, band-matching of injected frequencies to one of the first

two bands, and input powers less than unity, we found Nb = 6 to be sufficient to describe

the supermode traveling waves.

We have shown results of calculations of amplitude for a single nonlinear forward-traveling

wave as it propagates along the waveguide of the KIT in the presence of the engineered

loadings of Table II. This was accomplished as a function of both applied DC (ADC) and

input RF power (Po). We next discuss the parametric signal gain of the amplifier when no

DC is applied.

B. Four-Wave Mixing Signal Gain of the KIT Amplifier

For the loading design of Table II, and a waveguide of length `T = 2 m, we calculated the

4WM signal gain produced in the KIT amplifier with zero DC. In this case a strong pump, of

frequency fP = ωP/2π = 8.013 GHz and initial amplitude A
(P )
α (0) = Ā(P ) δα,αP , and a small

signal of variable frequency fS = ωS/2π and initial amplitude A
(S)
α (0) = Ā(S) δα,αS , were

injected into the waveguide. The resulting 4WM idler product, of frequency f3 = 2fP − fS,
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FIG. 7. Sketch showing traveling-wave pump frequency ωP (red) and signal frequency ωS (green)

matched to the KIT amplifier band structure upon injection, assuming ωS < ωP . In the case of (a)

the degenerate-4WM idler frequency ω3 (purple) is shown matched to the second band (α = −1).

Similarly, in (b) the idler of frequency ω1 (purple), responsible for 3WM broadband gain, is shown

matched to the first band (α = 0).

was defined with initial boundary condition A
(3)
α (0) = 0. We specifically solved the zero-DC

forms of Eqs. (36), (37), and (40) for the relative current amplitudes A
(P )
α (x), A

(S)
α (x), and

A
(3)
α (x) using the same Dormand-Prince eighth-order (853) adaptive-corrective Runge-Kutta

method24 we employed for the single traveling wave. In our calculations we set Ā(P ) =
√
Po

and Ā(S) = 10−3, where Po serves as a relative measure of the RF input power.

The pump frequency was fixed to the bottom of the first stop gap, with αP = 0 and

kP = 1225 m−1. The frequency ωS of the injected signal was varied and the gain was

calculated at each value of ωS. As ωS was incremented it was matched to either the first

band (αS = 0) or the second band (αS = −1), depending on whether ωS was below or above

the stop gap. If ωS fell within the gap then calculation of signal gain was skipped, with
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gain reported as zero, since kS is indeterminate in this case. The frequency of the 4WM

idler, ω3 = 2ωP − ωS, was matched to the band structure in a manner similar to the pump

and signal, with k3 obtained from the matching band of index α3. Figure 7(a) is a sketch

of a typical scenario of band matching of the pump (ωP ), signal (ωS), and 4WM idler (ω3)

frequencies. In the figure the pump frequency is just below the gap, and the signal and idler

straddle the gap, equidistant from the pump (ωS + ω3 = 2ωP ), matched to opposing bands.

Using Eqs. (25) and (29) to form the root-mean-square (RMS) current, the signal gain

may be expressed as

GS(`T ) =

∣∣∣∣∣∣∣∣
∑
α

∞∑
n=−∞

A
(S)
α (`T ) e

(α)
n (kS)

A
(S)
αS (0)

∞∑
n=−∞

e
(αS)
n (kS)

∣∣∣∣∣∣∣∣
2

. (53)

Figure 8 shows calculations of GS(`T ) as a function of fS = ωS/2π, for several values of

relative input power Po. Results were reported for both Nb = 4 (red curve) and Nb = 6

(blue curve) to illustrate convergence characteristics.

In either case of Nb, Fig. 8 shows how the amplifier becomes fully lit as Po is increased to

unity. At lower powers, panels (a) and (b), features prevalent for both Nb = 4 and Nb = 6,

particularly near the pump frequency (8.013 GHz), show little difference in magnitude, indi-

cating that, at these signal frequencies, the traveling-wave supermodes are well represented

by the lowest-lying bands. In contrast, at higher powers, panels (c) and (d), these features

show some increase in magnitude from Nb = 4 to Nb = 6, indicative of the importance of

higher-lying bands at these higher powers. For all curves of Nb = 6 we see additional strong

features in the signal-gain profile, which tend to occur at signal frequencies of ∼ 4 GHz and

∼ 12 GHz. These are sideband contributions corresponding to participation of higher-lying,

supermode band states in the parametric scattering, which are additional channels of am-

plification. These are particularly evident in the sidebands of panel (d) where we see very

large undulations in the profile of Nb = 4, but not for Nb = 6. For Nb = 4, amplification

is essentially either on or off in the sidebands as fS increases; for Nb = 6, there are more

channels that can contribute, so there is never a value of fS where the amplification is zero.

As Po increases, Fig. 8 shows that these sidebands coalesce with the center band to form

one long broadband signal-gain profile, as in panel (d), Nb = 6.

What is most striking about the 4WM signal gain depicted in Fig. 8 is the intrinsic

undulation of the gain with increasing fS. This occurs no matter the number of low-lying
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FIG. 8. Calculations of 4WM signal gain as a function of signal frequency for engineered loadings

of Table II, with pump frequency fP = 8.013 GHz set just below first stop gap and waveguide

length set to `T = 2 m. Relative RF input power Po was increased from panel to panel to

illustrate approach to full amplification, with (a) Po = 0.09, (b) Po = 0.25, (c) Po = 0.64, and

(d) Po = 1.00. Calculations were performed using Nb = 4 (red) and Nb = 6 (blue) lowest-lying

dispersion-frequency bands, as indicated.

bands incorporated into the calculation. Its origin is in the engineered dispersion and the

fact that in 4WM the signal and idler are matched to different dispersion-frequency bands.

As we saw in Fig. 4(b), the group velocity differs between bands, even in the centers of two

lowest-lying bands, where the group velocity is nearly constant. Thus, as fS is increased,

the momentum-conserving criterion kS + k3
∼= 2kP cannot be maintained robustly because

kS and k3 change at different rates. This creates the effect of undulation in the signal gain

as fS is varied. The effect is compounded by inclusion of additional parametric scattering

channels of supermode band states since each has its own phase-matching criterion.

Experimental results reported in Fig. 3(a) of Ref. (15), for an unbiased NbTiN KIT

amplifier of loading design similar to Table II, show a 4WM signal gain of ∼ 20 dB, which is
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much smaller than that calculated in Fig. 8. The differences can be attributed to (i) the lack

of loss, i.e., intrinsic Q, modeling in Eqs. (2) and (3), and (ii) the sensitivity of the signal

gain to the size of the first stop gap. In the later case, the theoretical results correspond to a

stop gap of 130 MHz whereas the stop gap of the results presented in Fig. 3(a) of Ref. (15)

is about 3 times larger. We are presently engaged in follow-on research to understand these

dependencies more clearly. In particular, for ripple observed in the 4WM signal gain of the

KIT, there is a need to understand the extent of reflections at the impedance transformers

as these operate at high input powers. What is clear from the present theoretical analysis

is that operation of the KIT amplifier without DC to produce 4WM signal gain is prone

to intrinsic spectral gain fluctuations that reduce its efficacy as an amplification device. As

we shall see next, when a DC bias is applied to the KIT, multiple channels of parametric

scattering once again come into play but the resulting signal amplification differs greatly as

a function of signal frequency from what we have presented in Fig. 8.

C. Multiwave Mixing of the KIT Amplifier with Application of Direct Current

Recall that if a DC bias is applied to the KIT amplifier then, in addition to the degenerate

4WM process of the zero-DC case, mixing of injected pump and signal results in five new

parametric processes, as sketched in Fig. 2(a). In this case momentum conservation of the

3WM process involving pump (fP = ωP/2π), signal (fS = ωS/2π), and idler (f1 = ω1/2π)

becomes possible over an extended range of signal frequencies centered about fP/2, where

one has ωS + ω1 = ωP and kS + k1
∼= kP . In what follows we consider the signal gain

attributable to this 3WM process.

1. Runge-Kutta Results with Application of a DC Bias

As we did for the zero-DC 4WM signal gain, we calculated the 3WM signal gain for the

loading design of Table II, setting the DC to one tenth of the nonlinear scaling factor I∗, i.e.,

ADC = IDC/I∗ = 0.1. Also, we typically set the length of the waveguide to `T = 2 m and

the pump frequency to fP = 8.144 GHz, at the top of the first stop gap. However, we also

explored other values for `T and fP , particularly contrasting fP above the gap with fP below

the gap. With DC applied we solved the full set of coupled amplitude equations, Eqs. (36)
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FIG. 9. Calculations of 3WM signal gain for the loading design of Table II, as described in the text,

as a function of signal frequency fS , for several values of (a) relative DC bias ADC , (b) relative input

power Po, (c) waveguide length lT , and (d) pump frequency fP , with other parameters as labeled.

In all panels optimal signal gain is the blue curve corresponding to ADC = 0.1, Po = 0.0049,

lT = 2.0 m, and fP = 8.144 GHz.

through (40), using the same Runge Kutta method as before, with calculations involving

Nb = 4 and Nb = 6 of the lowest-lying bands. As in the case of zero applied DC, the initial

boundary conditions assigned to pump and signal amplitudes were A
(P )
α (0) = Ā(P ) δα,αP and

A
(S)
α (0) = Ā(S) δα,αS , with Ā(P ) =

√
Po and Ā(S) = 10−3. The idler products, of frequency

f1 = fP − fS, f2 = fP + fS, and f3 = 2fP − fS were defined with initial amplitudes of

zero. Again, Po serves as a relative measure of the RF input power, which we varied as we

calculated signal gain as a function of fS using Eq. (53). Figure 7(b) is a sketch exemplifying

the matching of pump, signal, and 3WM idler frequencies to the band structure.

In Fig. 9 we present calculations of 3WM signal gain GS(`T ), again computed via Eq. 53,

as a function of fS for different values of pump frequency fP , relative RF input power Po,

waveguilde length `T , and relative DC bias ADC . In all of the panels the blue curve is the
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optimal signal gain corresponding to pump frequency just above the gap (fP = 8.144 GHz),

with Po = 0.0049, `T = 2 m, and ADC = 0.01. All curves show the behavior of multiwave

mixing as a function of fS: a smooth broadband 3WM contribution centered about fP/2

and a 4WM contribution concentrated at both ∼ 4 GHz and ∼ 12 GHz, equidistant from

fP . The 4WM features show the characteristic undulation with fS that we saw in Fig. 8. In

contrast, the 3WM contributions show smooth progression with fS because the frequencies

of signal and 3WM idler match to the same lowest-lying dispersion-frequency band, as in

the sketch of Fig 7(b). Moreover, group velocity of this first band, as shown in Fig 4(b), is

nearly constant throughout the width of the band.

In Fig. 9(a) we varied ADC to show how the 3WM signal gain collapses beyond ADC ∼= 0.1.

As ADC increases, the propensity for higher amplitude response increases as the traveling

wave propagates down the waveguide. Initially, this translates into higher 3WM signal gain,

resulting in an optimal gain at ADC ∼= 0.1. However, recalling our introductory remarks that

4WM will begin to dominate 3WM beyond amplitude threshold IRF (x, t) ∼ 2IDC , as ADC

is increased past ADC ∼= 0.1 the amplitude response will eventually exceed this threshold.

The collapse begins in the central region of the 3WM band because this where 4WM is

strongest–recall from Fig. 2(c) that the 4WM process of ωS + ω3 = ω1 + ω2 is momentum

conserving when the signal frequency is near half the pump frequency. The broadband 3WM

signal gain is therefore confined to a finite range of applied DC.

In Fig. 9(b) we instead varied Po about the optimal gain scenario. Similar to panel

(a), as Po is increased from zero we see a corresponding increase in broadband 3WM signal

gain, but eventually the gain profile collapses from the center of the band when the RF

input power exceeds Po ∼= 0.0049. As in (a), increasing Po increases the amplitude response,

leading to an initial increase in gain. However, beyond Po ∼= 0.0049 the amplitude response

again exceeds the threshold of 4WM dominance. Thus, broadband 3WM signal gain exists

within a range of RF input powers.

In Fig. 9(c) we next varied the length of the waveguide `T . As `T is increased the run

length of the mixing traveling waves correspondingly increases leading to increased amplitude

response on exit from the waveguide. As in (a) and (b), there is an initial signal gain, but

again the amplitude threshold is exceeded beyond `T ∼= 2 m and the broadband profile

collapses. In contrast to broadband 4WM signal gain, which tends to grow exponentially

with `T , the 3WM signal gain has a limiting waveguide length.
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In Fig. 9(d) we varied the pump frequency fP , where the optimal 3WM signal gain

(blue curve) occurs when fP is placed just above the first stop gap, at fP = 8.144 GHz.

If pump frequency is moved to a position below the gap then the condition of ideal 3WM

phase matching diminishes, with gain profile collapsing from the center of the band. If

pump frequency is moved above fP ∼= 8.144 GHz, to fP = 9.0 GHz, then the 3WM signal

gain all but disappears. However, at fP = 9.0 GHz (red curve), we see the emergence of a

broadband 4WM gain profile about this value of pump frequency, albeit depressed within

its center. Note the smoothness of 4WM signal gain in this particular case; this occurs

because the pump, signal, and 4WM idler frequencies are all now matched to the same

second dispersion-frequency band.

2. Semi-Analytical Approximation of 3WM Signal Gain

To facilitate understanding of the underlying physics of broadband 3WM signal gain in

the presence of engineered dispersion we derived a two-band approximation in Appendix

D. The approximation applies to an undepleted pump, with fP near the first stop gap,

and with Po sufficiently small for broadband 3WM to occur. It tends to underestimate the

magnitude and breadth of gain, particularly if fP is positioned away from the gap, but it

provides insight into the underlying mechanism of the parametric gain.

In the approximation we assume amplitudes of signal and idler traveling waves can be

represented via the lowest dispersion-frequency band, i.e., α = 0, and we allow fP to be

positioned to either side of the first stop gap, treating the pump traveling wave as a su-

perposition involving the first two bands, i.e., α = 0,−1. From Eqs. (D4) and (D5), the

amplitudes of the two components of the pump traveling wave are then of the form

A
(P )
0 (x) ∼= A

(P )
0,+(Po, ADC) eiφ

(P )
+ (ADC)x + A

(P )
0,−(Po, ADC) eiφ

(P )
− (ADC)x, (54)

A
(P )
−1 (x) ∼= A

(P )
−1,+(Po, ADC) eiφ

(P )
+ (ADC)x + A

(P )
−1,−(Po, ADC) eiφ

(P )
− (ADC)x, (55)

with canonical phase coefficients given by Eq. (D6) as

φ
(P )
± (ADC) =

1

2

[
f

(P )
0,0 (ADC) + f

(P )
−1,−1(ADC)

]
± 1

2

√[
f

(P )
0,0 (ADC)− f (P )

−1,−1(ADC)
]2

+ 4f
(P )
0,−1(ADC) f

(P )
−1,0(ADC). (56)
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The canonical phase coefficients embody both self-phase modulation (SPM) of pump com-

ponents, via f
(P )
0,0 (ADC) and f

(P )
−1,−1(ADC), and cross-phase modulation (XPM) between com-

ponents, via f
(P )
0,−1(ADC) and f

(P )
−1,0(ADC). The mixing coefficients f

(P )
0,−1(ADC) and f

(P )
−1,0(ADC)

convey the strength of hybridization of the supermode traveling wave between the two bands

as it propagates down the waveguide.

Our approximation therefore simplifies the supermode representation of the pump trav-

eling wave to just the two most significant components, adequate for Po � 1. Because the

pump is comprised of these two component waveforms, there are then two criteria for phase

matching of pump with signal and idler. From Eq. (D12) the relevant phase relationships

may be defined as

ϕ±(ADC) = φ
(P )
± (ADC)− f (S)

0,0 (ADC)− f (1)
0,0 (ADC)−∆β

(1)
3wm, (57)

each of which depends on (i) momentum conservation, in terms of Bloch wavenumbers, (ii)

SPM of both signal and idler, matched to the same lowest-lying band, and (iii) a canonical

pump phase coefficient, φ
(P )
− (ADC) or φ

(P )
+ (ADC), which contains both SPM and inter-band

XPM of the pump components.

As either of ϕ±(ADC) tends to zero a corresponding channel of signal gain may arise.

From Eq. (D22), the gain coefficient of each of the two channels may be expressed as

g±(Po, ADC) =

√
f̃

(S,1̄,P )
± (Po, ADC) f̃

(1,S̄,P )
± (Po, ADC)− 1

4
ϕ±(ADC)2, (58)

where, via Eq. (D11), we defined canonical nonlinear mixing coefficients

f̃ (µ,ν̄,P )
m (Po, ADC) = 2ADC

∑
α

f
(µ,ν̄,P )
0,0,α A(P )

α,m(Po, ADC), (59)

which are real-valued for the loading design of Table II. The resulting two-channel signal

gain may be approximated from Eq. (D27) as

GS(Po, ADC , `T ) ∼=∣∣∣∣∣A+(Po, ADC)∗
[

cosh g+(Po, ADC) `T −
iϕ+(ADC)

2g+(Po, ADC)
sinh g+(Po, ADC) `T

]
eiϕ+(ADC) `T /2

+A−(Po, ADC)∗
[

cosh g−(Po, ADC) `T−
iϕ−(ADC)

2g−(Po, ADC)
sinh g−(Po, ADC) `T

]
eiϕ−(ADC) `T /2

∣∣∣∣∣
2

,

(60)
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FIG. 10. (a) Real and imaginary parts of approximate gain coefficients of Eq. (58) as a function

of signal frequency, as described in the text. (b) Approximate 3WM signal gain of Eqs. (60) and

(62) as a function of signal frequency. All results employed mixing coefficients calculated from the

loading design of Table II.

where, via Eq. (D26), we have defined pseudo dimensionless amplitudes

A±(Po, ADC) =

∑
m=±

f̃
(1,S̄,P )
m (Po, ADC)− if̃ (1,S̄,P )

∓ (Po, ADC)

f̃
(1,S̄,P )
± (Po, ADC)− f̃ (1,S̄,P )

∓ (Po, ADC)
. (61)

Note that if the two channels of Eq. (60) were ideally separable we could express them as

G
(±)
S (Po, ADC , `T ) =

|A±(Po, ADC)|2
∣∣∣∣cosh g±(Po, ADC) `T −

iϕ±(ADC)

2g±(Po, ADC)
sinh g±(Po, ADC) `T

∣∣∣∣2. (62)

If hybridization is very weak, i.e., f
(P )
0,−1(ADC) ∼= 0 and f

(P )
−1,0(ADC) ∼= 0, then φ

(P )
+ (ADC) ∼=

f
(P )
0,0 (ADC) and φ

(P )
− (ADC) ∼= f

(P )
−1,−1(ADC). As hybridization increases, such as by structurally

altering the loading design or by simply increasing the DC dynamically, the splitting between

φ
(P )
+ (ADC) and φ

(P )
− (ADC) also increases, such that for the loading design of Table II, we find

φ
(P )
+ (ADC) (φ

(P )
− (ADC)) becomes larger (smaller) and eventually strongly positive (negative).
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Since the terms f
(S)
0,0 (ADC) + f

(1)
0,0 (ADC) + ∆β

(1)
3wm tend to be collectively positive in Eq. (57),

for the loadings of Table II, we find ϕ+(ADC) tends to tune to zero as the hybridization

increases, whereas ϕ−(ADC) becomes increasing detuned from zero, becoming more and

more negative. Figure 10(a) shows the resulting impact this has on the gain coefficients of

Eq. (58) when these are computed using the band structure, for the case of Po = 0.012,

ADC = 0.1, `T = 2 m, and fP = 8.014 GHz. Here g+(Po, ADC) as a function of fS implies

a channel exhibiting broadband signal gain whereas g−(Po, ADC) corresponds to a channel

that is essentially inert.

The underlying physics can be explained as follows. In the supermode representation

the injected traveling wave is hybridized by the dispersive property of the loadings, made

increasing so by applied DC, for example. A pump traveling wave with frequency just below

the gap takes on an additional component corresponding to the excited band state at kp of the

second dispersion-frequency band, with occupancy of this excited state at x proportional to∣∣∣A(P )
−1 (x)

∣∣∣2. One then has XPM induced between the two superposed components of the wave,

which in turn creates a strong, broadband condition of phase matching, i.e., ϕ+(ADC) ∼= 0.

This condition of phase matching persists whether the pump frequency is just below or just

above the gap, with optimal phase matching occurring just above the gap.

In contrast, if the pump frequency is set well below the first stop gap, such that the

pump traveling wave can be described by just one component, with amplitude A
(P )
0 (x) ∼=

A
(P )
0 (Po, ADC) eif

(P )
0,0 (ADC)x, then in analogy with Eq. (57), the phase matching condition in

this case is

ϕ(ADC) = f
(P )
0,0 (ADC)− f (S)

0,0 (ADC)− f (1)
0,0 (ADC)−∆β

(1)
3wm, (63)

which is the no-hybridization limit of ϕ+(ADC). For the loading design of Table II one finds

the condition ϕ(ADC) ∼= 0 is never definitively established, i.e., strong inter-band XPM is

required to create the phase matching condition, with additional tuning supplied by a DC

bias. This explains why the signal gain diminishes in Fig. 9(d) as fP is decreased below the

stop gap. The engineered dispersion, via the stop gap, is truly necessary to establish the

broadband 3WM signal gain, borne out in the details of the band structure.

Figure 10(b) illustrates 3WM signal gain computed from the approximation of Eqs. (60)

and (62) using the band structure of the loading design of Table 1. The figure shows the

dominance of the + channel in defining GS(Po, ADC , `T ). The results are comparable to the
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optimal signal gain presented in Fig. 9 (blue curve), although we had to set the RF input

power Po ∼= 0.012 to a value about twice as large as that of Fig. 9 in order to obtain the

comparison.

In Fig. 9 we calculated a maximum 3WM signal gain of ∼ 30 dB. This is larger than the

experimental results of Fig. 3(b) of Ref. (15), where a 3WM signal gain of ∼ 10 dB was

measured. As in our earlier comments regarding 4WM, the higher theoretical gain may be

attributable to (i) the lack of a finite intrinsic Q in our model and (ii) the stop gap size and

position–in the results of Fig. 3(b) of Ref. (15) the loading design differs markedly from

Table II, particularly the design of the first stop gap at ∼ 16 GHz rather than ∼ 8 GHz.

Nevertheless, as we saw in Fig. 9, operation of the KIT with a DC bias increases its efficacy

as an amplification device because the 3WM signal gain so produced is a much smoother

function of signal frequency. Given a loading design more optimal for 4WM, we also saw in

Fig. 9 that 4WM features exist in the center of the 3WM signal band. Using our theoretical

framework as a guide, we are presently engaged in follow-on research to obtain a loading

design that maximizes the 3WM gain and bandwidth, and is also free of the 4WM features

seen in Fig. 9. Important highlights from the results of our numerical calculations are:

(i) Dispersion-frequency bands of the KIT amplifier may be calculated from knowledge of

loading design, which creates stop gaps between bands and group velocities that differ

between bands, as shown in Fig. 4.

(ii) A forward-traveling current of the KIT amplifier may be represented by a superposition

of these dispersion-frequency band states, as in Eq. (29), where the slowly-varying

dimensionless amplitudes A
(P )
α (x) of the superposition are solutions of the coupled

nonlinear first-order differential equations of Eq. (50). Initial boundary conditions

match the frequency of the traveling wave to a particular band state, but as the

traveling wave propagates along the CPW it hybridizes into adjacent band states. The

superposition may be approximated by a number Nb of the lowest-lying bands, but as

input power increases hybridization becomes stronger, requiring Nb to be increased to

retain numerical accuracy.

(iii) Onset, magnitude, and bandwidth of both 4WM and 3WM signal gain is obtained

solely from knowledge of loading design, as in Figs. 8 and 9.
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(iv) Apart from external sources, such as impedance mismatch, intrinsic undulations in

4WM signal gain as a function of signal frequency are characteristic of matching of

signal and idler frequencies to bands on either side of the first stop gap, as pictured

in Fig. 7(a). Because signal and idler frequencies lie in different bands, they have

different group velocities as a function of changing wavenumber, as calculated in Fig.

4(b), which means momentum conservation and overall phase-matching cannot be

robustly maintained as signal frequency is varied.

(v) In contrast to 4WM signal gain, 3WM signal gain is a relatively smooth function of

signal frequency because signal and idler are matched to the same lowest-lying band,

as in Fig. 7(b).

IV. CONCLUDING REMARKS

We presented a theoretical framework that describes the operation of a KIT amplifier

designed with periodic loadings placed along the length of its CPW. Within this framework

we first developed a metamaterial band theory of the dispersion engineering using Floquet-

Bloch waves as a basis. From the band theory we constructed nonlinear forward-traveling

waves as Floquet-Bloch supermodes built up from band eigenstates, showing how one defines

and computes the slowly-varying amplitudes of these traveling waves. We then applied

the supermode representation to a formulation of parametric mixing of an injected pump

and signal, showing how one can calculate signal gain as a function of signal frequency,

both with and without application of a DC bias. Our framework can be applied to other

equivalent-circuit models of nonlinear traveling-wave parametric amplifiers that leverage

periodic engineered dispersion to generate signal amplification, such as TWPAs based on

Josephson junctions in lumped LC transmission lines.

In our analysis of a model KIT amplifier using the framework we came to several impor-

tant conclusions. One is that, in the absence of a DC bias, the 4WM signal gain exhibits

intrinsic undulations as a function of signal frequency. These occur apart from any extrin-

sic sources that may be encountered in real KIT amplifiers, such as ripples attributable to

impedance mismatch between end nodes of the CPW. The cause of intrinsic undulations is

the fact that injected signal and 4WM idler product are matched to different dispersion-

frequency bands, as in Fig 7(a). As signal frequency is varied the criterion of phase matching
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cannot be maintained robustly because group velocity differs in the two bands, as demon-

strated in Fig 4(b). The problem is exacerbated by the presence of multiple channels of

parametric scattering involving excited-band-state constituents of the supermode traveling

waves. The contributions of excited band states becomes more prevalent the higher the RF

input power and the longer the waveguide length because these factors increase the sensitiv-

ity of traveling waves to the dispersive property of engineered loadings. Each new channel

of parametric scattering, resulting from the symmetry-breaking of the loading design, cor-

responds to a distinct phase matching criterion and channel of signal gain. Thus, with

variation of signal frequency, each phase-matching criterion exhibits either strengthening or

weakening, which can lead to large non-monotonic variations in signal gain.

Intrinsic undulations are a general consequence of 4WM in the presence of engineered

dispersion because, on average, group velocity cannot remain invariant from band to band

as one progresses upward through the dispersion-frequency manifold. The issue may be

mitigated by (i) the choice of nonlinear traveling-wave parametric amplifier, (ii) a design

of loadings that minimizes the size of stop gaps, (iii) reduction of waveguide length, (iv)

minimization of required RF input power, or (v) application of a DC bias, as described

below. One can model the amplifier using the present framework to establish the extent

of intrinsic undulations and then compare these to Fourier analysis of the length scales in

the signal gain of the actual amplifier. Assuming traveling waves of frequencies adjacent to

the first stop gap, if intrinsic undulations are mitigated to a single channel of contribution

then the length scale of undulations should be the order of the stop-gap size. In the case

of the KIT amplifier of Table II, with large stop gaps at every third multiple of the pump

frequency, we find very many fine undulations due to the effect of a number of contributing

channels.

A second conclusion of our analysis of the KIT amplifier is that we can mitigate the issue

of intrinsic signal-gain undulation by applying a DC bias, thereby leveraging 3WM signal

gain on either side of the center of the resulting band. Incidental 4WM features present in

the center of the 3WM band may be addressed by any of the methods mentioned above,

although removal of these incidental features is not essential to operation of the amplifier.

The 3WM signal gain is achievable at an order of magnitude less RF input power than

4WM signal amplification, albeit with reduced gain when compared to 4WM. Because the

injected signal and 3WM idler are matched to the same first dispersion-frequency band, as
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in Fig 7(b), phase matching remains robust as signal frequency is varied, with the result that

3WM signal gain is a very smooth function of signal frequency. Caveats to utilization of

3WM signal amplification include the limited range of input powers and waveguide lengths

permitted, due to the continual presence of 4WM processes, which tend to dominate at

higher signal amplitude.

A last point of our analysis is that we showed how dispersion engineering generates

3WM signal gain. In our presentation of results we developed an analytical approximation

of the 3WM signal, given by the two-channel form of Eq. (60). We showed how phase

matching arises in the + channel of this approximation via ϕ+(ADC) ∼= 0, where ϕ+(ADC)

is given by Eqs. (56) and (57). From φ
(P )
+ (ADC) of Eq. (56) we saw how inter-band XPM

of the pump, i.e, cross-phase modulation between components of the dispersion-hybridized

supermode traveling wave, create the necessary condition of phase matching, leading to the

gain coefficient and signal gain depicted in Fig 10. For the engineered dispersion of Table II,

the phase matching condition was shown to be particularly tuned when the pump frequency

was just above the stop gap.

Photonic metamaterials of the micro scale and smaller that exhibit strongly-correlated

behavior continue to be an interesting and exploitable realm of quantum physics.26 Nonlinear

traveling-wave parametric amplifiers, like the present KIT amplifier, represent one such

category of device. In these devices one must account for the physical role of dispersion

engineering to fully understand and quantify their behavior. In the case of periodic loading

designs, the photonic band structure is essential to this comprehension, both within the

waveguide and at its nodes, just as electronic band structure is essential to understanding

many basic electromagnetic properties of solids, both in the bulk and at material interfaces.

We hope that our theoretical framework can help to build better amplifiers and also stimulate

new avenues of research.

ACKNOWLEDGMENTS

This work was supported by the Army Research Office and the Laboratory for Physical

Sciences under EAO221146, EAO241777, and the NIST Quantum Initiative. RPE acknowl-

edges grant 60NANB14D024 from the US Department of Commerce, NIST. We have ben-

efited greatly from discussions with Peter Day, Tom Ohki, Hsiang-sheng Ku, and Mustafa

45



Bal. This work is property of the US Government and not subject to copyright.

Appendix A: Summation Relations

Sums that arise in the metamaterial band theory of the KIT amplifier are

S
(1)
n,n′(α, β) =

∞∑
n′′=−∞

sinπα (n− n′′) sin πβ (n′′ − n′)
π2 (n− n′′) (n′′ − n′)

, (A1)

S
(2)
n,n′(α, β) =

∞∑
n′′=−∞

n′′
sin πα (n− n′′) sin πβ (n′′ − n′)

π2 (n− n′′) (n′′ − n′)
, (A2)

where we assume 0 < α, β < 1. Alternatively, these may be expressed as

S
(1)
n,n′(α, β) =

∫ α

0

dα′
∫ β

0

dβ′
∞∑

n′′=−∞

cosπα′ (n− n′′) cos πβ′ (n′′ − n′), (A3)

S
(2)
n,n′(α, β) = − i

π
lim
φ→0

∂

∂φ

∫ α

0

dα′
∫ β

0

dβ′
∞∑

n′′=−∞

eiπφn
′′

cosπα′ (n− n′′) cos πβ′ (n′′ − n′).

(A4)

The cosine functions that appear in the above integral expressions may be written in the

form cos x = (eix + e−ix)/2, such that their respective sums may be evaluated using the

definition of the delta function given by δ(x) = (1 /2)
∞∑
n=0

e±iπxn. In this way the sums are

removed from the above integrals and we now have

S
(1)
n,n′(α, β) =

∫ α

0

dα′
∫ β

0

dβ′ [δ(α′ + β′) cosπ (α′n+ β′n′) + δ(α′ − β′) cosπ (α′n− β′n′)] ,

(A5)

S
(2)
n,n′(α, β) = − i

2π
lim
φ→0

∂

∂φ

∫ α

0

dα′
∫ β

0

dβ′
[
δ(φ− α′ − β′)eiπ(α′n+β′n′)

+ δ(φ+ α′ + β′)e−iπ(α′n+β′n′) + δ(φ− α′ + β′)eiπ(α′n−β′n′) + δ(φ+ α′ − β′)e−iπ(α′n−β′n′)
]
.

(A6)

In Eq. (A5) the first term in square brackets evaluates to zero since α, β > 0 while

evaluation of the second term depends on the relative magnitudes of α and β. The integrated

result is then

S
(1)
n,n′(α, β) =

1

π (n− n′)
[Θ(β − α) sinπα (n− n′) + Θ(α− β) sinπβ (n− n′)] , (A7)
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where Θ(x) is a step function given by

Θ(x) =


0 ; x < 0

1
2

; x = 0

1 ; x > 0

. (A8)

Similarly, in Eq. (A6), weighing also the magnitude of φ, we have the intermediate step

S
(2)
n,n′(α, β) =

1

2π2 (n− n′)
lim
φ→0

∂

∂φ

{
[Θ(φ− α− β)−Θ(φ− α + β)] eiπ[α(n−n′)+φn′]

+ [Θ(−φ− α + β)−Θ(−φ− α− β)] e−iπ[α(n−n′)−φn′]

+ [Θ(−φ− α− β)−Θ(−φ+ α− β)] eiπ[β(n−n′)+φn]

+ [Θ(φ+ α− β)−Θ(φ− α− β)] e−iπ[β(n−n′)−φn]

}
. (A9)

Differentiating with respect to φ then taking the limit as φ→ 0 we arrive at

S
(2)
n,n′(α, β) =

1

π (n− n′)
[Θ(β − α) n′ sin πα (n− n′) + Θ(α− β) n sin πβ (n− n′)] . (A10)

Appendix B: Dispersion Matrix of Arbitrary Loading Design of Even Symmetry

Assume a unit cell of alternating regions of loadings and non-loadings, symmetric about

the center of the cell, as in Fig. 1(b). The total number of regions is R, an odd whole

number, with region (R+ 1)/2 at the center of the cell. Pairs of regions r and R− r+ 1, on

either side of the center region, are identical in length ∆xr and have the same capacitance

per unit length Cr and linear inductance per unit length Lr.

Substituting Eq. (5) into the Fourier coefficients of Eqs. (12) and (13) we initially find C−1
n

Lo
−1
n

 =
i

2πn

R∑
r=1

 1
Cr
1
Lr

(e−2πin∆xr/`o − 1
)
e−2πinxr/`o . (B1)

Then exploiting the symmetry of the unit cell, as described above, we obtain after some

algebra the real-valued coefficients C−1
n

Lo
−1
n

 =
(−1)n

πn


1

C(R+1)/2

1
L(R+1)/2

 sin
(
π∆x(R+1)/2 n /`o

)

+
1

πn

(R−1)/2∑
r=1

 1
Cr
1
Lr


[

sin

(
2π

r∑
r′=1

∆xr′ n /`o

)
− sin

(
2π

r−1∑
r′=1

∆xr′ n /`o

)]
. (B2)
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The sums of this expression may be further simplified to C−1
n

Lo
−1
n

 =


1

C(R+1)/2

1
L(R+1)/2

 δn,0 +
1

πn

(R−1)/2∑
r=1

 1
Cr −

1
Cr+1

1
Lr −

1
Lr+1

 sin

(
2π

r∑
r′=1

∆xr′ n /`o

)
. (B3)

With the aid of Appendix A, if we then substitute Eq. (B3) into Eq. (16), and apply the

sums S
(1)
n,n′(α, β) and S

(2)
n,n′(α, β) defined in Eqs. (A1) and (A2), we obtain

Dn,n′(k) =
1

L(R+1)/2C(R+1)/2

(k + 2πn /`o )2δn,n′

+
1

π (n− n′)

(R−1)/2∑
r=1

[
1

L(R+1)/2

( 1

Cr
− 1

Cr+1

)(
k + 2πn /`o

)
+
( 1

Lr
− 1

Lr+1

) 1

C(R+1)/2

(
k + 2πn′ /`o

)]
sin

(
2π

r∑
r′=1

∆xr′ (n− n′) /`o

)
(k + 2πn′ /`o )

+

(R−1)/2∑
r1=1

(R−1)/2∑
r2=1

( 1

Lr1
− 1

Lr1+1

)( 1

Cr2
− 1

Cr2+1

)

×

[
k S

(1)
n,n′

2

r1∑
r′1=1

∆xr′1 /`o , 2

r2∑
r′2=1

∆xr′2 /`o


+

2π

`o
S

(2)
n,n′

2

r1∑
r′1=1

∆xr′1 /`o , 2

r2∑
r′2=1

∆xr′2 /`o

](k + 2πn′ /`o

)
(B4)

Substituting the summation evaluations given by Eqs. (A7) and (A10) we arrive at

Dn,n′(k) =
1

L(R+1)/2C(R+1)/2

(k + 2πn /`o )2δn,n′ +
1

π (n− n′)

×
(R−1)/2∑
r=1

[
1

L(R+1)/2

( 1

Cr
− 1

Cr+1

)(
k + 2πn /`o

)
+
( 1

Lr
− 1

Lr+1

) 1

C(R+1)/2

(
k + 2πn′ /`o

)]

× sin

[
2π

r∑
r′=1

∆xr′ (n− n′) /`o

](
k + 2πn′ /`o

)
+

1

π (n− n′)

(R−1)/2∑
r1=1

(R−1)/2∑
r2=1

Θ(r1 − r2)

×

[( 1

Lr1
− 1

Lr1+1

)( 1

Cr2
− 1

Cr2+1

)(
k+2πn /`o

)
+
( 1

Lr2
− 1

Lr2+1

)( 1

Cr1
− 1

Cr1+1

)(
k+2πn′ /`o

)]

× sin

[
2π

r2∑
r′=1

∆xr′ (n− n′) /`o

](
k + 2πn′ /`o

)
, (B5)

where we have used the fact that

Θ

(
2

r1∑
r=1

∆xr /`o − 2

r2∑
r′=1

∆xr′ /`o

)
= Θ(r1 − r2), (B6)
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with Θ(r1 − r2) defined as in Eq. (A8).

Explicitly evaluating Θ(r1 − r2) in the expression of Dn,n′(k) above we obtain

Dn,n′(k) =
1

L(R+1)/2C(R+1)/2

(k + 2πn /`o )2δn,n′

+
1

π (n− n′)

(R−1)/2∑
r=1

{[ 1

L(R+1)/2

+
1

2

( 1

Lr
− 1

Lr+1

)]( 1

Cr
− 1

Cr+1

)(
k + 2πn /`o

)
+
( 1

Lr
− 1

Lr+1

)[ 1

C(R+1)/2

+
1

2

( 1

Cr
− 1

Cr+1

)](
k + 2πn′ /`o

)}

× sin

[
2π

r∑
r′=1

∆xr′ (n− n′) /`o

](
k + 2πn′ /`o

)
+

1

π (n− n′)

(R−1)/2∑
r1=2

r1−1∑
r2=1

[( 1

Lr1
− 1

Lr1+1

)( 1

Cr2
− 1

Cr2+1

)(
k + 2πn /`o

)
+
( 1

Lr2
− 1

Lr2+1

)( 1

Cr1
− 1

Cr1+1

)(
k + 2πn′ /`o

)]

× sin

[
2π

r2∑
r′=1

∆xr′ (n− n′) /`o

](
k + 2πn′ /`o

)
. (B7)

After some manipulation of sums, the above expression of Dn,n′(k) may be written more

succinctly as

Dn,n′(k) =
1

L(R+1)/2C(R+1)/2

(
k + 2πn /`o

)2

δn,n′

+

[
Dn−n′({Lr} , {Cr})

(
k+2πn /`o

)
+Dn−n′({Cr} , {Lr})

(
k+2πn′ /`o

)](
k+2πn′ /`o

)
,

(B8)

where we have defined coefficients

Dn({Lr} , {Cr}) =
1

2πn

(R−1)/2∑
r=1

(
1

Lr
+

1

Lr+1

)(
1

Cr
− 1

Cr+1

)
sin

(
2π

r∑
r′=1

∆xr′ n /`o

)
. (B9)

Equations (B8) and (B9) express an element of the dispersion matrix appropriate for an

arbitrary loading design.

Appendix C: Derivation of Nonlinear Traveling-Wave Equations

Consider a solution of Eqs. (2) and (3) involving a mix of forward-traveling RF waves,

where the µ-th such traveling wave propagates with wave number kµ and frequency ωµ. Inside
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the waveguide the voltage and current of each wave are expressed in terms of Floquet-Bloch-

like functions, similar to Eq. (7), but with coefficients of Fourier expansion slowly varying

in x, in the manner of Eq. (26). Specifically, we write

 V
(µ)
kµ

(x, t)

I
(µ)
kµ

(x, t)

 =
∞∑

n=−∞

 V
(µ)
n (x)

I
(µ)
n (x)

 ei(kµ+2πn/`o )x−iωµt, (C1)

where in the sum over µ we also include complex-conjugate terms. That is, for every index µ,

for which we have kµ and ωµ, there is another complex-conjugate term −µ corresponding to

k−µ = −kµ and ω−µ = −ωµ, with amplitude coefficients V
(−µ)
n (x) = V

(µ)
−n (x)

∗
and I

(−µ)
n (x) =

I
(µ)
−n (x)

∗
. This nomenclature ensures voltage and current are real-valued, and permits simpler

notation for nested summations. With DC given by IDC , the full solution may be expressed

as

V (x, t) =
∑
µ

V
(µ)
kµ

(x, t), (C2)

I(x, t) = IDC +
∑
µ

I
(µ)
kµ

(x, t), (C3)

which includes the complex-conjugate µ terms.

For example, substituting Eqs. (C1) through (C3) into Eq. (1) we obtain

L(x, t) = Lo(x)

{
1 + 2

IDC
I2
∗

∑
µ

∞∑
n=−∞

I(µ)
n (x) ei(kµ+2πn/`o )x−iωµt

+
1

I2
∗

∑
µ,µ′

∞∑
n,n′=−∞

I(µ)
n (x) I

(µ′)
n′ (x) ei[kµ+kµ′+2π(n+n′)/`o ]x−i(ωµ+ωµ′)t

}
, (C4)

where both the sums over µ and µ′ include complex conjugates. Then substituting Eqs. (C1)

through (C4) into Eqs. (2) and (3) we obtain an expression of I
(µ)
n (x) and V

(µ)
n (x) decoupled

from one another. As in the linear limit, we again use the discrete Fourier transforms of

C(x) and Lo(x), as given in Eqs. (10) and (11), and we also apply Eqs. (12) and (13). Since

V
(µ)
n (x) and I

(µ)
n (x) are slowly varying in x we may treat the functions of discrete Fourier

expansions as approximately orthogonal. In this way we obtain an intermediate expression
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of the current given by

∞∑
n′=−∞

C−1
n−n′

(
kµ + 2πn /`o − i

∂

∂x

)(
kµ + 2πn′ /`o − i

∂

∂x

)
I

(µ)
n′ (x) ∼=

ω2
µ

[
1 +

(
IDC
I∗

)2
]

∞∑
n′=−∞

Lon−n′ I
(µ)
n′ (x)

+
IDC
I2
∗
ω2
µ

∑
µ′,µ′′

(ωµ′+ωµ′′=ωµ)

∑
n′,n′′

Lon−n′−n′′ I
(µ′)
n′ (x) I

(µ′′)
n′′ (x) ei(kµ′+kµ′′−kµ)x

+
ω2
µ

3I2
∗

∑
µ′,µ′′,µ′′′

(ωµ′+ωµ′′+ωµ′′′=ωµ)

∑
n′,n′′,n′′′

Lon−n′−n′′−n′′′ I
(µ′)
n′ (x) I

(µ′′)
n′′ (x) I

(µ′′′)
n′′′ (x) ei(kµ′+kµ′′+kµ′′′−kµ)x.

(C5)

Via Eq. (26) we keep only the first derivatives in x on the left side of Eq. (C5). Also, to

both sides of this equation we multiple by Lo
−1
n′′−n, of Eq. (13), and then sum over n. With

change of arbitrary index names the result may be expressed as

− 2i
∑
n′

Λn,n′(kµ)
∂

∂x
I

(µ)
n′ (x) ∼= ω2

µ

[
1 +

(
IDC
I∗

)2
]
I(µ)
n (x)−

∑
n′

Dn,n′(kµ)I
(µ)
n′ (x)

+
IDC ω

2
µ

I2
∗

∑
µ′,µ′′

(ωµ′+ωµ′′=ωµ)

∑
n,n′,n′′

(n′+n′′=n)

I
(µ′)
n′ (x) I

(µ′′)
n′′ (x) ei(kµ′+kµ′′−kµ)x

+
1

3

ω2
µ

I2
∗

∑
µ′,µ′′,µ′′′

(ωµ′+ωµ′′+ωµ′′′=ωµ)

∑
n,n′,n′′,n′′′

(n′+n′′+n′′′=n)

I
(µ′)
n′ (x) I

(µ′′)
n′′ (x) I

(µ′′′)
n′′′ (x) ei(kµ′+kµ′′+kµ′′′−kµ)x, (C6)

where we have made use of (23) and introduced a new matrix of elements

Λn,n′(k) =
∑
n′′

Lo
−1
n−n′′ C

−1
n′′−n′ [k + π (n′′ + n′) /`o ] . (C7)

Solving the eigenproblem of Eqs. (17) and (18) gives us the band structure of dispersion

frequencies Ωαµ(kµ) of the KIT. The incident traveling wave µ of frequency ωµ is matched

to a particular dispersion frequency such that ωµ = Ωαµ(kµ), where kµ and αµ are matching

wave number and band index, respectively. Adiabatic propagation of the wave, with slowly-

varying amplitudes V
(µ)
n (x) and I

(µ)
n (x), allows us to express the solution as a superpositions

of band states corresponding to matching kµ, as in Eq. (29). The amplitude A
(µ)
α (x) is

introduced as dimensionless and slowly varying in x.
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If we apply Eq. (29), along with the band-matching condition ωµ = Ωαµ(kµ), to Eq. (C6),

we may make use of Eqs. (17) and (18), and the orthonormality of left and right vectors in

Eqs. (19) and (20) to find

− 2i
∑
α′

Λ̃α,α′(kµ)
∂

∂x
A

(µ)
α′ (x) ∼=

[
Ωαµ(kµ)2 (1 + A2

DC

)
− Ωα(kµ)2]A(µ)

α (x)

+ Ωαµ(kµ)2ADC
∑
α′,α′′

∑
µ′,µ′′

(ωµ′+ωµ′′=ωµ)

∑
n,n′,n′′

(n′+n′′=n)

u(α)
n (kµ) e

(α′)
n′ (kµ′) e

(α′′)
n′′ (kµ′′)

× A
(µ′)
α′ (x)A

(µ′′)
α′′ (x) ei(kµ′+kµ′′−kµ)x

+
1

3
Ωαµ(kµ)2

∑
α′,α′′,α′′′

∑
µ′,µ′′,µ′′′

(ωµ′+ωµ′′+ωµ′′′=ωµ)

∑
n,n′,n′′,n′′′

(n′+n′′+n′′′=n)

u(α)
n (kµ) e

(α′)
n′ (kµ′) e

(α′′)
n′′ (kµ′′) e

(α′′′)
n′′′ (kµ′′′)

× A
(µ′)
α′ (x)A

(µ′′)
α′′ (x)A

(µ′′′)
α′′′ (x) ei(kµ′+kµ′′+kµ′′′−kµ)x, (C8)

where ADC = IDC/I∗ and

Λ̃α,α′(kµ) =
∑
n,n′

Λn,n′(kµ)u(α)
n (kµ) e

(α′)
n′ (kµ). (C9)

Assuming the matrix of Eq. (C9) may be inverted we obtain the final form of the coupled

amplitude equations governing multiwave mixing within the KIT, viz.

− i ∂
∂x
A(µ)
α (x) ∼=

∑
α′

f
(µ)
α,α′(ADC)A

(µ)
α′ (kµ, x)

+ ADC
∑
α′,α′′

∑
µ′,µ′′

(ωµ′+ωµ′′=ωµ)

f
(µ,µ′,µ′′)
α,α′,α′′ A

(µ′)
α′ (x)A

(µ′′)
α′′ (x) ei(kµ′+kµ′′−kµ)x

+
1

3

∑
α′,α′′α′′′

∑
µ′,µ′′,µ′′′

(ωµ′+ωµ′′+ωµ′′′=ωµ)

f
(µ,µ′,µ′′,µ′′′)
α,α′,α′′,α′′′ A

(µ′)
α′ (x)A

(µ′′)
α′′ (x)A

(µ′′′)
α′′′ (x) ei(kµ′+kµ′′+kµ′′′−kµ)x.

(C10)

In the above expression we have defined band-hybridization coefficients

f
(µ)
α,α′(ADC) =

1

2
Λ̃−1
α,α′(kµ)

[
Ωαµ(kµ)2 (1 + A2

DC

)
− Ωα′(kµ)2] , (C11)

3WM coefficients

f
(µ,µ′,µ′′)
α,α′,α′′ =

1

2
Ωαµ(kµ)2

∑
n,n′,n′′

(n′+n′′=n)

∑
β

Λ̃−1
α,β(kµ)u(β)

n (kµ) e
(α′)
n′ (kµ′) e

(α′′)
n′′ (kµ′′), (C12)
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and 4WM coefficients

f
(µ,µ′,µ′′,µ′′′)
α,α′,α′′,α′′′ = 1

2
Ωαµ(kµ)2 ∑

n,n′,n′′,n′′′

(n′+n′′+n′′′=n)

∑
β

Λ̃−1
α,β(kµ)u

(β)
n (kµ) e

(α′)
n′ (kµ′) e

(α′′)
n′′ (kµ′′) e

(α′′′)
n′′′ (kµ′′′),

(C13)

where one may use the relation e
(α)
n (k−µ) = e

(α)
n (−kµ) = e

(α)
−n(kµ)

∗
, from Eq. (21), as applica-

ble, to assist in evaluation. Equation (C10) is a general description of the coupled amplitude

equations of multiwave mixing. The mixing coefficients of Eqs. (C11), (C12), and (C13)

may be computed directly from the band theory, as obtained from the solution of Eqs. (17)

and (18).

Appendix D: Approximation of 3WM Signal Gain

We approximate 3WM signal gain in the presence of a strong undepleted pump. Via Eqs.

(36) through (38), the amplitude equations of 3WM become

−i ∂
∂x
A(P )
α (x) ∼=

∑
α′

f
(P )
α,α′(ADC)A

(P )
α′ (x), (D1)

−i ∂
∂x
A(S)
α (x) ∼=

∑
α′

f
(S)
α,α′(ADC)A

(S)
α′ (x)+2ADC

∑
α′,α′′

f
(S,1̄,P )
α,α′,α′′ A

(1)
α′ (x)

∗
A

(P )
α′′ (x) e−i∆β

(1)
3wmx, (D2)

i
∂

∂x
A(1)
α (x)

∗ ∼=
∑
α′

f
(1)
α,α′(ADC)A

(1)
α′ (x)

∗
+ 2ADC

∑
α′,α′′

f
(1,S̄,P )
α,α′,α′′ A

(S)
α′ (x)A

(P )
α′′ (x)

∗
ei∆β

(1)
3wmx. (D3)

From our numerical analysis, the lowest two dispersion-frequency bands are sufficient for

the approximation of pump amplitudes, so we may estimate the solution of Eq. (D1) as

A
(P )
0 (x) ∼= A

(P )
0,+(Po, ADC) eiφ

(P )
+ (ADC)x + A

(P )
0,−(Po, ADC) eiφ

(P )
− (ADC)x, (D4)

A
(P )
−1 (x) ∼= A

(P )
−1,+(Po, ADC) eiφ

(P )
+ (ADC)x + A

(P )
−1,−(Po, ADC) eiφ

(P )
− (ADC)x, (D5)

with two distinct phase coefficients

φ
(P )
± (ADC) =

1

2

[
f

(P )
0,0 (ADC) + f

(P )
−1,−1(ADC)

]
± 1

2

√[
f

(P )
0,0 (ADC)− f (P )

−1,−1(ADC)
]2

+ 4f
(P )
0,−1(ADC) f

(P )
−1,0(ADC). (D6)

The amplitudes may be expressed as

A
(P )
α,±(Po, ADC) =

f
(P )
α,α (ADC)− φ(P )

∓ (ADC)

φ
(P )
± (ADC)− φ(P )

∓ (ADC)

√
Po, (D7)
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A
(P )
β,±(Po, ADC) =

f
(P )
β,α (ADC)

φ
(P )
± (ADC)− φ(P )

∓ (ADC)

√
Po, (D8)

where α = 0, β = −1 (α = −1, β = 0) for a pump frequency matched to the first (second)

band.

Applying the pump solution to the equations coupling signal to idler, and neglecting

higher-lying bands, we may write for the amplitudes of the first band

−i ∂
∂x
A

(S)
0 (x) ∼= f

(S)
0,0 (ADC)A

(S)
0 (x) +

∑
m=±

f̃ (S,1̄,P )
m (Po, ADC) e

i
[
φ
(P )
m (ADC)−∆β

(1)
3wm

]
x
A

(1)
0 (x)

∗
,

(D9)

i
∂

∂x
A

(1)
0 (x)

∗ ∼= f
(1)
0,0 (ADC)A

(1)
0 (x)

∗
+
∑
m=±

f̃ (1,S̄,P )
m (Po, ADC)

∗
e
−i

[
φ
(P )
m (ADC)−∆β

(1)
3wm

]
x
A

(S)
0 (x),

(D10)

where

f̃ (µ,ν̄,P )
m (Po, ADC) = 2ADC

∑
α

f
(µ,ν̄,P )
0,0,α A(P )

α,m(Po, ADC). (D11)

If we define a transformation A
(µ)
0 (x) = B(µ)(x) exp [if

(µ)
0,0 (ADC)x], for µ ∈ {S, 1}, and let

ϕ±(ADC) = φ
(P )
± (ADC)− f (S)

0,0 (ADC)− f (1)
0,0 (ADC)−∆β

(1)
3wm, (D12)

then we have

−i ∂
∂x
B(S)(x) ∼=

∑
m=±

f̃ (S,1̄,P )
m (Po, ADC) eiϕm(ADC)xB(1)(x)

∗
, (D13)

i
∂

∂x
B(1)(x)

∗ ∼=
∑
m=±

f̃ (1,S̄,P )
m (Po, ADC)

∗
e−iϕm(ADC)xB(S)(x). (D14)

To solve the coupled differential equations of B(S)(x) and B(1)(x)
∗

we introduce another

transformation

B(µ)(x) = C
(µ)
+ (x) eiϕ+(ADC)x/2 + C

(µ)
− (x) eiϕ−(ADC)x/2, (D15)

which yields

− i
[
∂

∂x
C

(S)
+ (x)

]
eiϕ+(ADC)x/2 − i

[
∂

∂x
C

(S)
− (x)

]
eiϕ−(ADC)x/2 ∼=

− 1

2
ϕ+(ADC)C

(S)
+ (x) eiϕ+(ADC)x/2 − 1

2
ϕ−(ADC)C

(S)
− (x) eiϕ−(ADC)x/2

+
∑
m=±

f̃ (S,1̄,P )
m (Po, ADC) eiϕm(ADC)x

[
C

(1)
+ (x)

∗
e−iϕ+(ADC)x/2 + C

(1)
− (x)

∗
e−iϕ−(ADC)x/2

]
,

(D16)
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i

[
∂

∂x
C

(1)
+ (x)

∗
]
e−iϕ+(ADC)x/2 + i

[
∂

∂x
C

(1)
− (x)

∗
]
e−iϕ−(ADC)x/2 ∼=

− 1

2
ϕ+(ADC)C

(1)
+ (x)

∗
e−iϕ+(ADC)x/2 − 1

2
ϕ−(ADC)C

(1)
− (x)

∗
e−iϕ−(ADC)x/2

+
∑
m=±

f̃ (1,S̄,P )
m (Po, ADC)

∗
e−iϕm(ADC)x

[
C

(S)
+ (x) eiϕ+(ADC)x/2 + C

(S)
− (x) eiϕ−(ADC)x/2

]
. (D17)

We then make an approximation by separately equating terms of the spatial harmonics

exp [iϕ±(ADC)x/2], on either side of Eqs. (D16) and (D17). In so doing we neglect terms

associated with beating of these harmonics. In this harmonic-balance approximation we

arrive at two distinct criteria of phase matching, embodied in pairs of coupled equations

−i ∂
∂x
C

(S)
± (x) ∼= −

1

2
ϕ±(ADC)C

(S)
± (x) + f̃

(S,1̄,P )
± (Po, ADC)C

(1)
± (x)

∗
, (D18)

i
∂

∂x
C

(1)
± (x)

∗ ∼= −
1

2
ϕ±(ADC)C

(1)
± (x)

∗
+ f̃

(1,S̄,P )
± (Po, ADC)

∗
C

(S)
± (x). (D19)

Thus, setting

C
(S)
± (x) = C̄

(S)
± (Po, ADC) eg±(Po,ADC)x, (D20)

C
(1)
± (x)

∗
= C̄

(1)
± (Po, ADC)

∗
eg±(Po,ADC)x, (D21)

we obtain the gain coefficient of each criterion, viz.

g±(Po, ADC) =

√
f̃

(S,1̄,P )
± (Po, ADC) f̃

(1,S̄,P )
± (Po, ADC)

∗
− 1

4
ϕ±(ADC)2, (D22)

such that B(S)(x) and B(1)(x)
∗

take the general form

B(S)(x) ∼=
[
C̄

(S)
+,+(Po, ADC) eg+(Po,ADC)x + C̄

(S)
+,−(Po, ADC) e−g+(Po,ADC)x

]
eiϕ+(ADC)x/2

+
[
C̄

(S)
−,+(Po, ADC) eg−(Po,ADC)x + C̄

(S)
−,−(Po, ADC) e−g−(Po,ADC)x

]
eiϕ−(ADC)x/2, (D23)

B(1)(x)
∗ ∼= f̃

(1,S̄,P )
+ (Po, ADC)

∗
[
C̄

(S)
+,+(Po, ADC) eg+(Po,ADC)x

ig+(Po, ADC) + 1
2
ϕ+(ADC)

+
C̄

(S)
+,−(Po, ADC) e−g+(Po,ADC)x

−ig+(Po, ADC) + 1
2
ϕ+(ADC)

]
e−iϕ+(ADC)x/2

+ f̃
(1,S̄,P )
− (Po, ADC)

∗
[
C̄

(S)
−,+(Po, ADC) eg−(ADC)x

ig−(Po, ADC) + 1
2
ϕ−(ADC)

+
C̄

(S)
−,−(Po, ADC) e−g−(Po,ADC)x

−ig−(Po, ADC) + 1
2
ϕ−(ADC)

]
e−iϕ−(ADC)x/2. (D24)
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The four constants C̄
(S)
±,±(Po, ADC) are determined from B(S)(0) = Ā(S), B(1)(0)

∗
= 0,

|∂B(S)(x)/∂x|x=0 = 0, and |∂B(1)(x)
∗
/∂x|x=0 = Ā(S)

∑
m=±

f̃
(1,S̄,P )
m (Po, ADC)

∗
. After some

algebra we obtain

C̄(S)
m,n(Po, ADC) = i

m

2
Am(Po, ADC)∗

[
1− i n ϕm(ADC)

2gm(Po, ADC)

]
Ā(S), (D25)

where m,n = ± and

A±(Po, ADC) =

∑
m=±

f̃
(1,S̄,P )
m (Po, ADC)− if̃ (1,S̄,P )

∓ (Po, ADC)

f̃
(1,S̄,P )
± (Po, ADC)− f̃ (1,S̄,P )

± (Po, ADC)
. (D26)

From Eqs. (D23) and (D25), the 3WM signal gain, GS(Po, ADC , `T ) ∼= |B(S)(`T )/Ā(S)|2,

may be expressed as

GS(Po, ADC , `T ) ∼=∣∣∣∣∣A+(Po, ADC)∗
[

cosh g+(Po, ADC) `T −
iϕ+(ADC)

2g+(Po, ADC)
sinh g+(Po, ADC) `T

]
eiϕ+(ADC) `T /2

+A−(Po, ADC)∗
[

cosh g−(Po, ADC) `T−
iϕ−(ADC)

2g−(Po, ADC)
sinh g−(Po, ADC) `T

]
eiϕ−(ADC) `T /2

∣∣∣∣∣
2

.

(D27)
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