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The ground state of the one-dimensional Bose-Hubbard model at unit filling undergoes the Mott-
superfluid quantum phase transition. It belongs to the Kosterlitz-Thouless universality class with
an exponential divergence of the correlation length in place of the usual power law. We present
numerical simulations of a linear quench both from the Mott insulator to superfluid and back. The
results satisfy the scaling hypothesis that follows from the Kibble-Zurek mechanism (KZM). In
the superfluid-to-Mott quenches there is no significant excitation in the superfluid phase despite
its gaplessness. Since all critical superfluid ground states are qualitatively similar, the excitation
begins to build up only after crossing the critical point when the ground state begins to change
fundamentally. The last process falls into the KZM framework.

I. INTRODUCTION

The study of the dynamics of phase transitions started
with the question posed by Kibble1,2. He noted that,
in the rapidly cooling post – Big Bang Universe, phase
transitions must lead to disparate local choices of the
broken symmetry vacuum. The resulting mosaic of do-
mains with independently chosen vacua will in turn pre-
cipitate formation of topological defects with observ-
able consequences. For instance, Kibble theorized that
the presently observed cosmological structures have been
seeded by cosmic strings – an example of such defects.

While the original estimate1 of defect density was in-
correct, as it relied on an equilibrium argument3 (hence,
densities did not depend on the phase transition rate),
the key question – whether transitions leave relics such
as topological defects in their wake – can be also posed in
the condensed matter setting and studied in the labora-
tory. The theory4–6 developed to estimate defect density
for the second order phase transition relies on their non-
equilibrium nature but also on the universality class of
the transition: It uses equilibrium critical exponents to
predict scaling of the density of defects and other exci-
tations with the quench timescale. The size of domains
within which symmetry breaking can be coordinated is
given by the size of the “sonic horizon” that estimates how
far the local choice of the broken symmetry can be com-
municated (and plays a similar role as the causal horizon
used byKibble2 to set lower bounds on defect density)

The usual estimate of the sonic horizon size relies on
a power-law scaling of the relaxation time and the heal-
ing length with a distance from the critical point that
is characterized by the dynamical and correlation length
critical exponents z and ν. A characteristic time-scale

t̂ ∼ τ
zν/(1+zν)
Q and a length-scale ξ̂ ∼ τ

ν/(1+zν)
Q are pre-

dicted, where the quench time τQ quantifies the rate of
the transition. The correlation length ξ̂ determines the
number of excitations as a function of τQ. The Kibble-
Zurek mechanism (KZM) has been confirmed by numer-
ical simulations7–22 and by experiments23–40 in a vari-
ety of settings, with most recent results providing evi-
dence of the KZM scaling laws33,34,41–47. Refinements
and extensions of KZM include phase transition in inho-
mogeneous systems (see 48 for a recent overview), gen-
eration of winding numbers in the limit when flux trap-
ping is a rare event29 (and KZM scaling must be suitably
adjusted49), and applications that go beyond topological
defect creation (see e.g. 50–53). Recent reviews related
to KZM are also available54–58.

In this paper we consider a zero-temperature quan-
tum phase transition. Despite important differences with
respect to thermodynamic transitions – where thermal
rather than quantum fluctuations act as seeds of symme-
try breaking – the KZM can be generalized to quantum
phase transitions22,59–76, see also 56–58 for reviews. The
quantum regime was also addressed in some of the recent
experiments46,47,77–81.

Recently a fully fledged scaling hypothesis was
proposed22,82,83 as a generalization and extension of the
predictive power of KZM, though some of its basic ingre-
dients were known from the beginning6,53,84–86. Since in
the adiabatic limit, when τQ → ∞, both scales t̂ and ξ̂
diverge, they should become the only relevant time and
length scales in the regime of low frequencies and long
wavelengths. This in turn suggests a dynamical scal-
ing hypothesis, similar to the (static) one in equilibrium
phase transitions, that during the quench all physical ob-
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servables depend on a time t through the scaled time t/t̂
and on a distance x through the scaled distance x/ξ̂.
What makes it really powerfull is the fact that the two
scales are not independent: t̂ ∼ ξ̂z. This space-time
renormalization hypothesis was confirmed in a precise
experiment47 where it proved useful in organizing the
experimental data. In the following we also find it useful
in organizing our numerical results.

In this paper we consider the Mott-superfluid quantum
phase transition in the 1D Bose-Hubbard model that be-
longs to the Kosterlitz-Thouless universality class. This
problem was touched upon in Ref. 87 where it was argued
that, since the correlation length diverges exponentially
near the critical point, one cannot ascribe a definite scal-
ing exponent w to ξ̂ ∼ τwQ except for w = 1 in the limit
of exceedingly slow τQ that are beyond any realistic ex-
periment. However, when the range of τQ is restricted to
one or two orders of magnitude, then an effective scaling
ξ̂ ∼ τwQ with an effective exponent w < 1 can be a con-
venient approximation. In this paper, we readdress the
problem, this time with fully fledged numerical DMRG
simulations. Like in a real experiment, there are limita-
tions that restrict the range of available quench times and
the KZ scaling hypothesis with effective exponents is a
convenient approximation. We simulate linear quenches
from the Mott insulator to superfluid, where the range
of correlations builds up as the tunnelling rate between
nearest-neighbor sites is turned on. The spatial profile
of the correlators and their time dependence satisfy the
scaling hypothesis.

We also simulate reverse linear quenches from the su-
perfluid to Mott insulator. Somewhat surprisingly, we
find the excitation during a ramp across the gapless su-
perfluid to be negligible as compared to the excitation
that builds up after crossing the critical point to the
Mott phase. Apparently, the different critical superfluid
ground states that are crossed by the linear ramp are
similar enough for the excitation to be negligible despite
their vanishing gap. What matters here is that a rela-
tively large change of the tunneling rate during the ramp
across the superfluid phase corresponds to a relatively
small change of the Luttinger liquid parameter K that
determines the ground state of the liquid. When mea-
sured by a distance between different ground states, the
superfluid phase can be effectively identified as a sin-
gle critical point. It is only after crossing to the Mott
phase that the ground state begins to change fundamen-
tally. This inevitably makes the excitations build up until
their growth is halted by the opening Mott gap. The last
crossover, that takes place at the time t̂ after crossing to
the Mott phase, is the essence of the quantum KZM. Our
simulations confirm this simple scenario by demonstrat-
ing that the excitation energy in the Mott phase satisfies
the KZ scaling hypothesis.

The paper is organized as follows. We begin with a
general discussion of the textbook version of the quan-
tum Kibble-Zurek mechanism in section II. This generic
version assumes gapfull phases on both sides of the transi-

tion and a power law divergence of the correlation length
at the critical point. These assumptions are relaxed in
section III where we introduce the 1D Bose-Hubbard
model and consider the phase transtion from Mott insula-
tor to superfluid that belongs to the Kosterlitz-Thouless
universality class. Here the divergence of the correlation
length on the Mott side is exponential and the whole su-
perfluid phase is gapless and critical. We recall relevant
predictions of Ref. 87 for this type of transition. In this
paper these results are corroborated by numerical simu-
lations described in sections IV and V. In section IV we
describe simulations of the Mott-to-superfluid transition
and in section V those of the reverse superfluid-to-Mott
quench. Finally, we briefly conclude in section VI.

II. QUANTUM KIBBLE-ZUREK MECHANISM

t
−t̂ 0 +t̂

adiabatic adiabatic

impulse

rate

gap

FIG. 1. As a system is driven across a generic quantum
critical point with a linear ramp ε(t) = t/τQ, the energy
gap between the ground state and the first relevant excited
state closes like |ε|zν and, at the same time, the transition
rate diverges like 1/|t|. The two are equal at ±t̂, where
t̂ ∼ τ

zν/(1+zν)
Q . The evolution must be non-adiabatic (im-

pulse in first approximation) between −t̂ and t̂.

A distance from a quantum critical point can be mea-
sured with a dimensionless parameter ε. The ground
state of the Hamiltonian H(ε) undergoes a fundamen-
tal change at ε = 0 when the correlation length in its
ground state diverges like

ξ ∼ |ε|−ν (1)

and the relevant gap closes like

∆ ∼ |ε|zν . (2)

The system, initially prepared in its ground state, is
driven across the critical point by a linear quench,

ε(t) =
t

τQ
, (3)

with a quench time τQ.
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The evolution sufficiently far from the critical point is
initially adiabatic. However, the rate of change of epsilon,∣∣∣∣ ε̇ε

∣∣∣∣ =
1

|t| , (4)

diverges at the gapless critical point. Therefore, the evo-
lution cannot be adiabatic in its neighborhood between
−t̂ and t̂, see Fig. 1. Here t̂ is the time when the gap (2)
equals the rate (4), so that:

t̂ ∼ τzν/(1+zν)
Q . (5)

Just before the adiabatic-to-non-adiabatic crossover at
−t̂, the state of the system is still approximately the adi-
abatic ground state at ε = −ε̂, where

ε̂ =
t̂

τQ
' τ−1/(1+zν)

Q , (6)

with a correlation length

ξ̂ ∼ ε̂−ν ∼ τν/(1+zν)
Q . (7)

In a first-order impulse approximation, this state “freezes
out” at −t̂ and does not change until t̂. At t̂ the frozen
state is no longer the ground state but an excited state
with a correlation length ξ̂. It is the initial state for the
adiabatic process that follows after t̂.

No matter how quantitatively accurate is the above
“freeze-out scenario”, this simple scaling argument estab-
lishes ξ̂ and t̂, interrelated via

t̂ ∼ ξ̂z, (8)

as the relevant scales of length and time, respectively.
What is more, in the adiabatic limit, when τQ → ∞,
both scales diverge becoming the unique scales in the
regime of long-wavelength and low-frequency. In analogy
to static critical phenomena, this uniqueness suggests a
scaling hypothesis22,82,83:

〈ψ(t)|O(x)|ψ(t)〉 = ξ̂−∆OFO

(
t/ξ̂z, x/ξ̂

)
. (9)

Here |ψ(t)〉 is the quantum state during the quench, O(x)
is an operator depending on a distance x, ∆O is its scal-
ing dimension, and FO its scaling function. The same
conclusions about scaling are reached when one follows
the narrative based on the sonic horizon6.

III. KZ MECHANISM IN THE
KOSTERLITZ-THOULESS TRANSITION

The power laws (1,2) are not directly applicable in the
Kosterlitz-Thouless (KT) transition88–90, where, on the
disordered/Mott side of the transition, the correlation
length’s divergence is exponential:

ξ = ξ0 exp(2a/
√
|ε|). (10)
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FIG. 2. In (a) log-log scale a generic KZ power-law
t̂ ∝ τ

νz/(1+νz)
Q in (5) becomes a linear function log10 ∆0t̂ =

νz
1+νz

log10 ∆0τQ + const, where ∆0 is a microscopic energy
scale. For comparison, in (a), we plot t̂ for the Kosterlitz-
Thouless transition in the 1D Bose-Hubbard model (14) in
function of τQ over many decades of the argument. This
function becomes linear only asymptotically for τQ → ∞,
but it may appear linear locally, i.e., in a range of one
or two decades. Indeed, in (b), we focus on the narrow
range of ∆0τQ = 100...2 that is small enough for a realistic
cold-atom experiment. These plots can be reasonably ap-
proximated by linear functions, especially when experimen-
tal error bars are present. In (c), we plot a local slope
d log10

(
∆0t̂

)
/d log10 (∆0τQ) of the log-log plot in panel (a) in

function of ∆0τQ. The slope 1 in Eq. (11) is achieved asymp-
totically but only for τQ that are “cosmological” in magnitude.
In (d), a focus on the realistic τQ shows that the local slope
can be significantly less than 1.

Here a ' 1 and ξ0 is a microscopic scale of length. This
faster-than-polynomial divergence can be captured by
stating that ν =∞, see e.g. 91, but it may tempt one to
misuse Eqs. (5, 6, 7) by inserting ν = ∞ together with
z = 1 to obtain:

t̂ ∼ τ1
Q, ε̂ ∼ τ0

Q, ξ̂ ∼ τ1
Q. (11)

As shown in Ref. 87, these equations are valid asymp-
totically for τQ → ∞ but this asymptote is achieved for
unrealistically slow τQ (and, hence, astronomically large
ξ̂ of the order of kilometers87). Below we briefly recount
the argument.

In the 1D Bose-Hubbard model at commensurate fill-
ing, where z = 1, the gap ∆ ∼ ξ−z on the Mott-insulator
side of the transition closes like

∆ = ∆0 exp(−2a/
√
|ε|), (12)

where ∆0 is a microscopic energy scale. For the linear
ramp (3), driving a quench from the Mott insulator to
superfluid, this gap equals the rate (4) at t = −t̂ when

∆0 exp(−2a/

√
t̂/τQ) = 1/t̂. (13)
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A solution of this transcendental equation is

t̂ = τQ
a2

W2
(
a
√

∆0τQ
) , (14)

where W is the Lambert function92. The above solu-
tion is plotted for different values of a ' 1 in Figs. 2a,b.
A similar relation has been derived for the first time
and confirmed by numerical simulations in a dissipative
classical model93. It has been also tested in a recent
experiment94.

Figure 2 shows that the exponent of unity for the de-
pendence of t̂ on τQ in Eq. (11) is attained only for ex-
ceedingly slow quenches that are unlikely to be experi-
mentally or numerically accessible. For any reasonably
slow quenches the effective exponent would be signifi-
cantly less than 1.

The above argument determines the correlation length
ξ̂ imprinted on the quantum state on the Mott side of
the transition. It characterizes the excited state when
the quench ramp enters the superfluid phase. In this
critical phase the imprinted correlations are spreading
with a velocity limited by the speed of quasiparticles.

IV. QUENCH FROM MOTT INSULATOR TO
SUPERFLUID

The 1D Bose-Hubbard model at the commensurate fill-
ing of 1 particle per site is described by a Hamiltonian

H = −J
L−1∑
s=1

(
b†l bl+1 + b†l+1bl

)
+
U

2

L∑
l=1

nl(nl − 1), (15)

where J is the hopping rate and U is the on-site interac-
tion strength. The Kosterlitz-Thouless quantum phase
transition from the Mott-insulator to superfluid takes
place at Jc = 0.29 (see e.g. Ref. 97). We consider a
quench driven by a linear ramp

J(t) = Jc

{
0, for t ≤ −τQ,
1 + t/τQ, for t > −τQ. (16)

from J(−τQ) = 0 to J(τQ) = 2Jc. The initial state is the
ground state at J = 0:

|ψ(0)〉 = |1, 1, 1, ..., 1〉. (17)

Figure 3(a) shows that there is a finite density of excita-
tion energyW/L above the adiabatic ground state during
a quench, hence the evolution with the ramp is not adi-
abatic. Furthermore, the system seems to be excited in
two stages by two different mechanisms.

The early oscillations visible at small J are excited by
the discontinuous time derivative of the ramp at J = 0
that is proportional to 1/τQ. Since this sudden initial jolt
excites states well above the Mott gap with a probability
proportional to τ−2

Q , the amplitude of the early excita-
tion is roughly W/L ∝ τ−2

Q , as can be demonstrated by
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FIG. 3. In (a), density of excitation energy W/L in the
center of L = 100 sites in function of the hopping frequency J
- results from DMRG95 simulations for different τQ. The early
excitation visible at small J originates from the discontinuos
slope of the ramp (16) at J = 0. This initial excitation is
suppressed adiabatically when J is getting closer to Jc = 0.29
(the vertical dashed line) and the gap is closing. The following
excitation that begins to grow before Jc is attributed to the
KZ mechanism. For τQ = 10 the initial excitation is too
strong and the KZ excitation begins too early for the two
mechanisms to be clearly separated in J . In (b), a focus on
small J where DMRG (solid lines) can be compared with the
Bogoliubov theory for doublons and holons96 (data points).
The agreement is better for faster τQ where the state remains
closer to the initial Fock state (17) and has lower density of
doublons and holons.
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the quantum perturbation theory98. For small enough
J they compare well with predictions of the Bogoliubov
doublon-holon model96, see figure 3(b). For larger J , as
their energy gap closes with J approaching Jc, the early
oscillations are adiabatically suppressed. Closer to Jc the
KZ mechanism steps in, see Fig. 4.

At the earlier stages of the project we attempted to
mitigate the effect of the initial jolt by initiating the
quench more smoothly. For rapid quenches such efforts
proved only party successful. However, similarly as for
the linear ramp in Fig. 3(a), long quench times suppress
the effect of these early “jolt” excitations compared to
these caused by the crossing of the critical region.

t
−t̂ 0

adiabatic

impulse

rate

gap

FIG. 4. In (a) quench from the Mott-insulator to superfluid,
driven by the linear ramp (16), the initial evolution before −t̂
is adiabatic, then it becomes approximately impulse.

The quench times in our numerical simulations are far
below the “astronomical” standards that would demand ξ̂
of the order of kilometers to approach the scaling ξ̂ ∼ τQ
in Eq. (11). Limited by the system size L they span a
narrow range of magnitude. Therefore, we can assume a
phenomenological power-law for the ground-state corre-
lation length in the Mott phase:

ξ ∼ ε−νL . (18)

Given the exponential divergence (10), we expect the ef-
fective exponent νL to be large. To account for finite-size
effects, we allow for its dependence on L. Furthermore,
we found that the data can be accurately parametrized
by letting the gap scale with an effective dynamical ex-
ponent:

∆ ∼ ξ−zL ∼ εzLνL . (19)

We expect to recover the exact z∞ = 1 for sufficiently
large L.

The correlation length in the ground state is obtained
from the best fit to the tail of the correlator:

C(x) = 〈b†sbs+x〉 ∼
e−x/ξ

x1/4
. (20)

The lengths and gaps for different ε and L are collected
in Fig. 5(a,b). They fit well the phenomenological power-
laws (18,19). As a self-consistency check, figure 5(c)
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ε

10−2

10−1

100

∆

(b)

L = 25

zLνL = 1.69

L = 50

zLνL = 1.88

L = 100

zLνL = 2.0

L = 200

zLνL = 2.06

101 102 103

L

10−1

100

1-zL

(c)

z25 = 0.68
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z200 = 0.87

fit ∼ L−0.45

FIG. 5. In (a), a log-log plot of the correlation length ξ in
function of ε for system sizes L = 25, 50, 100, 200. For each
L, the data are fitted with a power law ξ ∼ ε−νL in the range
of ε where 1 < ξ < L/6. The best fits are shown by the solid
lines and the best exponents νL are listed in the legend. In
(b), a log-log plot of the energy gap ∆ in function of ε for
L = 25, 50, 100, 200. For each L, the data are fitted with a
power law ∆ ∼ εzLνL in the range of ε where 1 < ξL < L/6.
Here νL are the exponents obtained in panel a. The best fits
are shown by the solid lines and the best exponents zLνL are
listed in the legend. In (c), a log-log plot of 1−zL in function
of L. This plot shows the decay of zL → 1 with increasing L.
It can be fitted with 1− zL ∼ L−0.45 suggesting a power law
approach of zL towards z = 1 with increasing L.
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FIG. 6. In (a), linear plots of the scaled correlation functions
ξ̂1/4C(t, x) in function of the scaled distance x/ξ̂ – measured
in the bulk of L = 100 lattice sites – at the scaled times
t/t̂ = −1, 0, 1. With increasing τQ the plots collapse to the
scaling function FC(t/t̂). In (b), the same as in (a) but for
L = 200 and t/t̂ = −1, 0, 0.6.

shows how the dynamical exponent zL decays to 1 with
increasing L. For each L we use the effective exponents
to find the KZ scales

t̂ ∼ τ
zLνL

1+zLνL

Q , ξ̂ ∼ τ
νL

1+zLνL

Q . (21)

These scales are applied to verify the KZ scaling hypoth-
esis,

C(t, x) = ξ̂−1/4FC

(
t/ξ̂zL , x/ξ̂

)
, (22)

in Fig. 6. The plots for different τQ collapse demonstrat-
ing validity of the hypothesis.

The collapsed plots in Fig. 6 depend on the scaled time
t/t̂. This effect reveals that the impulse approximation
is not quite correct: since the correlations are spread-
ing, the state cannot be frozen. This behavior suggests
a “sonic horizon” paradigm we have also noted earlier.
Nevertheless, as discussed and demonstrated by an exact
solution of the quantum Ising chain22, the scaling hy-
pothesis still holds because the velocity 2v̂ of the spread-
ing must also be a combination of the two KZ scales:
v̂ ∼ ξ̂/t̂. For a linear dispersion at the critical point,
z = 1, v̂ is expected to be bounded from above by twice
the speed c0 of quasiparticles at the critical point. In
figure 7(a), we attempt an estimate of the spreading ve-
locity 2v̂. Since accurate tails of the correlators cannot
be accessed on a finite lattice, our estimate is not robust
but at least it is less than the 2c0 estimated from the
quasiparticle dispersion in figure 7(b).

Neglecting remnants of the early excitation, a distri-
bution of quasiparticle excitations should have a scaling
form f(t/t̂, ξ̂k). In the KZ regime close to Jc, their dis-
persion can be approximated by the gapless linear disper-
sion at the critical pojnt, ωk ≈ c0|k|, and the excitation
energy (also sometimes referred to as work99,100) density
should satisfy a scaling hypothesis:

W/L =

∫
dk

2π
c0|k| f(t/t̂, ξ̂k) = ξ̂−2FW

(
t/t̂
)
. (23)

Here FW is a scaling function. In particular, at Jc (where
t/t̂ = 0) we expect W ∼ ξ̂−2. This scaling law and the
more general scaling hypothesis (23) are confirmed by the
data in Fig. 8.

Finally, we considered the entropy of entanglement be-
tween a block of l sites at the end of the chain and the
rest of it. Ignoring boundary effects, the entropy should
satisfy a scaling hypothesis:

S(t, l)
c
6 log ξ̂f(t/t̂)

= FS

(
t/t̂, l/ξ̂

)
. (24)

Here f and FS are scaling functions and c is the central
charge c = 1 at the Kosterlitz-Thouless transition. This
hypothesis is tested in Fig. 9. Except for t = −t̂, where
the state is still close to the ground state, the fitted c,
though close to 1, are not quite satisfactory, but we have
to bear in mind that the range of τQ at hand is too narrow
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FIG. 7. In (a), scaled correlation functions for τQ = 20 in
function of the scaled distance x/ξ̂ measured in the bulk of
L = 100 lattice sites. The three plots show the correlator at
scaled times: t/t̂ = −1, 0, 1. A cut by the horizontal dashed
line at the level 1 suggests that the correlations are spreading
and the sonic horizon grows at a velocity 2v̂ = 0.34, but a
similar cut at 0.5 suggests 2v̂ = 0.63. Longer tails of the
correlator, that could be probed at lower cut levels, are not
available on L = 100 sites. In (b), spreading velocity 2v̂ in
function of scaled correlation values (the cut level). In (c), the
gap ∆ at Jc in function of system size L. The best fit ∆ = c0

π
L

yields 2c0 = 1.64 as the speed of Luttinger quasiparticles. As
expected, 2c0 is greater than our crude estimates of 2v̂.
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FIG. 8. In (a), log-log plot of the excitation energy density
W/L in function of the quench time τQ at the center of L =
100 lattice at the time t = 0 when the quench is crossing
the critical point. The solid line is the best fit W ∼ τ−1.79

Q

consistent with W ∼ τ−1.80
Q predicted by Eqs. (21,23) with

the exponents fitted in Fig. 5In (b), the same as in (a) but
for L = 200 sites. The solid line is the best fit W ∼ τ−1.75

Q

consistent withW ∼ τ−1.77
Q predicted by Eqs. (21,23) with the

exponents fitted in Fig. 5b. In (c), Scaled excitation energy
density in function of scaled time for L = 100 sites. The plots
collapse to the scaling function FW in the KZ regime close to
Jc.
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FIG. 9. Entanglement entropy S(t, l) between a block of l
sites at the end and the rest of the chain of L = 200 sites.
Panel (a), (b), and (c) show the entropy at t = −t̂, −t̂/2, and
0, respectively. All plots are in function of the scaled block
size, l/ξ̂, and the entropy is divided by S∞(t/t̂) = c

6
log ξ̂f.

This logarithmic function of τQ is obtained as the best fit to
S
(
t/t̂, L/2

)
with fitting parameters f and c. The best central

charge c for t = −t̂, −t̂/2, 0 is c = 1.3, 0.9, 0.6, respectively.
The plots collapse demonstrating the scaling hypothesis in
Eq. (24).

for a better fit with a logarithmic function. However, we
find that – in accordance with the scaling hypothesis –
the plots collapse to a scaling function FS after rescaling
the block size by ξ̂.

V. QUENCH FROM SUPERFLUID TO MOTT
INSULATOR

In this section we reverse the quench. Now the linear
ramp begins when t = −τQ deep in the superfluid phase
at J = 2Jc and ends at J = 0 when t = τQ:

J(t) = Jc (1− t/τQ) . (25)

The initial ground state has a quasi-long-range order
characterized by a power-law decay of its correlation
function C(GS)(x). Small excitations in the superfluid
– described by a Luttinger liquid – are gapless, hence
it may be tempting to treat the whole evolution in the
superfluid phase as impulse. However, different critical
ground states in the superfluid phase are sufficiently sim-
ilar to each other for a significant excitation to be post-
poned until after the ramp crosses the boundary with
the Mott phase where the gap begins to open and the
ground state begins to change fundamentally. From this
perspective, the similarity between different superfluid
critical states means that on the superfluid side of the
transition there is little difference between the impulse
and adiabatic approximations. The whole superfluid crit-
ical phase can be effectively collapsed to the Mott critical
point.

Indeed, at t = 0 – when the quench is leaving the super-
fluid at Jc – the correlator C(t, x) quickly converges with
increasing τQ to the correlator in the adiabatic ground
state C(GS)(x) ∼ x−1/4 at Jc, see figure 10(a). This fast
convergence is consistent with the quick decay of the ex-
citation energy density shown in Fig. 10(b). Its decay is
steep, almost as steep as predicted for a linear ramp in
a Luttinger liquid101: W ∼ τ−2

Q log(c0τQ) with c0 ' 1
standing for the speed of Luttinger quasiparticles. It
turns out to be steep enough for the excitation in the
superfluid phase to give negligible contribution to the fi-
nal excitation deep in the Mott phase, see Fig. 11. Its
panel (a) shows the final excitation energy density after
the full ramp from J = 2Jc to J = 0 and panel (b) after
a shorter ramp from J = Jc to J = 0. The two panels
are almost indistinguishable and in both the excitation
energy density is two orders of magnitude higher than in
Fig. 10(b). Therefore, the final excitation after the full
ramp originates almost exclusively from the evolution in
the Mott phase when the gap opens and the ground state
undergoes a fundamental change.

The Mott part of the full ramp, from Jc to 0, falls
within the KZ framework, as shown schematically in fig-
ure 12. The evolution in the Mott phase crosses over

from impulse to adiabatic near t̂ ∼ τ
zLνL

1+zLνL

Q when the

correlation length in the ground state is ξ̂ ∼ τ
νL

1+zLνL

Q . As
long as quasiparticle excitations can be considered non-
interacting, their distribution f(t/t̂, ξ̂k) satisfies the KZ
scaling hypothesis. This scaling form has at least two
important consequences.

Before t̂, when the quasiparticle dispersion can be ap-
proximated by its critical form ωk = c0k, the excitation
energy density should conform to the scaling law (23). In-
deed, the scaled plots in Fig. 13 demonstrate a collapse
to the scaling function FW . As predicted, the collapse is
perfect up to t̂.

In the adiabatic stage after t̂, the quasiparticle dis-
tribution freezes out, f(t/t̂, ξ̂k) = f(ξ̂k), and their dis-
persion ωk for the “excited” k between ±ξ̂−1 can be ap-
proximated by the finite gap ω0. Consequently, the final
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FIG. 10. In (a), correlation functions C(0, x) at the critical
point, J = Jc, during a linear quench (25) from the superfluid
at J = 2Jc to the Mott insulator at J = 0. With increasing
τQ they converge to the adiabatic ground state correlator with
a power-law tail: C(GS)

x ∼ x−1/4. In (b), log-log plot of the
corresponding excitation energy density W/L at the center of
L = 100 lattice sites. These data are fitted with a power law
W ∼ τ−1.41

Q .

excitation energy density at J = 0 should scale as

W

L
=

∫ π

−π

dk

2π
ωk f

(
ξ̂k
)
∼ ξ̂−1. (26)

Since in this regime the excited quasiparticles are ap-
proximately dispersionless, ωk ≈ ω0, the excitation en-
ergy density is simply proportional to their density ξ̂−1.
With our best fits for νL and zL on the L = 100 lattice
we obtain W ∼ τ−0.80

Q . This is roughly consistent with
the best fit W ∼ τ−0.96

Q in Fig. 11(b).

10220 40 60 80
τQ

10−3

10−2

10−1

W
L

(a)

fit
DMRG

10220 40 60 80
τQ

10−3

10−2

10−1

W
L

(b)

fit
DMRG

FIG. 11. In (a), the excitation energy density W/L in func-
tion of the quench time τQ at J = 0 after the full linear ramp,
J(t) = Jc (1− t/τQ), starting deep in the superfluid phase at
J = 2Jc. In (b), the same as in (a) but after a half-ramp
starting from the critical point J = Jc. The data in (a) and
(b) are almost the same as if the initial half of the full ramp in
the superfluid phase did not contribute to the final excitation
energy deep in the Mott phase.

t
0 t̂

adiabaticimpulse

rate

gap

FIG. 12. A ramp from the critical point at J = Jc to
J = 0 deep in the Mott phase. The evolution crosses over
from impulse to adiabatic near t̂.
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FIG. 13. Scaled excitation energy density ξ̂2W/L in function
of scaled time t/t̂ for different quench times τQ. The plots
collapse to the scaling function FW (t/t̂) in Eq. (23).

VI. CONCLUSION

In a linear quench from Mott insulator to superfluid
the excitation energy density, the entropy of entangle-
ment, and the correlations – that build up as the system
is crossing the critical point – satisfy the KZ scaling hy-
pothesis with effective power laws accurate for a limited
range of quench times87. In particular, the range of cor-
relations scales with an effective power of the transition
time.

All superfluid ground states are qualitatively similar.
Therefore, in a reverse quench from superfluid to Mott in-
sulator the excitation in the gapless superfluid turns out
to be negligible as compared to the excitation that begins
to build up just after crossing the critical point when the
gap opens and the ground state begins to change fun-
damentally. The last excitation also falls into the KZ
framework. The final excitation energy deep in the Mott
phase – proportional to the number of empty and doubly-
occupied sites – decays with an effective power of the
quench time.
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