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We demonstrate the existence of exceptional points of degeneracy (EPDs) of periodic eigenstates in non-
Hermitian coupled chains of dipolar scatterers. Guided modes supported by these structures can exhibit an EPD in 
their dispersion diagram at which two or more Bloch eigenstates coalesce, in both their eigenvectors and 
eigenvalues. We show the emergence of a second-order modal EPD associated with the parity-time (PT) 
symmetry condition, at which each particle pair in the double chain exhibits balanced gain and loss. Furthermore, 
we also demonstrate a fourth-order EPD occurring at the band edge. Such degeneracy condition was previously 
referred to as a degenerate band edge in lossless anisotropic photonic crystals. Here, we rigorously show it under 
the occurrence of gain and loss balance for a discrete guiding system. We identify a more general regime of gain 
and loss balance showing that PT-symmetry is not necessary to attain EPDs. Moreover, we investigate the degree 

of detuning of the EPD when the geometrical symmetry or balanced condition is broken. Furthermore, we 
demonstrate a realistic implementation of the EPD in a coupled chain made of pairs of plasmonic nanospheres and 
active core-shell nanospheres at optical frequencies. These findings open unprecedented avenues toward superior 
light localization and transport with application to high-Q resonators utilized in sensors, filters, low-threshold 
switching and lasing. 

I. INTRODUCTION 

Degeneracy in the state space of a dynamical system refers to 
points at which two, or more, physical eigenstates coalesce into 
one. This pervasive concept may give rise to interesting 
phenomena in many branches of physics  [1–7]. In connection 
with electromagnetic (EM) waves, of particular interest for this 
study, it is well known that the propagation in closed guiding 
structures such as metallic waveguides or periodic structures, in 
the absence of energy dissipation or gain, is mathematically 
described in terms of a Hermitian operator  [8]. This implies 
that the associated eigenspace is characterized by real-valued 
eigenvalues and it always constitutes a basis. As a consequence, 
with a few notable exceptions, strict modal degeneracy cannot 
take place, in the sense that eigenmodes associated with 
identical eigenvalues are generally linearly independent. 
However, certain degenerate conditions can be found for which 
the system space is constructed from a generalized basis of 
eigenstates  [1–3]. Simple examples of these degeneracies can 
be found in metallic waveguides at the cutoff or zero frequency. 
Another interesting example can be found at the transmission 
band edge of any periodic guiding structure, where there exists 
a regular band edge (RBE) at which forward and backward 
Bloch modes coalesce  [9]. More pronounced degeneracy 
conditions, entailing the coalescence of three, four or more 
Bloch modes, can be found in special classes of anisotropic or 
birefringent photonic crystals. An example of a third-order 
degeneracy is found at the stationary inflection point (SIP) of a 

magnetic photonic crystal (MPhC)  [10,11], whereas a fourth-
order degeneracy is realized at a degenerate band edge (DBE) 
 [12–17]. At such points of degeneracy, the group velocity 
vanishes and the local density of states exhibits a dramatic 
enhancement. These effects have been demonstrated in lossless 
structures under RBE, SIP or DBE conditions  [9,10,12,16]. In 
particular, the “frozen-wave” regime associated with the DBE 
condition  [5,12,16,18–22] has been demonstrated to provide a 
better localization of light through large enhancement of the 
local density of states, as well as enhancement of gain in active 
configurations  [16,22]. Moreover, several DBE 
implementations have been carried out in coupled silicon 
waveguides  [15,21] or 2D photonic crystals  [23], with 
potential applications to lasers  [14,16], and more recently at 
microwaves  [24], for low-threshold oscillations  [25–27] and 
efficient high power generation  [22,25,28].   

Recently, there has been a surge of interest in connection 
with degeneracies in systems described by non-Hermitian 
operators. In these cases, the term “exceptional point” is used to 
indicate a non-Hermitian degeneracy where two or more 
eigenstates coalesce into one with the same complex-valued 
eigenvalue. Since the term “exceptional” may have different 
meanings in different disciplines, in what follows, we prefer to 
use the term “exceptional point of degeneracy” (EPD) so as to 
avoid possible ambiguities. The interest in this class of 
degeneracies is mainly motivated by their relevance in the study 
of parity-time- (PT-) symmetric systems  [2,3,29,30]. Originally 
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introduced in quantum mechanics, as an alternative condition to 
ensure real-valued eigenspectra in the presence of pseudo-
Hermitian [31–33] and non-Hermitian Hamiltonians, the PT-
symmetry concept has stimulated discussions in several 
branches of applied physics, including quantum field theories 
and quantum interactions  [2,3,34,35]. Moreover, given the 

formal analogy with quantum mechanics, PT-symmetry has 
naturally been translated to paraxial optics  [29,30,36,37]. In 
this case, practical implementations involve coupled 
waveguides and resonators exhibiting symmetric gain and loss 
distributions with suitable spatial modulation  [30,37,38], 
although related effects were also demonstrated in passive lossy 
structures  [39]. Aside from the interplay between gain and loss 
in PT-symmetric coupled-mode structures (see  [30,40–42]), it 

is important to note that PT-symmetry is not a sufficient 
condition for a real-valued eigenspectrum. In fact, for non-
Hermiticity (i.e., gain/loss) levels beyond a critical threshold, 
the system may encounter an EPD, thereby undergoing a phase 
transition to a complex-valued eigenspectrum. This 
phenomenon is usually referred to “spontaneous symmetry 
breaking”  [29,30,38]. In view of the comparatively simpler 
(with respect to quantum physics) implementations, optical PT-
symmetric structures have elicited a great deal of attention, 
leading to many interesting observations, including the 
demonstration of low-threshold lasing and laser absorbers 
 [41,43–45], enhanced nonlinear effects [34,40-43], as well as 
metamaterial-based field manipulations  [38,48,49]. In previous 
works, PT-symmetry has been shown in discrete arrangements 
of resonators and also using the so-called “tight-binding” (TB) 
approach  [48,50]. Moreover, EPDs have been also observed in 
2D and 3D geometries  [7,37,51]. 

In this paper, we study the emergence of EPDs in coupled 
chains of photonic scatterers exhibiting gain and loss. This 
configuration may constitute an interesting, and largely 
unexplored, photonic testbed for studying the properties of non-
Hermitian systems. Moreover, it may find intriguing 
applications to light localization and transport. 

Accordingly, the rest of the paper is laid out as follows. In 
Section II, we outline the problem statement. In Section III, we 
introduce the model utilized for the eigenmode analysis. In 
Section IV, we study the modal dispersion characteristics near 
second- and fourth-order EPDs, and elucidate the connections 

with the PT-symmetry concept. In Section V, we illustrate a 
realistic implementation example. Finally, in Sec. VI, we 
provide some brief conclusions and discuss the implications and 
possible applications of our results. 

II. PROBLEM STATEMENT 

As previously mentioned, we investigate the emergence of 
EPDs in coupled periodic chains of polarizable particles (see 
Fig. 1) exhibiting loss and gain. In particular, we derive a 
general (necessary and sufficient) condition for an EPD to 
occur, and we elucidate possible connections with the PT-
symmetry concept  [29,30,39]. 

Our study yields two main results. First, we demonstrate the 
existence of EPDs by using a TB-based method. Such approach, 
based on the transfer-matrix method, is conventionally utilized 
in the study of photonic crystal waveguides  [52,53], and has 
been previously employed  to investigate the properties of non-
linear magnetic resonators  [48], discrete PT-symmetric 
scatterers  [50], and solitons in paired chains of dimers [50,51]. 
Second, we show the manifestation of both second- and fourth-
order EPDs in such structures. Importantly, we demonstrate for 
the first time that DBEs (special kinds of EPDs) may exist in 
chains of discrete scatterers exhibiting loss and gain. We also 
elucidate the connection between these EPDs and the previously 

 

FIG. 2. Schematic representation (in three dimensional space) of the four-
dimensional system state eigenvectors lΨ  near an EPD. (a) Two 

eigenvectors coalesce at a second-order EPD. (b) Four eigenvectors coalesce 
at a fourth-order EPD (DBE).  

 

FIG. 1. Two coupled chains of polarizable particles with electrical dipolar 
polarizabilities  1α  and 2α . Bloch modes polarized along the x-direction 

and propagating along the z-direction are investigated. The dispersion 
diagram of such modes may develop an EPD under certain conditions. 
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observed DBE effects in lossless structures. Our study exhibits 
several elements of novelty with respect to previous studies in 
the topical literature:  By comparison with previous studies on 
chains of split rings  [48],  we emphasize that our proposed 
chain here is periodic along the z-direction, and we find 
degeneracies of different orders. Furthermore, although there 
are some previous studies of fourth-order EPDs in chains of  
multiple-resonators  [6,54], here, we attain these effects in a 
photonic chain, composed of pairs of coupled scatterers (i.e., 
two coupled linear chains). Moreover, we also discuss some 
aspects that have been insofar overlooked, including the order 
of degeneracies, their relationship with DBE conditions 
explored in a very different contest  [12,23], and the associated 
perturbation analyses. The evolution of the eigenstate vectors in 
the system, to be investigated thoroughly in Section IV, is 
illustrated schematically in Figs. 2(a) and (b) in the vicinity of 
second- and fourth-order EPDs, respectively. In our study, we 
will quantify the evolution of the complex Bloch wavenumbers 
in terms of frequency detuning and the gain/loss level, which 
will be rigorously defined in Section II and III. 

We highlight that PT-symmetry, also explored in our study, is 
a particular topology (and not the only one) available to realize 
a gain and loss balance scheme and construct real eigenspectra. 
Nevertheless, as shown hereafter, it is not a necessary condition 
for the existence of an EPD. In principle, polarizabilities with 
gain can be implemented in dielectric or plasmonic 
nanoparticles, with gain provided by fluorescent quantum dots 
cores  [55] or dyes in the core or in the outer shell  [56] (see, 
e.g., the example in Section V). We assume time-harmonic 

fields of the form i te ω− , so that gain and loss correspond to 
complex-valued polarizabilities ,iα α α′ ′′= +  with 0α ′′ <  and 

0α ′′ > , respectively. 

III. EIGENMODES IN TWO COUPLED CHAINS: 
TRANSFER MATRIX ANALYSIS 

Referring to the schematic in Fig. 1, we consider a periodic 
chain of dipolar scatterer pairs in a homogenous medium. Each 
pair is characterized by two dipoles moments, with electric 
dipolar polarizabilities denoted by α1 and α2, separated by a 
distance a, and the chain’s period is denoted by d. Accordingly, 
the chain’s constitutive scatterers are located at 

( )1, ˆ ˆ/ 2n a nd= +r y z  and ( )2, ˆ ˆ/ 2n a nd= − +r y z , respectively, 

with n denoting an integer ( ),n∈ −∞ ∞ . Here and henceforth, 

boldface symbols denote vector quantities and the caret denotes 
unit vectors. The polarizabilities relate the local electric field at 
the equivalent electric dipoles’ locations to their moment, viz. 

loc
, ,j n j j nα=p E , with j = 1, 2. The local electric field loc

,j nE  at 

,j nr  is produced by the infinite chain's dipole moments, in 

addition to any external excitation ext
jnE , through the dyadic 

Green's function as  
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loc ext
, , , , ,

1 ,
( , )j n j n j n p q p q

p q
p j q n

∞

= =−∞
≠ ≠

= + ⋅∑ ∑E E G r r p , (1) 

where , ,( , )j n p qG r r  is the electric-dipole dyadic Green’s 

function (GF)  [57,58]. By solving (1) in the absence of 

excitation ( ext
, 0m n =E ), we can compute the guided/leaky wave 

eigenmodes supported by the chain. In this study, we are only 
interested in the guided (bound) modes. An alternative 
representation of the fields can be accomplished via a 
combination of both spectral and spatial GFs, such as in the 
Ewald method for linear arrays  [59–62]. 

Here, we make the following assumptions: (i) we consider a 
transverse polarization for which the excited dipole moments 
can be only oriented along the x-direction, so that , , ˆj n j np=p x ; 

(ii) we only consider interactions within nearest neighbors 
scatterers, justified by the fact that inter-particle distance is 
subwavelength. This approach, which resembles the TB 
formalism in solid-state physics  [52,53,63], was also utilized in 
 [48,50,64,65] to analyze the general properties of discrete 
interactions in PT-symmetric systems. Following these 
assumptions, we can recast (1) in a much simpler form: 

 

1, 1 1, 1 1, 1

2 2, 1 2, 2, 1

2, 2 2, 1 2, 1

1 1, 1 1, 1, 1

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

n n n

n n n

n n n

n n n

p G d p G d p

G b p G a p G b p

p G d p G d p

G b p G a p G b p

α

α

α

α

+ −

+ −

+ −

+ −

⎡ ⎤= + +⎣ ⎦
⎡ ⎤+ + +⎣ ⎦
⎡ ⎤= + +⎣ ⎦
⎡ ⎤+ + +⎣ ⎦

, (2) 

where we have used the electric-dipole scalar GF 

( ) ( ) 3 3 2 1, exp( ) ( ) ( ) ( ) /G r G k ikr kr i kr kr C− − −⎡ ⎤′= = − −⎣ ⎦r r  

 [58,66], with 04 hC πε ε= −  (and hε  being the dielectric 

constant of the host medium), r ′= −r r  and 2 2b a d= +  (see 

Fig. 1), and k is the wavenumber in the host material.  The 
equations in (2) can be cast in a form involving finite 
differences and a system evolution equation. However, our 
approach in this study relies on the construction of a transfer 
matrix that relates the dipole moments at two locations ,j nr  and 

, 1j n+r , from which we can calculate the band structure of the 

periodic chain. To this aim, it is expedient to define a four-
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dimensional state vector as 

1, 2, 1, 1 2, 1( )
T

n n n nn p p p p− −⎡ ⎤= ⎣ ⎦Ψ  (with the superscript “T” 

denoting the transpose) which describes the spatial evolution of 
the dipole moments in the coupled chains. It is important to 
stress that, even though the choice of the state vector is not 
unique  [67], the eigenvalues of the system are invariant under 
any non-singular unitary (similarity) transformation of the state 
vector.  

A. State Vector Evolution and Transfer Matrix 

Using (2), we construct a discrete matrix equation for the 
state vector evolution as 

 ( 1) ( ),n n+ =Ψ TΨ  (3) 

where T  denotes the transfer matrix of the chain under the 
nearest neighborhood (i.e., TB) approximation. Such matrix can 
be written as 

 , , ,
− ⎛ ⎞⎛ ⎞

= = = ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

0 11 A
T M V M V

0 1 1 0
 (4) 

where 1  is a 2×2 identity matrix, and A  is a 2×2 matrix given 

by 

( ) ( )

( ) ( )

2
2 1 2 2 2

2 2 2 2
1 2 1 2

2
1 1 1 1 2

2 2 2 2
1 2 1 2

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
. (5)

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

G d G a G b G b G a G d

G d G b G d G b

G b G a G d G d G a G b

G d G b G d G b

α α α α α
α α α α

α α α α α
α α α α

⎛ ⎞+ − −
⎜ ⎟

− −⎜ ⎟
⎜ ⎟=
⎜ ⎟− − +
⎜ ⎟
⎜ ⎟− −⎝ ⎠

A  

The transfer matrix T, as in the context of layered media 
analysis  [8,68], obeys some fundamental properties, such as 

( )det 1=T   [9,69,70]; other spectral properties will be further 

discussed hereafter. We seek Bloch-type wave (periodic) 
solutions of (3) in the form 

 ( 1) ( ), zik dn n eζ ζ+ = ≡Ψ Ψ , (6) 

where zk  is a generally complex-valued Bloch wavenumber of 
the guided mode supported by the chain, with the sign of the 
real and imaginary part determining the forward/backward, and 
propagating/evanescent character, respectively in a lossless 
structure. In the presence of gain and/or loss, these sign 
specifications may be violated in general. Note that a purely 
real-valued kz means that power is conserved for that mode 

 [64], and this may occur in chains with balanced gain and loss, 
as we show hereafter (see Section IV below). We emphasize 

that zik de  is the eigenvalue of (6), not the Bloch wavenumber 
kz; however it is natural to investigate the characteristics of kz 
since it allows for a straightforward assessment of the gain and 
loss balance  [71]. Bloch eigenmodes that satisfy (3) and (6) are 
derived from the eigenvalue problem, 

 ( ) ( )l l ln nζ=T Ψ Ψ , (7) 

where ( )l nΨ  is the lth state eigenvector, with l=1,2,3,4. This 
yields four eigenvalues and corresponding eigenvectors. Note 
that the homogenous solutions of (3) are constructed from the 
four eigenvectors in (7) in the case where the matrix T  can be 
diagonalized. When T  is not diagonalizable, i.e., at an EPD, 
generalized eigenvectors are used instead of the regular 
eigenvectors in (7)  [22]. The four eigenvalues of (7) are 
determined from 

 ( )det 2cos 0zk d⎡ ⎤− =⎣ ⎦1 A , (8) 

which is further simplified to the transcendental form 

 ( ) ( ) ( ) ( )24 cos 2 cos Tr det 0z zk d k d− + =A A . (9) 

Note that from (9) we infer the symmetry property that both zk  
and zk−  are solutions, as expected in view of the time-
inversion symmetry that is still valid under the small-signal and 
linear-gain assumptions. Depending on whether an EDP occurs 
or not, the number of independent eigenvectors that satisfy (7) 
may vary from one to four. Indeed, though not always possible 
in general, the transfer matrix T  may be diagonalized so that, 

 1−=T UΛU , (10) 

where Λ  is a diagonal matrix whose entries are the eigenvalues 
of (6), and U  implements a similarity transformation. In this 
case, there would be four independent system state 
eigenvectors.  

B. Exceptional Points of Degeneracy (EPDs) 

We now investigate a particular aspect of the dispersion 
diagram, namely, the emergence of EPDs. At an EPD, the 
matrix U  is singular, i.e., det[ ] 0=U . Owing to the reciprocity 
(T-inversion symmetry) restriction of the system, we can only 
attain two different kinds of degeneracies: (i) a second-order 
degeneracy at which two eigenstates coalesce, with a 
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multiplicity m = 2 of the eigenstates; and (ii) a fourth-order 
degeneracy at which all eigenstates coalesce, with m = 4.  

Accordingly, we investigate these two conditions in which 
the transfer matrix becomes similar to a matrix having Jordan 
blocks  [72]. Under these conditions, a reduced number of 
regular eigenvectors will be found. In particular, when a fourth-
order EPD occurs, (7) will possess one eigenvalue with 
multiplicity of four and only one regular eigenvector. 

i) Second order EPD. At a second-order EPD, the 
transfer matrix is written as   

 

10
,

0

1 1/ 1
, ,

0 0 1/
e e

e e

ζ ζ
ζ ζ

+
−

−

+ −

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Λ
T W W

Λ

Λ Λ

 (11) 

where eik d
e eζ =  is the EPD eigenvalue of (7). The second -

order EPD condition is found at an angular frequency eω ω= ,  
and such degeneracy in the fundamental Brillouin zone 

[ ]0,2 /zk dπ∈  occurs between two Bloch modes having 

[ ]0, /zk dπ∈  (denoted by the superscript “+”); the other two 

modes with [ ]/ ,2 /zk d dπ π∈  (denoted by the superscript “−") 

must also coalesce in view of the symmetry conditions of the 

eigenvalues solutions in (7). Here, +Λ  is a 2×2 Jordan block 

matrix and W is constructed from two regular and two 
generalized basis-eigenvectors. At eω ω= , homogenous 
solutions for the state vector in (3) are given in terms of two 
periodic (Bloch) modes having regular eigenvectors propagating 

as eik nde± , and two diverging solutions constructed from 

generalized eigenvectors that linearly grow as eik ndnde± .  It is 
important to point out that, near the second-order EPD, the 
wavenumber kz can be written as a small perturbation of the 
ideal degeneracy condition with kz = ke, in terms of a fractional 
power expansion as 

 1/ 2
, ( ) ( 1) ,l

z l e l lk k h gω δ δ≅ − + + +L   (12) 

where lh  and lg  are the fractional series expansion coefficients 
for the four modes with l={1,2,3,4}, δ  is a small perturbation 
parameter about the EPD, and the principal root of δ  is taken. 
Such perturbation parameter identifies the detuning from the 

ideal EPD condition in the spectral evolution of the states, 
which could be observed via frequency detuning, gain and loss 
imbalance, or asymmetry in the chain (or in any other structural 
parameter). We recall that the perturbation analysis of 
degenerate or “defective” operators requires to deal with 
fractional power expansion, contrary to systems having only 
eigenvalue degeneracies (i.e., only coincident eigenvalues, but 
still a complete basis of eigenvectors  [2,4,70,73]). As such, the 
fractional power series (12), also known as Puiseux series, is a 
direct consequence of the Jordan block similarity  [1,12,73]. In 
Section III, we show the effect of two perturbation parameters 
(frequency detuning and gain/loss imbalance or asymmetry in 
the chain) separately, and their consequences on PT-symmetry 

and the second-order EPD. 

ii) Fourth order EPD. At a fourth-order EPD, the transfer 
matrix becomes similar to a four-dimensional Jordan matrix,  

 1

1 0 0
0 1 0

,
0 0 1
0 0 0

e

e

e

e

ζ
ζ

ζ
ζ

−

⎛ ⎞
⎜ ⎟
⎜ ⎟= = ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

T SΛS Λ , (13)   

thereby implying a fourth-order degeneracy between all Bloch 
modes in the 4×4 system. Here, Λ  is a 4×4 Jordan matrix, and 
S  is constructed from one regular and three generalized basis-

eigenvectors. In this particular case, we find that 1eζ = − . At 

eω ω= , homogenous solutions for the state vector in (3) at the 
fourth-order EPD are given in terms of one Bloch periodic 
mode having a regular eigenvector in (7) that propagates as 

eik nde , and three non-Bloch (non-periodic) diverging solutions 
constructed from a generalized set of eigenvectors growing as 

( ) ( )2 3, , ande e eik nd ik nd ik ndnde nd e nd e   [22,70].  Similar to the 

second-order EPD, the wavenumber near a fourth-order EPD 
asymptotically follows the fractional power expansion  

 1/4 2/4
, ( ) ,z l e l lk k h gω δ δ≅ + + +L   (14)  

where lh  and lg  are the fractional series expansion coefficients 
for the nth eigenmodes, and δ  is the perturbation factor. 

In what follows, we quantitatively investigate the modal 
dispersion characteristics near a second- and fourth-order EPD 
of a chain composed of a pair of dipolar scatterers with gain and 
loss.  
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IV. EPD AND PT -SYMMETRY IN GAIN- AND LOSS- 
BALANCED COUPLED CHAIN 

As mentioned in the previous section, degenerate states, if 
they exist, are characterized not only by the multiplicity of the 
eigenvalues in (7) but also by their geometric multiplicity, i.e., 
the linear dependence of the eigenvectors  [1,3,6,72,74]. We 
assume that the wavenumber of the degenerate state is denoted 
by ek± . Therefore, by invoking the eigenvalue multiplicity and 
symmetry conditions, the dispersion relation in (9) at the EPD 
takes the form 

 [ ]2cos( ) cos( ) 0z ek d k d− = . (15) 

Moreover, when an EPD occurs, the transfer matrix T  in (4) 
can only be written in terms of Jordan blocks, and not in terms 
of diagonalized matrices. To derive the conditions on the 
polarizabilies of the coupled chain’s scatterers in order for an 
EPD to occur, we compare (9) with (15), and obtain two 
conditions on the characteristic matrix A , viz.,  

 2Tr( ) 4cos( ), and det( ) 4cos ( )e ek d k d= =A A . (16) 

Equations (16), along with (13), impose the following 
conditions: 

( )

( ) ( )
( )

1 2 2 2 2 2

2 2

1 2 2 2 2 2

1 ,
4 cos ( ) ( ) ( ) ( )

2 ( ) ( ) 4 ( ) ( ) cos( )

4 cos ( ) ( ) ( ) ( ) ( )

e e

e

ee e

e

k d G d G b G a

G a G b G d G b k d

k d G d G b G a G d

α α ξ

α α χ

= ≡
− +

− + −
+ = ≡

⎡ ⎤− +
⎣ ⎦

  

 (17) 

where 1 1 ( )e
eα α ω≡  and 2 2 ( )e

eα α ω≡  are the required values 
for the polarizability to achieve a second or fourth-order EPD at 

a wavenumber ek  and angular frequency eω . Another 

necessary condition, besides (15), is that [ ]det 0=U , which is 

implicitly satisfied from (14) through the constraint

( ) ( )2Tr 4det=A A . Accordingly, the conditions in (17) on the 

polarizabilities are necessary and sufficient to attain the required 
EPD.  The polarizabilities are obtained as solutions of (17) in 

terms of 1 2
e eξ α α=  and 1 2

e eχ α α= +  as 

 2
1,2 2

2
e χα χ ξ= ± −m , (18) 

for an EPD occurring at an angular frequency eω . We 
highlight that some trivial conditions exist for the chain to 
develop an EPD, such as at zero frequency. In what follows, we 
focus on non-trivial EPDs, namely second- and fourth-order, in 
the presence of both gain and loss. We refer to “gain and loss 
balance” as the general condition that guarantees the existence 

 

FIG. 3. Dispersion diagram of the two modes with positive ( )R e zk  

exhibiting an EPD at ωe. The PT-symmetry allows for real modes when the 

gain/loss balance and symmetry condition (19) is satisfied below the EPD 
(ω < ωe). Here, d=a = 100 nm, ωed/c=0.02 and ke = π/(5d), and the 
polarizabilities of the chain are given in Table I.   
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of an EPD in the spectrum of a coupled system described by 
non-Hermitian 

evolution equations as discussed in  [72]. Indeed, PT- symmetry 

is not a necessary condition for developing an EPD, as shown in 
 [72,75]. The more general balance condition is revealed in the 
chains when (18) is satisfied, resulting in an EPD in the 
dispersion diagram. Within this framework, PT-symmetry is a 

special case, which would also lead to observing an EPD as 
discussed in the following. It is worth mentioning that 
completely lossy chains (e.g., with asymmetric distributions of 
loss in the polarizabilies) can also exhibit effects related to 
EPDs. These effects, typically  referred to as "passive" PT 
symmetry  [39], could lead to loss-induced transmission and 
other interesting phenomena. However, here we only focus on 
EPDs associated with gain and loss balance. 

A. Second Order EPD and PT-Symmetry 

A second-order degeneracy indicates that the solutions ,e lζ

of the system (7) can take the values ,1
eik d

e e eζ ζ≡ ≡  and

,2 1/ eik d
e e eζ ζ −≡ ≡ , with ek d π≠ , i.e., away from the center 

of the Brillouin zone (defined here as the interval 
[0, 2 / ]zk dπ∈ ). Indeed, /zk dπ=  is the center of Brillouin 

zone where modes naturally coalesce, and it is well known to be 
a point where the group velocity vanishes if a bandgap exists 
 [8,70]. To gain some physical insight into the conditions above, 
it is important to explore how the polarizabilities of the chain 
are constrained for an EPD to occur. We investigate different 
regimes of operations based on quasi-static approximations, and 
the effect of phase retardation on the EPD conditions. 

 

i) Quasi-static limit: This applies when 0,kr →  with r 
being an arbitrary observation distance. Consequently, the GF 

follows its electrostatic limit 3( ) 1/( )G r C r→ . It is 
straightforward to see that, under such condition, an EPD can 

occur provided that ( )2
1 2 1 24e e e eα α α α+ < , since ( ) ( )G d G b>  

(the GF is real under this limiting case). Therefore, by enforcing 
the conditions for an EPD to occur [(17) and (18)], we obtain 
the conjugate symmetry condition  

 ( )*1 2
e eα α= . (19) 

This condition implies that, when such low-frequency EPD 
occurs, one chain exhibits losses and the other exhibits gain that 
precisely compensates for the losses. This condition is 
inherently tied with the aforementioned PT-symmetry concept. 

As typical in PT-symmetric systems, the EPD is related to the 

spontaneous symmetry breaking phenomenon, and it constitutes 
the boundary that separates the “exact” and “broken” phases 
characterized by real- and complex-valued eigenspectra, 
respectively. Such condition was rigorously satisfied in uniform 
coupled-waveguides  [29,30,72,76], and here we showed that it 
holds in connection with periodic coupled chains of scatterers as 
well. Effects of field-retardation corrections in the GF are 
discussed next.  

ii) Effect of GF phase retardation  

The PT-symmetry with perfectly symmetric gain and loss 

balance governed by (19) is relevant when 0kr →  
corresponding to the quasi-static case described in the previous 
sub-section. However, when phase propagation is included in 
the GF, i.e., kr  assumes finite values, radiation losses exist due 
a non-vanishing imaginary part of the GF  [57]. It is important 
to point out that both radiation losses and absorption 
mechanisms contribute to the scatterers’ polarizabilities. 
Accordingly, even when the scatterers have intrinsic gain, 
radiation losses would notably affect the imaginary part of their 
polarizability α  in the short-wavelength limit. However, thanks 
to the deeply subwavelength inter-particle distances (long 
wavelengths) considered here and the strong near-field 
interaction, the quasi-static interpretation of the polarizabilities 
as well as the classification of gain and loss described in Section 
II still hold. Therefore, at an EPD one expects that the 
conjugate-symmetry condition (19) is no longer rigorously 
satisfied due to the extra radiation (scattering) losses in the 
chain. Nevertheless, as we show below, an EPD can still occur 

 

FIG. 4. (a) Same as Fig. 3. (b) Magnitude of the determinant of matrix U  

that brings the transfer matrix into a diagonal form in (10). 
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since a gain/loss balance can be achieved from the condition in 
(18). On the other hand, if one chooses the perfect conjugate 
symmetry condition (19) on the chain, an ideal EPD (where the 
eigenvectors are rigorously degenerate) can no longer be 
identified. Furthermore, such additional radiation losses (at high 
frequencies) could be manipulated and engineered to produce 
effects related to EPDs, such as loss-induced transmission [39]. 
Here, the analysis of lossy chains of infinite length is omitted 
because it would require the use of an infinitely periodic GF 
 [59–62], whereas our main scope is to provide a simple but 
intuitive analysis based on the nearest-neighbor approximation, 
that resembles the TB approach used in [48,50,64,65]. 

TABLE I. REQUIRED CHAIN POLARIZABILITIES TO REALIZE A 
SECOND ORDER EPD AT DIFFERENT NORMALIZED FREQUENCIES  

/e d cω  32 2 2
1 10 [Cm V ]eα − −×  32 2 2

2 10 [Cm V ]eα − −×  

0.02 3.59 4.97i− −  3.59 4.97i− +

0.1 3.61 4.99i− −  3.61 4.98i− +

0.5 3.93 6.06i− −  4.18 4.74i− +

 

We consider an example of a chain in vacuum (i.e., 1hε = ) 
with 100 nma d= = , and we select the EPD wavenumber to 
be / 5ek d π= , with 0.02ed cω = . This frequency implies that 
the period 0.003 ed λ≈  (where 2 /e ecλ π ω=  is the wavelength 
in vacuum) is deeply subwavelength, thereby justifying the low-
frequency assumption. By assuming the polarizabilities as 
frequency-independent in the vicinity of eω , we obtain the 

values ( )* 32 2 2
1 2 3.59 4.97 10 [Cm V ]iα α − −≅ = − − ×  (see table 

I), in order to attain a second-order EPD at 0.02ed cω = . 
These values approximately satisfy (19) because of the low-
frequency choice for this EPD to occur. In Fig. 3, we show the 
dispersion relationship of the two modes exhibiting the EPD. 
We only show the positive real part of the complex 
wavenumber within the region [ ]Re( ) 0, /zk dπ∈ , but we stress 

that the wavenumber branches satisfying [ ]Re( ) / ,2 /zk d dπ π∈  

also exhibit the EPD thanks to reciprocity. In Fig. 4, we also 
show the determinant (magnitude) of the similarity matrix U, 
which represents a quantitative metric of the closeness to an 

EPD condition. Indeed, at eω ω= , we observe that 

( )det 0→U  indicating that the system eigenvector coalesce 

and cease to form a complete basis set  [1,2,30]. As previously 
explained, exactly at the EPD there is no similarity 
transformation that diagonalizes the transfer matrix T , which 
in turn becomes similar to a matrix with Jordan blocks as in 
(11). In Fig. 5, we show the mode evolution in the complex kz-
plane [Re(kz)−Im(kz) plane] as the frequency increases. As it can 
be observed, the modal wavenumbers are almost real, i.e., 

3Im( ) / Re( ) 10z zk k −<  for eω ω< , and become almost complex 

conjugate pairs for eω ω> . Modes with purely real kz for 

eω ω<  are a fundamental consequence of the perfect gain-loss 
balance and symmetry of the system obeying an “exact” phase 

of PT-symmetry, for long wavelength. Conversely, for eω ω>  

such properties are violated, even though the gain and loss 
conjugate symmetry in (19) is satisfied, and the system enters 

 

FIG. 6. Positive branch of Re[kz] varying as a function of the gain/loss 
parameter /γ α α′′ ′= , demonstrating the detuning near a 2nd order EPD for 

two cases of the normalized frequency /e d cω . Chain parameters are as in Fig. 

3. Note that the perfect gain/loss symmetry condition does not provide a clear 
EPD for the case with higher frequency. 

 

FIG. 5. Complex modal kz trajectory in the [Re(kz)-Im(kz)] plane varying as a 
function of frequency showing the modes coalescing at the second-order EPD 
at z ek k= . Arrows show increasing frequency. Here, we used the same 

chain’s parameters as in Fig. 3. 
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the “broken” phase. By setting ( )eδ ω ω≡ −  in (12), and 
limiting the fractional power series to the first-order term, the 
asymptotic dispersion relationship near such second-order EPD 

is given by ( )2 2
, ( 1)l

z l e lk k h δ− − ≅ , where 2 2 2
,2 /l z lh k ω= ∂ ∂  at 

eω ω= .   

We also investigate the detuning of the second-order EPD by 
varying the gain and loss values implemented in the 
polarizabilities from their optimal condition (18). For that 
purpose, we assume an exact gain and loss symmetry in the 

chain, i.e.,  ( )1,2 1 iα α γ′= ± , with the gain and loss normalized 

factor γ  defined as /γ α α′′ ′= . We are interested in exploring 

how the mode characteristics change by varying the gain and 
loss factor γ .  In Fig. 6, we show the positive branches of kz  for 
two different normalized EPD frequencies /ed cω , varying as a 

function of γ for a chain with parameters d=a=100 nm, and we 

choose 1Re( )eα α′ =  from Table I for each value of /ed cω . 

 
We clearly observe the occurrence of the EPD for the smaller 
electrical period ( / 0.02ed cω = ). Moreover, the exact PT-

symmetric phase is observed at that frequency for a gain/loss 

parameter γ  less than a critical value (γ ≃ 1.35). At γ ≃ 1.35, 

the system undergoes spontaneous PT-symmetry breaking, 

designating the EPD, and beyond this threshold the modes cease 
to be real. However, for the higher-frequency case / 0.1ed cω = , 
the EPD can no longer be attained with the exact gain and loss 
symmetry. Instead, as discussed previously, an asymmetry must 
be introduced due to radiation losses. In this connection, the 
reader is also referred to  [72] in which different figure of merits 
were proposed in order to assess the quality or evidence of such 
EPD subject to perturbation due to disorders and imperfect gain 
and loss balance. To further elucidate this aspect, we also show 
the dispersion relationships of the modes belonging to a chain in 
which the polarizabilities are obtained from the symmetry 
design equations (19) to exhibit a second- order EPD. We 
consider two frequencies for which 0.1ed cω =  and 

0.5ed cω =  (i.e., increasing the frequency or period with 
respect to the case shown in Fig. 4) in Figs. 7 and 8, 
respectively. The corresponding polarizabilities of the chain that 
are evaluated from (18) to realize the EPD conditions at the 

above mentioned frequencies are ( ) 32
1 3.61 4.99 10iα −= − − ×  

2 2[C m V ]− , ( ) 32
2 3.61 4.98 10α −= − + ×  2 2[Cm V ]−  for 

0.1ed cω = , and ( ) 32
1 3.94 6.06 10iα −= − − ×  

2 2[Cm V ]− ,

( ) 32
2 4.19 4.74 10iα −= − − ×  2 2[Cm V ]−  for 0.5ed cω =  (see 

table I). We highlight that when the frequency increases the 
required polarizabilities 1α  and 2α  to attain an EPD do not 
satisfy the perfect conjugate symmetry condition in (19). In 
addition, it can be observed from the complex kz trajectories in 
Fig. 7(b) and 8(b) that the modes no longer have purely real kz 

values for eω ω< , especially for larger ed cω . Nonetheless, 
the EPD occurrence at eω  is evident, even when gain and loss 
are not symmetric. We point out that near the EPD in Figs. 7 
and 8, in view of the frequency detuning, modes tend to lose 

symmetry around z ek k= , meaning that the gain and loss 
asymmetry causes another form of perturbation near the EPD, 
especially at high frequencies. In order to capture this 
asymmetry, one should consider additional terms in the 
fractional power series expansion (12). 

B. Fourth-Order EPD and Degenerate Band Edge 

A fourth-order degeneracy indicates that all four eigenstates of 
the system (7) coalesce, and this can only be in the form 

eik d
e eζ ≡  with 1eζ = − , i.e., ek d π= . This condition occurs 

in the middle of the band-edge of the periodic structure’s 

 

FIG. 7. (a) Dispersion diagram [Re(kz) –ω] and (b) complex kz trajectory 
varying as a function of frequency of a chain, developing a second order 
EPD at 0.1e d cω = . Here, we used the same chain’s parameters as in Fig. 

3, except that the EPD is designed to occur at higher frequency. 

 

FIG. 8. (a) Dispersion diagram [Re(kz) –ω] and (b) complex kz trajectory 
varying as a function of frequency of a chain, developing a second order 
EPD at 0.5e d cω = . Here, we used the same chain’s parameters as in Fig. 

3, but the EPD frequency is even higher than that in Fig. 7. 
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Brillouin zone [ ]0,2 /zk dπ∈ . For lossless structures, this 
condition has been conventionally referred to as DBE. Typical 
examples of DBE effects have been shown in lossless photonic 
crystals as in  [12,13,16,17] and other waveguiding structures 
 [24,25]. Here, however, we show for the first time that the 
chain develops this fourth-order EPD thanks to the gain-loss 
interplay, and taking advantage of the natural mode coalescence 
at the band edge.  For the same parameters of the chain 
discussed in Section II.A, we select 0.02ed cω =  and ek d π=

. Under this condition, an EPD is attained for  

( ) ( )
* 31

1 2 5.2 6.78 10e e iα α −≅ = − ×  2 2[Cm V ]−  (see table II for 

1
eα  and 2

eα  up to 6 significant digits). The corresponding 
dispersion relation is shown in Fig. 9(a). Once again, also 

shown [in Fig. 9(b)] is ( )det U , which vanishes at eω . Similar 

to the second-order EPD example in Fig. 4, the period is deeply 
subwavelength ( 0.003 ed λ≈ ) and the EPD condition 
corresponds to the perfect gain and loss balance and conjugate 
symmetry condition (19). 

  

By letting  ( )eδ ω ω≡ −  in (14), and retaining the first term, the 
asymptotic dispersion relation near such fourth-order 

degeneracy is given by 4 4( )z ek k h δ− ≅ , with 
4 4 424 /zh k ω= ∂ ∂  at eω ω=  and z ek k= . Figure 10 shows the 

complex kz trajectory, as a function of frequency. We observe 
branches of purely real kz modes and two branches of complex 

conjugates ones, for eω ω< , coalescing at the EPD for eω ω= , 

and then evolving into four complex modes for eω ω> .  

We also illustrate in Fig. 11 the detuning from the fourth-
order EPD by varying the gain and loss parameter  γ  defined in 
Section III.A, i.e., having conjugate-symmetry in the 

polarizabilities, ( )1,2 1 iα α γ′= ± . More specifically, we show 

the positive branches of Re( )zk  for two different normalized 

frequencies /ed cω , with the corresponding 1Re( )eα α′ =  taken 
from Table II for each case.  

Analogous to the second-order EPD, the occurrence of the 
fourth-order EPD with perfectly balanced gain/loss and 
complex-conjugate polarizabilities (i.e., PT-symmetric) is 

evident for the smaller electrical period ( / 0.02ed cω = ), but it 
does not hold for the case with / 0.1ed cω = . Once again, large 
values of ed cω   imply that the dispersion relation is deformed 
in the vicinity of the gain/loss balance condition at which an 
EPD is expected (γ ≈ 0.132), and the EPD is no longer 
observable (as seen in Fig. 11 for the case with / 0.1ed cω = ).  

 

FIG. 11. Positive branch of Re[kz] varying as a function of the gain/loss 
parameter /g α α′′ ′= , demonstrating the detuning near a fourth-order EPD 

for two cases of the normalized frequency /e d cω . Chain parameters are as in 

Fig. 9 and 1Re( )eα α′ =  is taken from Table II for each case. Note that the 

perfect gain/loss symmetry condition does not provide a clear EPD for the 
case with higher frequency. 

 

FIG. 10. Complex kz trajectory plane varying as a function of frequency with 
the four modes coalescing at ek . The chain has the same parameters used in 

Fig. 9. 

FIG. 9. (a) Dispersion diagram [Re(kz) –ω] of the four modes of the chain 
exhibiting a fourth-order degeneracy at the band edge, and (b) the 
corresponding magnitude of the determinant of similarity U. The chain has 
d=a = 100 nm with  0.02e d cω =  and /ek dπ= . 
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For better illustration, we show in Figs. 12 and 13 the 
dispersion relationships and the complex kz trajectories near the 
fourth-order EPD for 0.1ed cω =  and 0.5ed cω = ,  
respectively. Once again, the occurrence of a fourth-order EPD 
is possible, without requiring conjugate symmetry of the 
polarizabilities. The corresponding polarizabilities of the chain 

are ( ) 32
1 5.22 0.69 10e iα −= − × 2 2[Cm V ]− , 

( ) 32
2 5.22  0.68 10e iα −= + ×  2 2[Cm V ]−  for 0.1ed cω = , and 

( ) 32
1 6.05 0.45 10e iα −= − × 2 2[Cm V ]− , 

( ) 32
2 5.37  1.19 10e iα −= + ×  2 2[Cm V ]−  for 0.5ed cω =  (see 

table II). Results in Fig. 12 and 13 show that the wavenumber 
trajectory around the fourth-order EPD frequency behaves 
differently compared to the case in Fig. 9, suggesting that one 
should consider a larger number of terms in (14) to approximate 
the eigenstate characteristics (eigenvalue and eigenvectors) near 
the EPD frequency. The same conclusion applies when other 

 

 TABLE II. REQUIRED CHAIN POLARIZABILITIES TO REALIZE A 
FOURTH ORDER EPD AT DIFFERENT NORMALIZED FREQUENCIES  

/ed cω  32 2 2
1 10 [Cm V ]eα − −×  32 2 2

2 10 [Cm V ]eα − −×  

0.02 5.2 0.67i−  5.2 0.67i+

0.1 5.22 0.69i−  5.22 0.68i+

0.5 6.05 0.45i−  5.37 1.19i+

structural parameters are detuned. Nevertheless, by proper 
tuning of the polarizabilities, one can still attain the remarkable 
features of fourth-order EPDs, in terms of a high Q factor due to 
a dramatic reduction group velocity.  

As a concluding remark, it is worth highlighting that the 
perturbation of the fourth-order EPD eigenstate with frequency 
or imbalance of gain and loss is much stronger than the second-
order counterpart, since the perturbation factor δ  in the 
fractional expansion in (12) and (14) dictates that 

1/ 4 1/ 2δ δ δ> >  for 1δ << . Accordingly, a small structural 

perturbation can lead to a significant measurable modification 
of the spectral evolution of the system near these EPDs, leading 
to strongly enhanced sensitivity. This can find important 
applications to sensing  [74]. 

 

V. EPD IN A COUPLED CHAIN OF NANOSPHERES 
WITH FREQUENCY DEPENDENT PARAMETERS 

We now demonstrate a realistic example of EPDs occurring 
in a chain of spherical nanoparticles at optical frequencies, by 
considering metals and optically-pumped active materials, and 
by also taking into account the frequency-dependent behavior of 
the nanoparticles polarizabilities. Referring to the geometry 
schematized in Fig. 14(a), we begin by assuming a=d=32 nm. 

The passive nanosphere with polarizability 2α  is made of gold 
while the active particle is realized by a core-shell nanosphere 
with a gold shell and a silica core doped with active fluorescent 
molecules (Rhodamine 6G dyes). 

For the gold nanosphere and nanoshell, we consider the 
Drude-type dispersive model in the Appendix. A description of 
the steady-state linearized relative permittivity for the gain 
material can be found in several textbooks such as  [77], and 
more specifically in  [56] for nanoshells (see also the 
Appendix). We assume that each of the gold nanospheres has a 
radius of 20 nm. The EPD is realized for a specific gain and loss 
balance condition. As illustrated in Fig. 14(b), this is attained by 
varying the shell’s outer radius, namely r1s, while keeping the 
core-to-shell radius ratio r1s/r1c fixed, as well as all the other 
parameters. We assume a frequency of 520 THz, which lies 

 

FIG. 13. (a) Dispersion diagram [Re(kz) –ω] and (b) complex kz trajectory 
varying as a function of frequency, for a chain with the same the same 
geometrical parameters used in Fig. 9. It develops a fourth-order EPD at 

0.5e d cω =  when the perfect gain/balance symmetry condition does not 

hold anymore.  

FIG. 12. (a) Dispersion diagram [Re(kz) –ω] and (b) complex kz 
trajectory varying as a function of frequency of a chain, developing a 
fourth-order EPD at 0.1e d cω = . The chain has the same parameters 
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within the emission band of the core’s fluorescent dyes  [78] 
(see Appendix). Accordingly, we find the radius at which an 
EPD occurs by plotting kz versus r1s; we obtain r1s≈26 nm. 
Figure 14(c) shows the corresponding dispersion diagram for 
r1s=26 nm, from which a 2nd-order EPD is clearly visible at 520 
THz. We emphasize that, for this parameter configuration, the 
chain does not satisfy the PT-symmetry balance condition in 

(19), i.e., *
1 2α α≠  at 520 THz (see the corresponding values in 

the Appendix). These findings verify the capability of realizing 
EPDs in simple yet realistic structures made of lossy/active 
nanospheres, without the need for sophisticated numerical 
optimization. Furthermore, this example can be generalized to 
more complex scatterers’ geometries of nanorods on substrates, 
which can be further optimized for experimental demonstration. 

VI.  CONCLUSION AND DISCUSSION 

We have demonstrated the occurrence of EPDs of second 
and fourth order in coupled linear chains of scatterers with 
properly tuned gain and loss in the dipolar polarizabilities. We 
also have elucidated possible connections with the PT -
symmetry concept. In addition, we have discussed the impact of 
gain and loss imbalance as well as conjugate asymmetry of the 
scatterers’ polarizabilities on both second- and fourth-order 
EPDs. Our 

results rely on a TB-based approach formulated in terms of 
transfer matrix. Furthermore, we have demonstrated a realistic 
EPD implementation in a coupled chain made of plasmonic 
nanospheres and active core-shell nanospheres at optical 
frequencies. We highlight that the TB approach is an 
approximation of the more accurate fully-periodic GF method 
 [61,62]. Nonetheless, we have observed good agreement 
between the TB approach and the fully-periodic GF in 
analyzing the scattering properties of finite-chains with 
balanced gain and loss near a long-wavelength EPD, as typical 
in photonic bandgap structure analyses  [52]. These aspects will 
be investigated more in depth in future studies.  

Our analysis provides some new insights into how EPDs can 
manifest in general discrete coupled mode structures. These 
properties can also be harnessed for sensing applications, 
enhancing non-linear effects (including second harmonic 
generation and unprecedented soliton propagation), as well as 
lowering the threshold for lasing (as demonstrated in  [16] for 
lossless DBE structures with extrinsic gain). Moreover, the 
structures of interest can be implemented by using plasmonic 
particles for applications ranging from near-field enhancement 
to super-resolution at optical wavelengths.   
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APPENDIX: DETAILS PERTAINING TO SECTION V 

The polarizability of a plasmonic spherical nanoparticle, 
assumed to be in vacuum, is given by the Clausius-Mossotti 
formula [see p. 8-6 in  [79]] 
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where r2 is the radius of the nanosphere, and the imaginary term 
in the parenthesis takes into account the radiation losses. 
Moreover, the relative permittivity 2ε  is provided by the Drude 
model as   

 
2
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ε ε
ω ω∞= −

+ Γ
 (A2) 

where pω  is the plasma angular frequency, Γ is the damping 

factor, and ε∞  is the high-frequency permittivity limit. The 

 

FIG. 14. (a) Example of a coupled chain with gain and loss balance made of 
pairs of plasmonic nanosphere and a core-shell nanosphere with active core. 
The chain exhibits an EPD at optical frequencies. (b)  Two branches of Re[kz] 
varying shell’s radius at 520 THz, in which the chain exhibits a 2nd order EPD 
when r1s ≈26 nm. (c) Dispersion diagram [Re(kz) –ω] of the two branches in 
(b) when r1s=26 nm that shows a second-order EPD at ~520 THz and ke=π/d. 
Here a = d = 32 nm, the gold nanosphere radius is r2=20 nm, while and all 
other parameters are kept constant and reported in the Appendix
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core-shell particle polarizability, including radiation losses, is 
given by  [56] 

1 1 1 1 1 1
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where 1cε  is the relative permittivity of the core (whose radius 
is r1c), 1sε  is the relative permittivity of the shell (whose outer 

radius is r1s) and 3
1 1( / )c sr rβ = . The shell is assumed to be 

made of gold, with relative permittivity 1sε  provided by the 
Drude model, i.e., 1 2sε ε= . The active core has an effective 
relative permittivity 1cε  given by an inverted Lorentzian 
frequency lineshape. The effective model of the gain material 
made of a concentration of fluorescent dye molecules  is 
described by a four level atomic system and the formulation can 
be found in several textbooks  [77,80] (see also  [56,81]). Here, 
we limit ourselves to provide the effective linearized relative 
permittivity at steady state  [56] 

 p
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Δ
= + Δ ≈

++ Δ −
 (A4) 

where rε  is the relative permittivity of the core’s host 
dielectric, aσ  is a constant determining the active molecule 
coupling to electric fields, aω  is the emission angular frequency 
and aωΔ  is the bandwidth. The second equation in (A4) 
represents the approximate population difference NΔ  between 
the lasing energy states, in which 0N  is the total active dye 
concentration, τ  is the lifetime of the radiative transition and 

pR  is the pump rate. In the example in Sec. V, for the gold 

Drude model, we assume 9.5ε∞ = , 161.36 10 rad/spω = ×
 
and 

14 11.05 10 s−Γ = × . For the core of the active nanoparticle 
(silica doped with Rhodamine 6G), we assume the same 
parameters used in  [56] (adapted from experimental data 

 [82,78]):  2.25rε = , 8=6.55 10aσ −×  C2/kg,

/(2 ) 526 THza af ω π= = , 4nsτ = , 18 3
0 3 10 cmN −= × , 

9 13 10 spR −= × , and 3
1 1( / ) 0.9c sr rβ = = . The polarizabilies 

of the two particles at the EPD frequency of 520 THz when 
r1s=26 nm are α2 = (2.04+i9.87)×10-35 Cm2V-2 for the gold 
nanosphere with r2= 20 nm, and α1 =(3.33−i 9.22)×10-35 Cm2V-2  
for the active nanoshell. 
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