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We propose a dynamic Jahn-Teller approach to elucidate the generation mechanism of low-
symmetry modes of coherent phonons induced in crystals by irradiation with a short optical pulse
in the opaque energy region. This is a natural extension of the impulsive excitation model of sym-
metric modes to multi dimensions in the configuration coordinate space. We show that the two
generation mechanisms of coherent phonons coexist in this case; namely the impulsive absorption
(IA) mechanism and impulsive stimulated Raman scattering (ISRS) mechanism. The dependence
of the phonon amplitude on the polarization of the pump-pulse is exactly the same in IA and ISRS
processes, and is in agreement with the prediction of the argument based on Raman tensors. The
dependence of the excitation efficiency of the coherent phonons on the frequency of the pump-pulse
is calculated using a simplified model of the optical response function of the crystal. Generally, the
IA mechanism predominates in the opaque region, although ISRS makes a comparable contribution
to phonon generation in the near edge opaque region. The initial phase of the coherent phonon is
always cosine-like in IA, but depends on the excitation frequency in ISRS.

PACS numbers: 78.47.+p, 78.20.Bh, 63.20.Kr

I. INTRODUCTION

Irradiation of crystal surfaces with ultrashort opti-
cal pulses often induces coherent oscillation of optical
phonons. These coherent optical phonons can be most
conveniently observed by time-resolved pump-probe mea-
surement of optical reflection and transmission[1–3], or x-
ray diffraction[4–6]. The microscopic mechanism of gen-
eration of coherent phonons has long been a subject of
central interest in this research area [7–11].
There are two well-known models for coherent phonon

generation. In the impulsive stimulated Raman scatter-
ing (ISRS) mechanism, the Raman transition caused by
an ultrashort optical pulse induces a transition to the ex-
cited Fock state of phonons in the electronic ground state,
which is coherently overlapped with the zero-phonon
state and initiates the lattice oscillation in the electronic
ground state. In the displacive excitation of coherent
phonon (DECP) mechanism, the coherent linear combi-
nation of the Fock state of phonons occurs in the elec-
tronic excited state. In both the ISRS and DECPmodels,
it is tacitly assumed that there are electron-phonon inter-
actions in the excited state, and it is necessary to excite
the crystal impulsively by a pump-pulse with spectrum
wider than the phonon frequency. It is generally accepted
that the ISRS model is the only possible mechanism in
the case of excitation in the transparent region[12].
Excitation in the opaque region is more problematic

to explain, because the resonant ISRS and DECP paths
should coexist according to quantum mechanics. Re-
cently, we conducted a theoretical study using a simple
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two-level model to clarify the relationship between the
ISRS and DECP mechanisms by applying a density ma-
trix formalism[13]. We showed that the ISRS and DECP
paths coexist as distinct quantum processes, especially
in the case of resonant excitation. The amplitude of
the oscillation of the optical phonon in the ISRS path
is much smaller than that of DECP path when the pulse
width is less than half of the period of the phonon oscilla-
tion. However, we considered only the totally symmetric
phonon mode in this work.
For low-symmetry modes of optical phonons such as

the Eg-mode of bismuth[14, 15], antimony[9, 16] and
their compounds [17–19], it is often asserted that the
generation mechanism is ISRS even in the case of pump-
ing in the opaque region, while that of the A1g-mode is
assigned to DECP [14]. One of the reasons for this as-
signment is the experimental observation that the oscil-
lation amplitude of the low-symmetry mode of coherent
phonon depends on the polarization angle of the pump-
pulse relative to the lattice coordinate, and this angular
dependence agrees with that expected from the Raman
tensor.
For example, take the case of the Eg-mode of Bi. For a

pump-pulse incident along the z-axis , which is chosen to
be parallel to the c-axis of the crystal, the Raman tensors
for the Eg-mode scattering are given by

M1 =





d 0 0
0 −d 0
0 0 0



 M2 =





0 −d 0
−d 0 0
0 0 0



 , (1)

with the definition of the linear polarized electric fields,
~E1 ‖ ~ex and ~E2 ‖ ~ey, where ~ex and ~ey are the unit vectors
along the x- and y- axes, respectively. The degenerated
phonon modes Q1 and Q2 have the symmetry Q1 ∝ x2−
y2 and Q2 ∝ −2xy. The transition probability Pi caused
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by the Raman process described by Mi is then given by

Pi ∝ | ~Et
outMi

~Ein|2, (2)

where ~Ein and ~Eout are the electric fields of the inci-
dent and scattered light, respectively, and ~Et

out means

the transpose of ~Eout. In the pump-process involving

ISRS, we set ~Ein = ~Eout = ~E ∝ cos θ~ex+sin θ~ey where θ

is the angle between the polarization of the pump-field ~E
and the x-axis. Then we find the polarization dependence
of the scattering amplitude S1 and S2 by the generation
of the Eg phonons Q1 and Q2 given by

S1 ∝ d cos 2θ,

S2 ∝ −d sin 2θ. (3)

In the case of coherent phonons, the generated Eg-
mode phonons modulate the electric susceptibility, which
can be probed as a pump induced change of the tran-
sient reflectivity or transmissivity. The signal amplitudes
caused by the low-symmetry modes are generally much
smaller than that induced by the symmetric mode. We
may select the signals assigned to each phonon mode by
electro-optic measurement with a suitable choice of the
crystal axis. The agreement of the observed angular de-
pendence of the pump-pulse in the signal of the coherent
phonons with the prediction by the Raman tensors[14, 18]
seems to suggest that the generation mechanism is ISRS.
However, it should be stressed that this agreement does
not necessarily confirm that the microscopic origins of the
two distinct processes of the resonant Raman scattering
by a stationary field and coherent phonon generation by
a pump-pulse are the same.
For the theoretical studies of generation mechanism of

coherent phonons, Zeiger and coworkers[7] proposed in
their pioneering work a phenomenological model based
on a semiclassical equation of motion. Kuznetsov and
Stanton[8] studied the microscopic origin of coherent mo-
tion of phonons on the electron-phonon coupled Hamilto-
nian. They derived an equation of motion for the coher-
ent amplitude of the annihilation operator of phonons by
the Heisenberg equation of motion. Since the Heisenberg
equation for harmonic oscillators has essentially the same
structure as the classical counterpart, their results allow
an intuitive understanding of the generation mechanism.
Here, only the DECP process for fully symmetric mode
was included.
In the work by Garrett and coworkers[9], Merlin[10]

and Stevens et al.[11], theory was extended to cover also
the case of multiple bands in the excited state. In these
works too, the semiclassical equation of motion of the
phonon coordinates plays a central role. The distinction
between DECP and ISRS was included in the difference
of the force term. In ref.[11], it was asserted that the
notion of DECP is not a distinct mechanism, but a par-
ticular case of stimulated Raman scattering. However,
this statement is confusing because the final states of the
electronic system is different between DECP and ISRS.

The optical absorption is not a particular case of the Ra-
man scattering.
In the present work, we propose a different approach

to the problem of coherent phonon generation with spe-
cial attention to the case of low-symmetry mode. Before
going into details, we adopt henceforth a term impul-
sive absorption (IA) instead of DECP, because the term
DECP has been used only in the case of fully symmetric
mode[8]. The difference between IA and ISRS is whether
the excited electron occupies the excited state (IA) or has
returned to the ground state (ISRS) after the passage of
the pump-pulse. Therefore, DECP is a particular case of
IA.
In this work, we use a simplified band model to eluci-

date the generation process of the coherent phonons of
low-symmetry modes with the dynamic Jahn-Teller in-
teraction. We don’t resort to the equation of motion of
the phonon coordinate, but directly calculate the den-
sity matrix for the electron-phonon coupled system and
the expectation value of the phonon amplitude on the
assumption that the coupling constant is weak. We then
discuss the dependence of the phonon amplitude on the
polarization of the pump-pulse. We find that, as ob-
served previously[13], the IA and the ISRS paths coexist
as distinct quantum processes, and both display the same
dependence of the amplitude of the coherent phonons on
the polarization angle. The IA mechanism predominates
over the ISRS process with respect to the generation effi-
ciency in the opaque region except for the case of excita-
tion to the band-edge, where the IA and ISRS processes
compete in terms of the generation efficiency. Further-
more, we revealed that the initial phase of the oscillation
of coherent phonon is always cosine-like in the IA path,
while it depends on the frequency of the pump-pulse in
the ISRS process.

II. MODEL

First, it should be noted that behind the Raman ten-
sors, a set of electron-phonon interactions with the same
symmetry exists, from which the Raman tensors are
derived[20]. In the case of low-symmetry modes, this in-
teraction works between the degenerate electronic states
that transform as a distinct basis set in an irreducible rep-
resentation of the crystal. In 1937, Jahn and Teller[21]
proved a theorem that if a symmetric non-linear molecule
has a degenerate electronic states, it distorts in such a
way to remove the electronic degeneracy. This effect is
called a static Jahn-Teller effect, because the atomic de-
grees of freedom were treated as classical variables which
define the static adiabatic potentials. The dynamic as-
pect of the Jahn-Teller effect was then studied in which
the quantum mechanical interaction between the elec-
tronic and atomic degrees of freedom was a subject of
interest[22]. The concept of Jahn-Teller interaction was
extended to localized centers in solids[23]. For example,
the splitting of the optical absorption band in some heavy
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FIG. 1. Adiabatic potential energy surface for the Jahn-Teller
interaction with Eg-mode phonons (top). Potential surface of
the ground state (bottom).

metal ions doped in alkali halides is explained theoreti-
cally as a result of the Jahn-Teller interaction between
the localized electronic states with the low-symmetry dis-
tortion of the surrounding ions[24].

Another extension of the Jahn-Teller scenario is the
band Jahn-Teller effect, which is closely related to our
work. In the band Jahn-Teller model, a set of symmetry-
degenerated band of itinerant electrons are coupled lo-
cally with low-symmetry phonon modes. This is moti-
vated to explain the origin of d−d interaction in cuprate
superconductors[25–27]. In the present work, we apply
the dynamic Jahn-Teller interaction model of band elec-
trons to the coherent phonon generation of low-symmetry
phonons. Although the following argument can be easily
extended to general types of Jahn-Teller interactions, we
consider here the case of Eg-mode coupled with a set of
electronic states with two-dimensional representation for
concreteness.

First we derive our model Hamiltonian in a simplified
form. We consider an optical pumping of a uniaxial semi-
conductor or semimetal. For simplicity, the sample is as-
sumed to be a slab of single crystal with size L×L×L′,
where L is the length of sides and L′ is the thickness.
It is assumed that the crystal surface is perpendicular
to the c-axis, and the pump-pulse hits the surface along
the normal direction of the surface. For the model of

the electronic state, it is assumed that the valence band
is composed of even parity s-like states, and the con-
duction band is degenerate with x-like states and y-like
states with odd-parity. The Hamiltonian is given by

He =
∑

~k

ǫv(k)a
†
k,sak,s +

∑

~k

∑

ξ=x,y

ǫc(k)a
†
k,ξak,ξ, (4)

where ak,s and ak,ξ(ξ = x, y) are the annihilation op-
erator for the Bloch electrons of the valence band with
s-like symmetry and energy ǫv(k), and the conduction
band with ξ-like symmetry and the energy ǫc(k), respec-
tively. The two-fold degenerate conduction band is called
an e-band.
The electronic states in the conduction band are as-

sumed to be locally coupled with Eg-mode phonons as
described by the Hamiltonian

HeL = c
∑

j

{

Qj
1

(

a†j,xaj,x − a†j,yaj,y

)

− Qj
2

(

a†j,xaj,y + a†j,yaj,x

)

}

, (5)

where Qj
λ (λ = 1, 2) is the coordinate of the λ-

component of Eg-phonon at j-th unit cell, c is the cou-
pling constant, and aj,ξ is the annihilation operator for
the Wannier state at j-th unit cell which is given by

aj,ξ =
1√
N

∑

~k

ak,ξe
−i~k· ~Rj , (6)

in which N is the number of unit cells in the crystal,
~Rj is the lattice vector for the j-th unit cell, and the
summation

∑

k should be taken over the points in the
first Brillouin zone. Likewise the phonon coordinate is
expanded into the normal modes as

Qj
λ =

∑

~q

√

~

2NMωq

{

bλ,qe
i~q· ~Rj + b†λ,qe

−i~q· ~Rj

}

, (7)

in which M is the reduced mass of atoms per a unit
cell, ωq is the frequency of the optical phonons, and
(

bλ,q, b
†
λ,q

)

are the annihilation and the creation oper-

ators for the normal mode satisfying the commutation
relation

[bλ,q, b
†
λ′,q′ ] = δq,q′δλ,λ′ . (8)

Inserting Eqs. (6), (7) into (5), we rewrite (5) as
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HeL = c
∑

~q

∑

~k

1
√

2NMωq

{

(

b†1,q + b1,−q

)(

a†k+q,xak,x − a†k+q,yak,y

)

−
(

b†2,q + b2,−q

)(

a†k+q,xak,y + a†k+q,yak,x

)

}

. (9)

The Hamiltonian for the phonon energy is written as

HL =
∑

~q

~ω~q

(

b†1,qb1,q + b†2,qb2,q

)

, (10)

where ~ω~q is the energy of the Eg-mode phonon.
It should be noted here that, according to the phase

matching, the wave vectors of phonons which can be ex-
cited by the optical processes are only those lying close
to the Γ-point ~q = 0 because the optical wave-length is
much larger than the lattice constant. The eigen modes
of phonons form a continuum around ~q = 0. The elec-
tromagnetic field interacts only with the atoms within
the penetration depth δL′. In the opaque region, δL′ is
usually much smaller than the crystal thickness L′. This
effect relaxes the condition of phase matching and allows
the modes with δq ∼ 1/δL′ around ~q = 0 to be excited[9].
Furthermore, the pump-pulse is focused on the spot size
which is smaller than the surface area size L. This means
that the phase matching condition along the lateral di-
rection is also relaxed.
We may roughly classify all of the normal modes into

two; the 2N ′ active modes around ~q = 0 which are ex-
cited by the optical pulses, and 2(N−N ′) inactive modes
which are not excited. Then the model Hamiltonian is
greatly simplified by taking into account only the active
modes as follows. We define the creation operators for

the interaction modes b†λ (λ = 1, 2) by

b†λ ≡ β
∑

~q

′
b†λ,q, (λ = 1, 2), (11)

where the summation
∑′

~q runs over the N ′ active modes

around ~q = 0. The constant β is determined by the
normalization condition,

[bλ, b
†
λ] = β2N ′ = 1, (12)

as β = 1/
√
ρN , where ρ ≡ N ′/N << 1 is the fraction

of the phase space volume occupied by the active modes.
Dropping the inactive modes from the summation (9),
and approximating ~q = 0 for the active modes, we find

HeL = α~ω
∑

~k

{

(

b†1 + b1

)(

a†k,xak,x − a†k,yak,y

)

−
(

b†2 + b2

)(

a†k,xak,y + a†k,yak,x

)

}

, (13)

where we set ω~q=0 = ω, and α is the dimensionless cou-
pling constant

α = c
1

~ω

√

ρ~

2Mω
. (14)

Note that α is independent of the system size N . Note
also that it depends not only on the material constants
but also on the experimental condition.
We have selected only two modes out of the 2N ′-

dimensional subspace of active modes. The concept of
the interaction mode was introduced into the theory of
Jahn-Teller effects in localized centers by Toyozawa and
Inoue[24] and O’Brien[28] in a slightly different context.
Other 2N ′−2 modes can be defined within this subspace
by an orthogonal transformation of the phonon variables
to be orthogonal each other and also with the interaction

mode. Because the original modes
(

b†λ,q, bλ,q

)

are normal

modes, this transformation may give rise to the bilinear
off-diagonal coupling between the new variables through
the dispersion of energy in the Hamiltonian (10). It can
be proven that it is always possible to choose this or-
thogonal transformation so as the off-diagonal couplings
to appear only between the interaction modes and the
rest modes. The 2N ′−2 rest modes are then regarded as
forming a reservoir modes for the interaction modes, and
induces the relaxation of the coherent motion of the inter-
action modes[29]. In the present case, however, the off-
diagonal coupling is considered small, because the orig-
inal modes are optical modes in the vicinity of Γ-point.
In the present work, we neglect this coupling, and simply
rewrite HL by taking into account only the interaction
modes,

HL = ~ω
(

b†1b1 + b†2b2

)

. (15)

Mode 1 and 2 correspond to the two Raman-mode
phonons described in Eq.(1). It is easily ascertained by a
first order perturbation calculation with respect to HeL

that the above Hamiltonian reproduces the Raman selec-
tion rule Eq. (1) in the continuous-wave Raman scatter-
ing.
If we define the configuration coordinates and their

conjugate momenta for the Eg interaction modes by

Qλ =

√

~

2Mω

(

b†λ + bλ

)

,

Pλ = i

√

M~ω

2

(

b†λ − bλ

)

, λ = 1, 2, (16)

the adiabatic potential V (Q1, Q2) for the excited state
with a fixed value of k is given as

V (Q1, Q2) =
Mω2

2

(

Q2
1 +Q2

2

)

± αω
√
2M~ω

√

Q2
1 +Q2

2.

(17)
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In Fig. 1, V (Q1, Q2) is illustrated schematically[22, 23]
together with the adiabatic potential of the ground state.
V (Q1, Q2) has a conical intersection at Q1 = Q2 = 0.
The relaxation energy is α2

~ω. The eigenvalue problem
for the vibronic system under the Hamiltonian He+HL+
HeL and its optical responses are called an E⊗e-problem
and have been studied extensively for some decades[22,
24].
For the interaction Hamiltonian with the pump-pulse,

we take

HeR(t) = Ef(t)
∑

k

µk(cos θa
†
k,xak,s

+ sin θa†k,yak,s)e
−iΩ0t +H.c., (18)

where f(t) is the dimensionless pulse-envelope localized
around t = 0, Ω0(>> ω) is the central frequency of the
pump-pulse with field strengthE, and µk is the transition
dipole moment. Here we approximated that the optical
transition takes place vertically in the Brillouin region.
In actual calculations, we used the Gaussian pulse with
the pulse-width σ,

f(t) =
1√
πσΩ0

exp
(

−t2/σ2
)

. (19)

We consider the resonant impulsive excitation and de-

excitation processes by HeR(t) under the condition that
~Ω0 exceeds the band-gap energy. In this work, we are
interested in the possible mechanisms of coherent phonon
generation and, especially, in the initial amplitude of
phonon oscillation. Therefore, we simply neglect various
relaxation pathways for the electrons and phonons.

III. RESULTS AND DISCUSSION

It is assumed that the system was initially in the
ground state with zero phonon, described by the ket vec-
tor |ψ(−∞)〉 = |g〉 ⊗ |0〉 where |g〉 is given by |g〉 =
∏

k a
†
k,s|vac〉 with |vac〉 being the vacuum of electron, and

|0〉 is the vacuum of phonon.
If we set the unperturbed Hamiltonian H0 as

H0 = He +HL, (20)

the temporal development of the ket vector under the
electron-photon and electron-phonon interactions obeys
the Schrödinger equation

i~
d

dt
|ψ(t)〉 = (H0 +HeR(t) +HeL) |ψ(t)〉, (21)

which is formally solved as

|ψ(t)〉 = exp

(

− i

~
H0t

)

exp+

(

− i

~

∫ t

−∞

{

H̃eR(t
′) + H̃eL(t

′)
}

dt′
)

|ψ(−∞)〉, (22)

where exp+ means the time-ordered exponential and

H̃eR(t) and H̃eL(t) are given by

H̃eR(t) = eiH0t/~HeR(t)e
−iH0t/~,

H̃eL(t) = eiH0t/~HeLe
−iH0t/~, (23)

respectively.
We calculate the density matrix ρ(t) = |ψ(t)〉〈ψ(t)| to

the lowest order perturbation expansion with respect to
H̃eR(t) and H̃eL(t) that gives nonzero expectation val-
ues of Q1(t) and Q2(t). The double-sided Feynman dia-
grams for the density matrices corresponding to the IA
and ISRS processes are shown in Fig. 2. In these dia-
grams, the temporal evolution of the ket (bra) vectors is
shown in the upper (lower) propagators. The time runs
from −∞ (far left) to t (far right). The filled circles
indicate the vertices of the absorption and emission of
photons. The empty circles are the vertices of emission
of phonon 1 or 2, which are indicated by dashed lines.
Figure 2 (a) - (d) correspond to the processes that con-

tribute to 〈Q(A)
λ (t)〉 and 〈Q(S)

λ (t)〉 (λ = 1, 2), where (A)
and (S) represent the IA and ISRS paths, respectively.
The Hermitian conjugate diagram, which is obtained by

interchanging the upper and the lower propagators, is
also indicated for each diagram.
The time-ordered integral should be carried out for

both photon and phonon vertices. The subspace of the

excited states is composed of |~k, ξ〉 ⊗ |0〉 and |~k, ξ〉 ⊗ |1λ〉
where |~k, ξ〉 = a†k,ξak,s|g〉 and |1λ〉 = b†λ|0〉, (ξ =

x, y, λ = 1, 2). Inspection of the interaction Hamil-

tonians H̃eR(t) and H̃eL(t) reveals the following rule for
assignment of factors: Assign cos θ (sin θ) to each photon-

vertex connecting |g〉 with |~k, x〉 (|g〉 with |~k, y〉). Assign
α to each phonon-vertex connecting |~k, x〉 with |~k, x〉. As-
sign−α to each phonon-vetex connecting |~k, y〉with |~k, y〉
and |~k, x〉 with |~k, y〉.
The calculation was performed for time t well after the

passage of the pump-pulse t >> σ, allowing us to deter-
mine the expectation values for the phonon coordinates,

〈Q(A)
1 (t)〉 = A(t) cos 2θ,

〈Q(A)
2 (t)〉 = −A(t) sin 2θ,

〈Q(S)
1 (t)〉 = S(t) cos 2θ,

〈Q(S)
2 (t)〉 = −S(t) sin 2θ, (24)
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in which

A(t) = LA(Ω0)
(

e−iωt + eiωt
)

− 2∆, (25)

S(t) = LS(Ω0)e
−iωt + L∗

Se
iωt, (26)

with

LA(Ω0) = D

∫ ∞

−∞

due−
u2

2σ2 ei(Ω0−
ω
2
)uF (u), (27)

LS(Ω0) = 2iD

∫ ∞

0

due−
u2

2σ2 sin (ωu/2) eiΩ0uF (u).(28)

In the above equations, 〈· · · 〉 means that the expectation
value over the electronic and phononic states should be
taken,

D = α

√

~

2Mω

(

E

~Ω0

)2
1√
2πσ

e−σ2ω2/8,

∆ = α

√

~

2Mω

(

E

~Ω0

)2
1√
2πσ

∫ ∞

−∞

due−
u2

2σ2
−iΩ0F (u),

and F (u) is the response function defined by

F (u) =
∑

k

|µk|2e−iǫku/~−γ|u|, (γ = 0+) (29)

in which ǫk ≡ ǫc(k) − ǫv(k). The term ∆ corresponds
to the shift of the equilibrium of phonons in the excited
state. The derivation of the above formulas is given in
the Appendix.
It should be noted that F (u) can be obtained once

the absorption spectrum I(Ω) =
∑

k |µk|2δ(Ω − ǫk/~)
corresponding to the e-band is known: F (Ω) is given by
its Fourier transform,

F (u) =

∫ ∞

−∞

I(Ω)e−iΩudΩ. (30)

The Laplace transform of F (u)

χ(Ω) ≡ i

∫ ∞

0

F (u)eiΩudu (31)

is the optical susceptibility which describes the response
to stationary fields. We define the pulse suceptibility
χp(Ω) by

χp(Ω) ≡ i

∫ ∞

0

e−
u2

2σ2 F (u)eiΩudu. (32)

Then Eqs.(27) and (28) can be written as

LA(Ω0) =
1

i
D

{

χp(Ω0 −
ω

2
)− χ∗

p(Ω0 −
ω

2
)

}

, (33)

LS(Ω0) = D

{

χp(Ω0 +
ω

2
)− χp(Ω0 −

ω

2
)

}

. (34)

As shown here, the expectation values of the phonon
coordinates are factorized into products of the dynamical
factors, A(t) and S(t) and the geometrical factors cos 2θ

x xg

x

1

y+ H.c.+y

yg

g

2

+ H.c.+
x xy yg g

+ H.c.+x x y yg g g g

+ H.c.+x xy yg g g g

(a)

(b)

(c)

(d)

g

g y g

g g

g g

x

1

2

2 2

1 1

2
τ

1
τ 1

τ

1
τ

1
τ

1
τ 1

τ

2
τ

2
τ

2
τ

2
τ

2
τ

2
τ

2
τ

1
τ 1

τ

FIG. 2. Double-sided Feynman diagrams representing the
photo-induced processes, (a) and (b) IA, and (c) and (d)
ISRS. The upper and lower lines represent the time-evolution
of the ket and bra vectors, respectively. Thin lines represent
the electronic ground state and thick lines the excited states
|x〉 and |y〉. Wavy lines represent photons and dashed lines
represent Eg-mode phonons 1 and 2. The filled circles indi-
cate the vertices of the absorption and emission of photons.
The empty circles are the vertices of emission of phonon 1 or
2, which are indicated by dashed lines. Time runs from left
to right.

and sin 2θ. The dynamical factors found here are essen-
tially the same as those for the case of interaction with
a totally symmetric mode. To recover the formulas for
the symmetric mode, we need only set θ = 0 formally in
Eq. (24), change the value of coupling constant α ap-
propriately, and reinterpret Q1 as the coordinate for the
symmetric mode. Then, in the limit of zero band-width,

〈Q(A)
1 (t)〉 and 〈Q(S)

1 (t)〉 reduce to those obtained in Eqs.
(19) and (22), respectively, in our previous work [13].

An important point is the fact that the geometrical
factors for the IA and ISRS processes are the same. This
is easily ascertained from the diagrams shown in Fig. 2.
Although the final electronic states of the IA and ISRS
processes are different, there is a correspondence between
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FIG. 3. (Color online) (a) Amplitude of coherent phonons as a
function of the central frequency of the pump-pulse measured
from the absorption edge. The band-width is assumed to
be 50~ω, and the pulse-width is σ = π/ω. Both IA (red line)
and ISRS (blue line) processes are plotted. (b) Initial phase of
coherent phonons for the IA (red) and ISRS (blue) processes.
The values of B and σ are the same as those in (a).

Fig. 2 (a) and (c), and (b) and (d); for example, the
left diagram in (a) is topologically equivalent to the left
diagram in (c) if one traces the evolution of the state
clockwise from −∞ to t, then from t to −∞. Thus, the
polarization dependence of the coherent phonon ampli-
tude is identical in both IA and ISRS processes as shown
in Eq. (24).

Stevens and coworkers[11] have shown a formula for
the generation amplitude of A1g coherent phonons in Sb
based on their theoretical frame work[9, 10]. In their the-
ory, the equation of motion for the phonon coordinates
is derived in the Heisenberg picture. The force term to
this equation contains the operators for the electrons.
This term was evaluated by the zeroth order approxima-
tion. Therefore, the theory is essentially a perturbation
theory to the lowest order of the electron-phonon interac-
tion. This is the same as the present theory based on the
Schrödinger picture. Our formulas (33) and (34) seem
to be similar to the two-Raman tensor formula in [11],

if one takes the sum 〈Q(t)〉 = 〈Q(A)
1 (t)〉 + 〈Q(S)

1 (t)〉, ex-
cept for a discrepancy in the arguments by the amount of
ω/2[30]. However, it will be advantageous to consider the
two quantum mechanically different processes, IA and
ISRS, distinctly as was done here. This is especially true
when we analyze the experimental data in which not only
the coherence of phonons but also the coherence of the
electronic states are being measured and controlled by
a double-pulse technique[31], because the IA and ISRS
pathways give rise to quite different temporal profiles of
interference. Details will be presented elsewhere[32].
Let us discuss the excitation energy dependence of the

generation efficiency of coherent phonons and their ini-
tial phase. To reveal the essential features, we assume
that the absorption spectrum of the e-band is a simple
hemielliptic band,

I(Ω) = I0
√

(Ω− Ωl) (Ωu − Ω), Ωl ≤ Ω ≤ Ωu,

= 0, otherwise, (35)

where ~Ωl and ~Ωu are the lower and upper band-edges,
respectively, and I0 is a constant. From Eq.(30), we find

F (u) = I0e
−i(~Ωl+B)u/~ B

~u
J1(Bu/~), (36)

where B is the half-band width, B = ~(Ωu − Ωl)/2, and
J1(x) is the first order Bessel function.
In Fig. 3 (a), the calculated generation efficiencies of

coherent phonons for the IA (red line) and ISRS (blue
line) processes are shown as a function of the detun-
ing ~(Ω0 − Ωl) normalized by the phonon energy ~ω.
The chosen band-width 2B was 2B = 50~ω. The pulse
width was assumed to be σ = π/ω. Figure 3 (a) reveals
that the amplitude of the coherent phonon caused by
the IA process is almost proportional to the absorption
spectrum I(Ω). To be more precise, it is proportional
to the convolution of I(Ω) with the Gaussian function

f̃(ω′) = exp
[

−σ2ω′2/2
]

as

|LA(Ω0)| ∝
∫ ∞

−∞

I(Ω0 −
ω

2
− ω′)f̃(ω′)dω′. (37)

As can be seen in Fig. 3 (a), the amplitude due to IA rises
up not at the band edge Ωl but at Ωl+ω/2. The physical
reason is that, to induce a coherent motion of phonons in
the excited state, it is necessary to excite both the zero-
phonon state and the one-phonon state simultaneously.
In contrast, the ISRS component |LS | becomes ap-

preciable only at the absorption edge, or more gener-
ally, around the van Hove singularities. This is because
LS(Ω0) is proportional to the difference of χp(Ω0) at
Ω0 ± ω/2 as shown in Eq. (34). Therefore, LS(Ω0) be-
comes small in the region where I(Ω) is smoothly varying.
Deep into the opaque region, IA predominates, while in
the transparent region, only ISRS contributes to the gen-
eration of coherent phonons. It is noticeable that both
the IA and ISRS paths coexist with comparable magni-
tudes of generation efficiency in the band-edge region.
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The initial phase of coherent phonon is sometimes con-
sidered to be a clue to the generation mechanism. The
initial phase φ is determined experimentally[9, 14, 18, 34]
by fitting the oscillation of the transient reflectivity
∆R(t) (or transmissivity) by the sinusoidal function as

∆R(t) = ∆R0 sin(ωt+ φ), (38)

in which t is the delay-time of the probe pulse measured
from the pump pulse and ∆R0 is the amplitude of oscil-
lation. It is often asserted that, in the case of IA, the
oscillation is cosine-like; namely φ = π/2 with modu-
lus π. Conversely, in the case of ISRS, the oscillation
is sine-like, φ = 0 with modulus π. This seems to be
in agreement with the simple picture of the generation
of coherent phonons; The IA process occurs because of
the sudden shift of the equilibrium configuration for the
phonons, while the ISRS process is triggered by the sud-
den acquirement of momentum induced by the stimulated
Raman scattering. However, it should be noted that, in
the case of resonant excitation in the opaque region, it
takes a finite time for the Raman process to occur effec-
tively in ISRS[13].
From Eq. (33), it is obvious that LA is a real quantity.

Thus, according to Eq.(25), the oscillation by the IA pro-
cess is always cosine-like; namely φ = π/2. In contrast,
LS(Ω0) is a complex quantity. The initial phase φ was
obtained by putting LS(Ω0) in the form

LS(Ω0) = |LS(Ω0)| exp
[

i(φ+
π

2
)
]

. (39)

In Fig. 3 (b), the calculated values for the initial phase
are plotted as functions of the central frequency Ω0 of
the pump-pulse. The initial phase of coherent phonons
formed by the IA process is always π/2, as noted above.
However, the initial phase for ISRS depends on the fre-
quency of the pump-pulse. In the transparent region,
φ = 0 and the oscillation is sine-like. As Ω0 traverses
the absorption edge, the initial phase changes rapidly,
and then increases gradually in the opaque region un-
til it reaches 2π after Ω0 traverses the whole absorption
band.
We found that the polarization-angle dependence of

the coherent-phonon amplitude cannot be used as a key
to differentiate the generation mechanism of the low-
symmetry mode, because it is always in agreement with
the prediction by the Raman tensor. Considering the rel-
ative magnitude of the oscillation, the IA mechanism is
a dominant pathway in the case of excitation far into the
opaque region. Furthemore, IA also predominates in the
limit of short pulse excitation[13].
As for the initial phase of the oscillation, we demon-

strated that IA and ISRS behave distinctly. The initial
phase in the IA path is always cosine-like, but that in the
ISRS depends on the excitation energy. It is suspected
that this is one of the reasons why the experimental mea-
surements of the initial phase give diverse results[9]. In
the transparent region, ISRS is the only mechanism that

generates coherent phonons and their initial phase is sine-
like. This appears to be in agreement with the observa-
tion for the uniaxial wide-gap materials such as GaN[33],
ZnO[34], CdS[35] and α-quartz[36].
According to the dynamic Jahn-Teller model, the am-

plitude of the coherent phonon is expected to be propor-
tional to that of the resonant Raman scattering. One of
the method to ascertain this criterion is to compare the
ratio of the amplitude between the A1g-mode and Eg-
mode in the Fourier transform of the coherent phonons
and the Raman scattering measured for the excitation to
the same band. In the case of Sb, a good agreement has
been reported for the excitation wavelength λ = 815nm
[9]. In the case of Bi2Te3, on the other hand, a large dis-
crepancy between the ratio has been reported[37]. One of
the possible origin is the difference in the relaxation pro-
cesses during and after the irradiation of pump-pulse[38].
Detailed investigation in experiment and in theory should
be needed to clarify this point.
In experimental observations of the coherent phonons

in uniaxial materials, the signals corresponding to the
low-symmetry modes are generally very weak compared
with those for the symmetric modes. The main reason
for this is attributed to the difference in the magnitude
of the electron-phonon coupling constants of the modes.
In the case of symmetric A1g-mode, the electron-phonon
coupling is roughly proportional to the difference of the
charge distribution between the ground state and ex-
cited states. Conversely, the dynamic Jahn-Teller inter-
action works between the electronic states that are both
in the excited-state subspace. This will decrease the off-
diagonal coupling constant in the dynamic Jahn-Teller
effect. As observed by Melnikov et al.[15], the generation
efficiency of the Eg-mode phonons is expected to have
different excitation-energy dependence from that for the
A1g-mode ones because of the different symmetry of the
excited states. To resolve the long lasting controversy
over the generation mechanism of coherent phonons, es-
pecially for low-symmetry modes, it is desirable to per-
form a careful experiment to determine the initial phase
by sweeping the pump-pulse across the band-edge.

IV. CONCLUSION

The generation mechanism of the low-symmetry mode
of coherent phonons was considered under the condition
that a short pump-pulse in the opaque wave-length region
excites the electronic system. Using a simplified model
for the Eg-mode in bulk crystals, we showed that the
two distinct mechanisms IA and ISRS coexist quantum
mechanically. We found that both mechanism displayed
essentially the same dependence of the oscillation ampli-
tude of phonons on the relative polarization of the pump-
pulse, in agreement with the prediction by the Raman
tensor. The IA process predominates in far above-band-
gap excitation, while the ISRS mechanism plays an im-
portant role in the case of excitation to the near-threshold
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region.
The present theory indicates that the generation pro-

cesses of coherent phonons of the totally symmetric A1g-
mode and low-symmetry Eg-mode can be formulated on
essentially the same footing. In fact, the formulas for the
dynamic factors A(t) and S(t) given in Eqs. (24 ) and the
arguments on the generation efficiency and initial phase
presented here are also valid for A1g-mode phonons. This
is a consequence of the assumption that the electron-
phonon coupling is weak so that the lowest order per-
turbation theory is applicable, which yields formally the
same expressions for the dynamical factors.
In the present work, we restricted ourselves to eluci-

dating the generation process of coherent phonons. The
detection process can be also formulated within the same
model Hamiltonian. In the analyses of experimental
data, however, it is necessary to take into account various
relaxation processes appropriately, because the pump-
probe delay time is typically as long as some picosecond.

Among others, the intra-band and inter-band scattering
of the electrons excited by the IA process are expected to
be very fast. This will result in the difference in the fate
of coherent phonons created via IA and ISRS, because
in ISRS, the electronic system returns to the initial con-
figuration just after the pump-pulse with only phonons
remaining in crystal. From experiment side, it will be
a challenge to work out techniques to observe coherent
phonons discriminating the IA-path and ISRS-path.
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Appendix: Calculation of dynamical factors

We derive formulas (27) and (28). As described in the text, we may concentrate on the calculation of the dynamical
factors LA(Ω0) and LS(Ω0) assuming that the excited states are composed of a non-degenerate single band |k〉 ≡
a†k,eak,s|g〉 with the ground state |g〉 ≡ ∏

k a
†
k,s|vac〉. The degeneracy of the phonon modes is also neglected as if they

are fully symmetric mode. Then we have only two types Feynman diagram corresponding to IA and ISRS.
For ISRS, we calculate the ket vector |ψs

u(t)〉 at time t(>> σ) corresponding to the upper propagators of Fig. 2. It
is in the second order term of perturbation expansion with respect to HeR(t) and the first order term with HeL,

|ψs
u(t)〉 =

(−i
~

)3

E2α~ω

∫ t

−∞

dτ2

∫ τ2

−∞

dτ1

∫ τ2

τ1

dxf(τ1)f(τ2)e
iΩ0(τ2−τ1)eiωxF (τ2 − τ1)e

−iωtb†|g〉, (A.1)

where we set the energy of the ground state equal to zero. The integral over the phonon vertex x yields a factor
(

eiωτ2 − eiωτ1
)

/(iω). The integral over τ1 and τ2 is performed as follows. We introduce a new variables s ≡ (τ2 +
τ1)/2, u ≡ τ2 − τ1, and rewrite f(τ1)f(τ2) as

f(s− u

2
)f(s+

u

2
) =

1

πσ2Ω2
0

exp
[

−(
2s2

σ2
+

u2

2σ2
)
]

. (A.2)

Because of the assumption t >> σ, the integral domain is safely extended to −∞ < s < ∞ and 0 < u < ∞. The
Gaussian integral over s is carried out analytically, and we find

|ψs
u(t)〉 = 2i

(

E

~Ω0

)2

α
1√
2πσ

e−σ2ω2/8

∫ ∞

0

due−
u2

2σ2 sin
(ωu

2

)

eiΩ0uF (u)e−iωtb†|g〉. (A.3)

The lower propagator is the unperturbed state |ψs
l (t)〉 = |g〉. The expectation value of the annihilation operator

b is then given by 〈ψs
l (t)|b|ψs

u(t)〉, and together with its Hermitian conjugate, we obtain LS(Ω0) in Eq. (28) for the
expectation value of Q(t) in ISRS.
For IA, the upper propagator is calculated to the first order of HeR(t) and HeL as

|ψa
u(t)〉 =

(−i
~

)2

Eα~ω
∑

k

µk

∫ t

−∞

dτ1

∫ t

τ1

dxf(τ1)e
iωxe−i(~Ω0−ǫk)τ1/~e−i(ǫk+~ω)t/~b†|k〉. (A.4)

The integration over x yields
(

eiωt − eiωτ1
)

/(iω). The ket vector for the lower propergator is given by

|ψa
l (t)〉 = −iE

~

∑

k′

µk′

∫ t

−∞

dτ2f(τ2)e
−i(~Ω0−ǫk′)τ2/~e−iǫk′ t|k′〉. (A.5)

The expectation value for b is now given by

〈ψa
l (t)|b|ψa

u(t)〉 =
(

E

~

)2

α

∫ t

−∞

dτ2

∫ t

−∞

dτ1f(τ1)f(τ2)
(

eiωτ1e−iωt − 1
)

eiΩ0(τ2−τ1)F (τ2 − τ1). (A.6)

Again, setting t → ∞ in the upper limit of the integrals, and changing the variables from (τ1, τ2) to (s, u) as before,
we find

〈ψa
l (t)|b|ψa

u(t)〉 =
(

E

~Ω0

)2

α
1√
2πσ

{

e−σ2ω2/8

∫ ∞

−∞

due−
u2

2σ2 ei(Ω0−
ω
2
)uF (u)e−iωt −

∫ ∞

−∞

due−
u2

2σ2 eiΩ0uF (u)

}

. (A.7)

Together with the Hermitian conjugate of the above equation, we arrive at Eq.(27).


