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Abstract 13 

Ubiquitous on Earth, α-quartz plays an important role in modern science and technology. 14 

However, despite extensive research in the past, the mechanism of the polymorphic transitions of 15 

α-quartz at high pressures remains poorly understood. Here, combining in situ single-crystal x-16 

ray diffraction experiment and advanced ab initio modeling, we report two stability limits and 17 

competing transition pathways of α-quartz under high pressure. Under near-equilibrium 18 

compression conditions at room temperature, α-quartz transits to a new P2/c silica phase, via a 19 

structural intermediate. If the thermally activated transition is kinetically suppressed, the ultimate 20 

stability of α-quartz is controlled by its phonon instability and α-quartz collapses into a different 21 

crystalline phase. Our studies reveal that pressure-induced solid-state transformation of α-quartz 22 

undergoes a succession of structural stability limits due to thermodynamic and mechanical 23 

catastrophes, and exhibits a hierarchy of transition pathways contingent upon kinetic conditions. 24 
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I. Introduction 25 

Silica is among the most common materials in nature and possesses tremendous 26 

technological importance [1-8]. A plethora of crystal structures, including crystals and 27 

amorphous solids exist in the SiO2 system at different pressure and temperature conditions [9-14]. 28 

The ambient polymorph of silica, α-quartz, occupies roughly 12% of the earth’s crust, whose 29 

high-pressure phase behavior is of fundamental interest to materials science and geoscience. For 30 

example, with its corner-linked silica-oxygen tetrahedra in a trigonal unit cell (space group 31 

P3121), α-quartz is an archetypal system for studying the pressure effects on the lattice dynamics 32 

and phase transformation of tetrahedrally bonded network framework structures [15-17]. 33 

In general, the Si-O tetrahedral motifs in α-quartz undergo transitions to Si-O six-34 

coordinated octahedral structures (stishovite) at the upper mantle of the Earth [18] and such a 35 

coordination change occurs at several tens of gigapascals under room temperature [19-25]. Over 36 

the past decades, a large body of experimental and theoretic work has attempted to shed light on 37 

the details of the transition, but often with controversial observations and explanations 38 

[13,19,23]. Pioneering energy-dispersive x-ray diffraction studies of compressed polycrystalline 39 

α-quartz showed it collapsed to an amorphous structure above 25 gigapascal (GPa) [1,26]. In 40 

ensuing experiments that allowed various compression rates, however, either poorly crystallized 41 

stishovite [2] or a monoclinic post-quartz phase [19] has been reported as high-pressure products. 42 

On the other hand, theoretical calculations based on first-principles static calculations [5,27] and 43 

classic interatomic potentials [13,23] predicted a slew of silica polymorphs. Mechanism-wise, 44 

much less is known about the phase transition of α-quartz. Phonon softening and the associated 45 

mechanical instability have been put forward to interpret the phase behavior of α-quartz [28,29]. 46 

Recently, Martonák and colleagues [23,24] employed new simulation techniques to study the 47 

transition pathways of quartz and suggested that compressed α-quartz proceed with a direct 48 

crystalline transition pathway to the stishovite structure at 15 GPa. Here, we uncover competing 49 

transition mechanisms of compressed α-quartz by employing in situ single-crystal x-ray 50 

diffraction experiments and ab initio modeling, aiming to provide a unified picture for the phase 51 

transition of α-quartz among other oxide compounds.  52 
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II. Materials and Methods 53 

A. X-ray diffraction experiments 54 

X-ray diffraction experiments were performed on α-quartz single crystals at 16BM-D station 55 

of High-Pressure Collaborative Access Team (HPCAT) of the Advanced Phonon Source (APS), 56 

Argonne National Laboratory (ANL). Thin-cut natural α-quartz single crystal samples (~35μm 57 

(L)×35μm (W)×10μm (T)) were loaded in Mao-Bell diamond anvil cells. The samples were 58 

loaded to DAC chambers sealed with tungsten gaskets with helium gas as the pressure medium. 59 

Diffraction patterns were collected onto a Mar 345 image plate detector at each x-ray incident 60 

angle (1o per image) from -15o to 15o. An additional image scanning over the same range of 61 

scattering angle was taken to show the integrated 2D diffraction pattern. The orientation matrix 62 

and crystalline structures were calculated with the difference-vector approach, using the single 63 

crystal solving package GSE_ADA [30]. Pressure was determined by calibrating the ruby 64 

fluorescence line shift in an off-line Ruby system. The uncertainty in pressure measurements was 65 

up to ±2 GPa, derived from the pressure change within each image collection interval. For all the 66 

experimental runs, consistent diffraction patterns were reproduced at all pressures at room 67 

temperature using multiple single-crystal samples. 68 

 69 

B. First-principles equation of state 70 

First-principles structural optimization was performed in the framework of density functional 71 

theory (DFT) through package Quantum ESPRESSO ver. 5.0.1 [31]. The generalized gradient 72 

approximation under the Becke-Lee-Yang-Parr (BLYP) parametrization [32,33] was employed 73 

to describe the exchange-correlation functional. Norm-conserving pseudopotentials were used 74 

with 4 valence electrons for Si (2s22p2) and 6 for O atoms (2s22p4). A plane-wave basis set with 75 

kinetic energy cut-off of 200 Ry (i.e., 2730 eV) was found sufficient to converge the total energy 76 

within 2.7×10-7 eV. Unitcells of silica polymorphs were used for EOS calculations, in which 77 

their Brillouin zones were sampled with a Monkhorst mesh of k points, as shown in Table 1. 78 

Hydrostatic pressure was applied by adding pulay stress to the diagonal elements of the stress 79 

tensor. All the structures were fully relaxed (including both cell parameters and atomic positions) 80 

in ab initio modeling such that the force acting on each atom was less than 0.01 eV/Å. The 81 

external pressure was within 0.1 GPa difference of the pre-conveged pressure, confirming that 82 

the optimized structure has reached a local energy minimum. 83 
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 84 

C. Free energy calculation of SiO2 polymorphs 85 

The Gibbs free energy G(T,P,V) at certain pressure, temperature and volume is described as: 86 

ܩ                  ൌ ܷ଴ ൅ ܨ ൅ ܸܲ      (1) 87 

including cohesive energy U0, vibrational energy F, and the pressure-volume term PV. The 88 

vibrational free energy is estimated with the quasi-harmonic approximation (QHA) [34]. Under 89 

this approximation the system is equivalent to a collection of independent harmonic oscillators, 90 

establishing the quantum mechanical energy levels of the system. In the QHA, the vibrational 91 

free energy F(T,V) is computed from: 92 ܨሺܶ, ܸሻ ൌ ଵଶ ∑ ԰߱ሺq, ሻ୯,௦ݏ ൅ ݇஻ܶ ∑ ln ቄ2sinh ԰ఠሺ୯,௦ሻଶ௞ಳ் ቅ୯,௦    (2) 93 

where ߱ሺܙ, sሻ  is the phonon frequency of sth mode for a given wave vector q; Bk is the 94 

Boltzmann constant; ԰ Plank’s constant and T the temperature. The pressure P is then calculated 95 

explicitly as a derivative of the free energy with respect to volume V. 96 ܲ ൌ െ డሺ௎బାிሻడ௏ |்     (3) 97 

Based on our calculation of the free energy on a variety of pressures, the equation above was 98 

used to interpolate the free energy over a wide range of pressure: 99 ܨ௜ ൌ ௜ିଵܨ െ ሺܷ଴௜ െ ܷ଴௜ିଵሻ െ ௜ܲሺ ௜ܸ െ ௜ܸିଵሻ    (4) 100 

The interpolated vibrational free energy Fi was propagated from its neighboring cohesive 101 

energy Uoi and volume Vi with the forward Euler method. 102 

 103 

D. Ab initio metadynamics modeling 104 

Metadynamics simulations were carried out as a barrier crossing algorithm to survey the free 105 

energy landscape of the phase transition in this work [35,36]. This method of employing 106 

supercell as order parameter was proposed to study the phase transitions of crystals [37,38] and 107 

has been successfully applied to SiO2 [23-25]. In metadynamics computer simulation, the system 108 

is described as a function of collective variables (CVs) Sα. The collective variables (reaction 109 

coordinates) can be one or combinations of order parameters that characterize the system in the 110 

simulation timescale of t. 111 

It is nontrivial to choose collective variables. In general, the changes of CVs reflect the 112 

evolution of the structures during phase transformation. The number of CVs needs to be as small 113 
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as possible, so as to minimize the efforts to synchronize their depositing progress where 114 

unexpected issues may occur (e.g. the hill surfing problems [39]). To have more control over the 115 

dynamics in the CV space, a set of auxiliary degrees of variable {sα} are employed with the 116 

extended Lagrangian formulation and associated with the set of CV {Sα}[40]. Each sα is coupled 117 

with one Sα such that potential hills are added slowly from the bottom of free energy well. 118 

During a molecular dynamics (MD) run with the metadynamics method, the free energy is 119 

reconstructed at each metadynamics time interval by adding a history-dependent potential, which 120 

is usually the sum of repulsive Gaussian potentials hills along the trajectory of the auxiliary 121 

variables sα. The reconstructed Hamiltonian is the sum of first-principles energy (HE, the 122 

functional of electron density ρ(r) and position r) and the free energy from metadynamics (Vmtd) 123 

is defined as: 124 ܪሺ࢘, ,ሻ࢘ሺߩ ,ఈ࢙ ሻݐ ൌ ,࢘ாሺܪ ሻሻ࢘ሺߩ ൅ ௠ܸ௧ௗሺ࢙ఈ,  ሻ     (5) 125ݐ

௠ܸ௧ௗሺ࢙ఈ, ሻݐ ൌ ∑ ቂቄ݄ exp ቀെ ሺ࢙ಉ೔ ಉሻమଶఋೞమ࢙ି ቁቅ ڄ ,ఈ࢙ሺܩ ሻቃ௧೔ழ௧ݐ     (6) 126 

where t is the simulation time, i counts the metadynamics time step (MTD), the first Gaussian 127 

has height h and width δs and the second Gaussian G(sα,t) is to ensure the potential hills are 128 

slowly growing and follow a reasonable dynamics [39]. In principle, our implementation of 129 

metadynamics simulation followed literature prescriptions [39-42]. In order to determine the 130 

shapes of the Gaussian functions (height h and width δs), we first ran MD without depositing any 131 

bias energy for each CV combination to measure the width of the free energy well. This helped 132 

us determine the unitless scaling factors αi to synchronize all CVs: 133 αଵ߱ଵ ൌ αଶ߱ଶ ൌ αଷ߱ଷ  ൌ  134 (7)     ڮ

where ωi is the fluctuation range for the ith CV. The Gaussian width δs was set to be a quarter of 135 

ωi and applied to all CVs by multiplying their scaling factors. 136 

 In the production runs, the potential hills were added to the history-dependent potential Vmtd 137 

after each MTD. Depending on the displacement of CVs, length of MTD was adjusted in range 138 

of 1500-5000 MD steps so that the following relation was satisfied at time ti:  139 |࢙ఈሺݐሻ െ |௜ሻݐఈሺ࢙ ൐ ଷଶ  140 (8)                                                          ࢙ߜ

In this study the metadynamics simulation was performed with the CPMD package (ver. 141 

3.15.1)[43]. A 2×2×1 α-quartz supercell (36 atoms) was slowly compressed to designated 142 
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pressures. The simulation system was equilibrated for 2 picoseconds (10,000 MD time-steps) at 143 

300 K with ab initio MD in an NPT ensemble [44]. During the ab initio MD simulation, the 144 

fluctuations of fictitious electron kinetic energy were restricted by a velocities scaling in a range 145 

of ±300 K while the nuclear degree of freedom was controlled by the Nosé-Hoover chain 146 

thermostats [45]. 147 

To reveal the structural transition of α-quartz, we initially performed test runs on a variety of 148 

combinations of CVs. Firstly, the full set of lattice parameters (a,b,c,α,β,χ) were employed as 149 

the CVs. The simulation, however, was stuck at a four-coordinated state up to 300 MTDs, 150 

presumably due to the fact that the shape of the potential well along certain CV trajectory was 151 

very steep and the deposit rate on each CV was not perfectly synchronized. On the other hand, 152 

the use of Si coordination number as the CV could promote the dynamics, but the system was 153 

quickly pushed to a random six-coordinated structure. In light of this, we chose lattice variables 154 

with relatively shallower potential wells (here, cell-edge a and c) and the average coordination 155 

number of silicon as the CVs. The scaling factors (αi) and Gaussian shape parameters (h, δs) for 156 

our metadynamics simulation are listed in Table 2. 157 

 158 

E. Phonon dispersion 159 

First-principles phonon calculations were conducted based on the same BLYP type GGA 160 

pseudopotential using the Quantum Espresso phonon code. A 3×3×3 Monkhorst-Pack mesh was 161 

adopted for all the studied phases and the structures were completely optimized with an energy 162 

convergence of 1.0×10-7 eV, and the force acting on each atom less than 0.01 eV/Å.  163 

We computed the dynamical matrix on a same grid of 3×3×3 wave vector in the Brillouin 164 

zone by applying the density functional perturbation theory (DFPT). The long range dipole-165 

dipole interaction was taken into account using the dielectric tensor. The computed LO-TO splits 166 

were found in good agreement with literature data [46]. The phonon frequencies could be 167 

calculated at any wave vector q by reconstructing the dynamical matrix with the Fourier 168 

interpolation method. By comparing the results between the calculated frequencies in reciprocal 169 

space and those obtained by applying Fourier interpolation, we found that the 3×3×3 wave vector 170 

grid was sufficient to produce accurate frequencies. 171 

The purpose for phonon calculations in this work is three-fold. a) Examine the mechanical 172 

stability of the derived metastable phases. Both the necessary and sufficient condition for the 173 
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mechanical stability of a crystal is the phonon stability [47,48], i.e., ω(q,s)2>0 holds for any 174 

wave vector q and vibration modes. A phonon mode that has imaginary frequency, i.e., 175 

ω(q,s)2<0, will lower the energy of the system, indicating the crystal is mechanically unstable. b) 176 

The phonon vibration modes were used to estimate the Gibbs free energy of the crystals based on 177 

the quasi-harmonic approximation. c) Monitor the phonon-softening behavior of the Brillouin 178 

zone boundary of α-quartz and to examine at what pressure the phonon instability (an indicator 179 

of mechanical instability) kicks in. 180 

 181 

F. Solid-state nudged elastic band method 182 

The transition pathway directly connecting two silica polymorphs was studied with the 183 

nudged-elastic band (NEB) method [49]. When the initial and final states of a reaction are 184 

known, the NEB relaxes an initial path to a minimum-energy path (MEP). The structures on the 185 

transition pathway are called “replicas”, where multiple replicas are initialized as the geometric 186 

intermediates. Here we used the so-called solid-state NEB (ssNEB) [50], which is suitable in 187 

dealing with phase transitions involving cell shape changes. In this method, a Jacobian is used to 188 

combine atomic and cell degrees of freedom so that the MEP is insensitive to the choice of unit 189 

cell size and geometry: 190 ܬ ൌ Ωଵ/ଷܰଵ/଺       (9) 191 

where Ω is the volume of the unit cell and N is the number of atoms in the cell. It connects the 192 

strain from the cell into the same unit of atomic position, so that the changes in the 193 

configurations ΔRss is formed by concatenating the strain ε and changes in atomic coordinates 194 

ΔR:  195 Δ࢙࢙܀ ൌ ሼܬԖ, Δ܀ሽ     (10) 196 

The ssNEB was implemented in the Vienna Ab Initio Simulation Package (VASP) [51], 197 

together with the Transition States Tools VASP (VTST) [50]. Full geometry optimizations were 198 

achieved on both structures. The projected augmented-waves (PAW) pseudopotentials with 199 

Perdew-Wang type GGA parameterization [52] for Si and O with a 550 eV plane basis cutoff 200 

were used in these calculations. The initial phase and the final phase were sampled with 16 201 

replicas with equal image distances connecting the two reactant phases. We adopted a force-202 

based quick-min optimizer [53] to find the MEP in the phase transition pathway and the force 203 

typically converged within 200 ionic steps. 204 
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 205 

III. Results 206 

We first demonstrate how compressed α-quartz transforms under hydrostatic conditions at 207 

room temperature. In the experiment, in order to capture the most sensitive structural changes in 208 

α-quartz under pressure, single-crystal x-ray diffraction patterns were collected in a diamond 209 

anvil cell (DAC) at different pressures. We preserved our thin-cut single-crystal samples in 210 

helium pressure medium. Selected diffraction patterns on the evolution of compressed α-quartz 211 

single crystal up to 61 GPa were shown in Fig. 1. At low pressures, sharp diffraction peaks could 212 

be readily indexed to a trigonal phase with the space group P3121 (Fig. 1(a)). Above 25 GPa, the 213 

intensity of α-quartz peaks was greatly lowered, while new sets of diffraction peaks appeared, 214 

labeled in red color (Fig. 1(b-d)), indicating the formation of a new phase that persisted to higher 215 

pressures. This phase was previously interpreted as quartz II [3,13] assuming a mixed 216 

tetrahedron and octahedron framework. However, our single-crystal x-ray diffractions pattern 217 

were unambiguously indexed into a monoclinic type silica phase (Fig. 1(e), space group P2/c, 218 

designated as m-silica) that only contains six-coordinated Si-O octahedra, which was further 219 

corroborated with metadynamics ab initio modeling (see below). The quartz II phase and our 220 

P2/c phase do not show identical diffraction patterns, although they share similarities (see, e.g., 221 

Fig. 1 in Ref. 3). The sharp high d-spacing peak in Ref. 3 (at 27.4 GPa, d~3.6 Å-1 or Q~17.5 nm-222 

1) is absent from our single-crystal pattern (30 GPa). The m-silica phase with its 2×2 Si-O 223 

octahedral framework, was distinctly different from the monoclinic phase achieved by fast 224 

compression, which was reported to consist of 3×2 octahedral blocks [19]. It is worth noting that 225 

weak diffraction spots were discernable between the (011) peak from quartz and the (1ത11) peak 226 

from m-silica (Fig. 1(d)). Such weak diffraction peaks stem from a structural intermediate, as 227 

suggested by our first-principles calculations. With increasing pressure, the diffraction intensity 228 

of α-quartz and the intermediate phase became gradually lowered and eventually disappeared. 229 

The original α-quartz phase completely transformed to the m-silica phase above 45 GPa and was 230 

stable at least up to 61 GPa. The newly found m-silica phase differed in structure from 231 

previously reported CaCl2 [4] and α-PbO2 [6] types of silica and was found to be energetically 232 

comparable with these competing phases in the pressure range of interest (Fig. 2). 233 
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The transition of α-quartz to the m-silica resulted in a large volume collapse (e.g., ~17 % at 234 

30.5 GPa) over a wide pressure range, reflected from the experimental equations of state (EOS) 235 

of compressed α-quartz and related polymorphs as shown in Fig. 3(a). Upon the appearance of 236 

high-pressure phases, the diffraction patterns became strongly broadened and the intensities were 237 

lowered by one order of magnitude, suggesting that the single crystal sample underwent severe 238 

lattice distortions under high pressures, including possible twinning or domain splitting. Such 239 

lattice distortions and long-range imperfections could help the single crystal to survive a large 240 

volume collapse. As a result, the high-pressure m-silica phase was badly crystallized from the 241 

sluggish transition, showing smearing diffraction spots but with distinct crystalline ordering. In 242 

previous high-pressure experiments on alpha-quartz, the pressure-induced amorphization (PIA) 243 

phenomenon was reported, which, however, could be due to the extremely low intensities of the 244 

diffraction signals of polycrystalline powder samples. Throughout our high-pressure 245 

experiments, no broad amorphous peaks from compressed single-crystal α-quartz was identified, 246 

excluding the possibility of PIA. 247 

The driving force for the transition from α-quartz to m-silica was rationalized by assessing 248 

the Gibbs free energies of the phases from first-principles calculations. Our thermodynamic 249 

analysis at 300 K indicated that the free-energy crossover of the two phases occurs at 26 GPa 250 

(Fig. 3(b)), above which m-silica had lower Gibbs free energy and was a more 251 

thermodynamically stable phase, setting the stage for the phase transition to take place. The 252 

theoretical prediction was in excellent agreement with our experiments where the more stable m-253 

silica phase only appeared at pressures above 25 GPa, signifying a thermodynamic catastrophe of 254 

α-quartz at room temperature. 255 

While thermodynamically permissible, the actual phase transition was dictated by its kinetics 256 

to overcome local energy barriers. Here we employed ab initio metadynamics simulation to 257 

probe the transition pathway. The constructed free-energy surfaces at 25 and 35 GPa were shown 258 

in Fig. 4(a)&(b). Through metadynamics, we mapped out the structures of the intermediate phase 259 

and m-silica (Fig. 4(c) and Fig. 5), and quantified the energy barriers for the transition (Fig. 4). 260 

At 25 GPa, the energy basin of the intermediate phase was rather shallow (Fig. 4(a)), matching 261 

our x-ray diffraction experiment where its main diffraction peak was present but with a low 262 

intensity (Fig. 1(d)). The changes of free energy in the metadynamics simulation were included 263 

in Fig. 6. At 35 GPa and 300 K, the intermediate phase dwelled in a deeper energy basin (with an 264 
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energy well depth of ~0.5 kbT) on the energy landscape (Fig. 4(b)). Experimentally, diffraction 265 

signals from the intermediate phase were visible up to 45 GPa, confirming that only a small 266 

amount of intermediate phase resides in the free energy well in a wide pressure range (25-45 267 

GPa). The lattice parameter a was compressed by 8.7%, while the c shortened by 7.0%, leading 268 

to a 10.9% volume collapse. The length of the b-axis of the simulation box, however, remained 269 

almost unchanged throughout the phase transition. The volume drop, achieved by the 270 

compression of the a and c axis, formed edge-sharing octahedra chains along the (100) plane of 271 

the intermediate phase (Fig. 4(c)).  272 

With prolonged metadynamics simulation (e.g., 79 metasteps at 35 GPa, Fig. 5), the system 273 

was able to escape the energy well of the transitional intermediate phase (Fig. 4(b)), and 274 

eventually transformed into m-silica. We stopped the metadynamics simulation when the 275 

difference in the deposited energy for the α-quartz and m-silica phases matched the static free-276 

energy calculation employing the quasi-harmonic approximation. During the phase transition 277 

from the intermediate structure to the more stable m-silica phase, a large enthalpy drop was 278 

observed after overcoming a small free-energy barrier. Volume continued to drop by 8.7%, 279 

mainly contributed from the shortening of the a-axis (4.4%) and the c-axis (9.2%), consistent 280 

with the experimental EOS in Fig. 3(a). 281 

The transition from α-quartz to m-silica calls for significant rearrangements of both cations 282 

and anions, necessitating a thermally activated process. At room temperature, the thermal energy 283 

is not enough for the system to overcome the kinetic energy barrier quickly, and consequently, 284 

compressed silica undergoes a sluggish kinetic process, evidenced by the coexistence of multiple 285 

phases over a wide pressure range. As such, the transition path featuring the intermediate phase 286 

as a mid-product is a manifestation of kinetic constraints. It is worth noting that such a phase 287 

transition does not originate from the phonon softening of α-quartz as suggested in previous 288 

studies [28,29].  289 

Experimentally, we did not observe a reverse transition from m-silica to α-quartz. The main 290 

reason is due to kinetics. For first-order solid-state phase transitions, although 291 

thermodynamically permissible, the actual phase transition is controlled by kinetics that 292 

overcomes the energy-barrier, often exhibiting a large hysteresis. It took 20 GPa (25-45 GPa) in 293 

our experiment to accomplish the kinetic process from α-quartz to m-silica. Likewise, it would 294 

require to a large decompression pressure range to reserve the phase transition. Considering the 295 
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reconstruction to m-silica lowered the diffraction intensity by one order of magnitude, the 296 

recovered lower-pressure α-quartz with even weaker diffraction signals will be even more 297 

difficult to detect. 298 

Lastly, if the phase transition described above was kinetically inhibited, e.g., at very low 299 

temperatures where the kinetic energy was far below the phase transition energy barrier, the α-300 

quartz phase would be trapped in the local energy minimum of the potential well, being 301 

metastable to higher pressures. Under this condition, we demonstrate that the ultimate stability of 302 

α-quartz is controlled by phonon softening at the K point (1/3, 1/3, 0) of the Brillouin zone. The 303 

phonon dispersion curves of α-quartz were theoretically evaluated in Fig. 7. Noticeable in the 304 

phonon dispersion curves was the phonon softening of the K point with increasing pressure. The 305 

K point phonon instability was clearly seen when the pressure reached as high as 48 GPa, shown 306 

in Fig. 8(a). Above 48 GPa, the negative vibrational modes around the K point indicated that 307 

atomic vibrations along the unstable eigenvector would destabilize the α-quartz structure, 308 

leading toward the formation of a new phase without the need for thermal excitation (Fig. 8(b)). 309 

Such a transition involves short-distance atomic shuffling, as shown in Fig. 8(c), belonging to a 310 

diffusionless transformation process. The newly formed phase after lattice collapse has a C222 311 

structure where anions form a close-packed b.c.c-like sublattice and one-third of cations occupy 312 

the tetrahedral sites of O atoms and two-thirds of the cations occupy the octahedral sites. This 313 

same post-quartz phase has been previously predicted to form [8,21,27,54], but our results reveal 314 

that this displacive phase transition occurred at a much higher pressure (above 48 GPa).  315 

To corroborate the mechanism of phonon instability, we analyzed the energy barrier 316 

separating α-quartz and the C222 silica phase employing the solid-state nudged elastic band 317 

(ssNEB) method [50]. It was evident from the calculation that the free energy barrier vanished 318 

when the pressure reached the critical value between 45 and 50 GPa (Fig. 9). Such a phase 319 

transition due to lattice instability was readily observed in ab initio MD simulations at finite 320 

temperatures. To this end, we conducted ab initio MD simulation in an NPT ensemble (constant 321 

particle number, pressure and temperature). Pressure was gradually applied to a 2×2×1 α-quartz 322 

supercell and the tetrahedral framework was maintained up to 50 GPa, where we found edge-323 

sharing octahedra formed along the (100) plane. The C222 silica phase was mechanically stable 324 

above 50 GPa, as further confirmed by first-principles phonon calculations (Supplemental 325 

Material Fig. S1 [55]). Experimentally, under the premise of hydrostatic condition, observation 326 
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of this phase transition induced by phonon instability might be preempted by other transitions 327 

occurring at lower pressures and finite temperatures.  328 

 329 

IV. Conclusions 330 

We have demonstrated through experimentation and simulation that the densification of α-331 

quartz follows two distinct transition pathways: a reconstructive transition from α-quartz to m-332 

silica involving an intermediate phase, as opposed to a displacive transition from α-quartz to a 333 

C222 silica phase induced by phonon instability. We showed that the ultimate pressure limit for 334 

the existence of α-quartz is 48 GPa. The new high-pressure phases discovered in this work are 335 

among the many possible polymorphs of silica, whose polyhedra building blocks are arranged in 336 

unique patterns that would require specific pathways to achieve. Such competing mechanisms 337 

may be operative simultaneously under certain experimental conditions and may give rise to 338 

complicated phase behaviors as seen in previous experimental work. Our findings point to the 339 

fact that, analogous to the superheating limit of crystals [56], solid-state transformation under 340 

high pressure generally follows a succession of structural stability limits arising from 341 

thermodynamic, kinetic, and mechanical considerations, resulting in a hierarchy of structural 342 

transition pathways. 343 
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 418 

FIG. 1. Structural determination of compressed single-crystal α-quartz. (a) 2D single-crystal 419 

pattern of pure α-quartz at 12 GPa. (b) Coexistence of α-quartz and m-silica at 30 GPa. Red 420 

labels correspond to the emerging m-silica phase. The existence of the intermediate phase is 421 

marked by yellow arrows. (c) m-silica (space group P2/c) at 61 GPa. (d) Co-existence of three 422 

phases at 30 GPa within the green box in b and the evolution of single-crystal diffraction spots 423 

within the orange solid box in (a)-(c). (e) Structural refinements at 30 and 61 GPa. See Table 3 424 

and 4 for crystallographic data. Abbreviations in the figure are: Qtz, quartz; IP, intermediate 425 

phase. 426 
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 427 

FIG. 2. Comparison of the enthalpies of seven silica polymorphs at different pressures. The 428 

enthalpies of α-quartz (space group P3121), intermediate phase (P1), quartz III (space group 429 

C222), monoclinic post-stishovite (space group P2/c), stishovite (space group P42/mnm), CaCl2-430 

type post-stishovite (space group Pnnm) [4], and α-PbO2-type post-stishovite (space group Pbcn) 431 

[6] are presented with reference to α-quartz. The solid lines are based on the fit to the calculated 432 

data with the third-order Birch-Murnaghan equation. 433 

 434 
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 435 

FIG. 3. Structural stability of α-quartz under high pressure. (a) Experimental and simulated 436 

EOS’s of α-quartz and its polymorphs. The transition from α-quartz to m-silica occurs at ~ 25 437 

GPa. (b) Calculated pressure dependence of the Gibbs free energy for α-quartz, C222 silica and 438 

m-silica based on the quasi-harmonic approximation at 300 K.  439 
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 440 

FIG. 4. Reconstructed free-energy landscape obtained from ab initio metadynamics simulation at 441 

(a) 25 GPa and (b) 35 GPa, projected along the a- and c-axis of the SiO2 simulation unit cell. A 442 

local energy basin corresponding to the intermediate phase (abbreviated as IP) is present between 443 

α-quartz and the m-phase. The inset in (a) is rescaled to show the shallow energy well of 444 

transition intermediate. Structural changes along the transition pathway are shown in (c), 445 

illustrating the formation of octahedral Si-O structural units along the (100) plane of alpha-446 

quartz. Calculated structures and phonon dispersion curves of IP and the m-phase are shown in 447 

Supplemental Material Fig. S2 and S3 [55]. 448 



 20

 449 

FIG. 5. Evolution of the coordination number of Si atoms along the ab initio metadynamics 450 

simulation of α-quartz at 35 GPa and 300 K. The bond length threshold between Si and O was 451 

set to be the distance of first peak in the radial distribution function for coordination number 452 

calculation. The oxygen atoms in the intermediate phase formed an ordered C2 type sublattice. 453 

With prolonged metadynamics steps, the coordination number of all Si atoms changed to six, 454 

indicating the formation of the m-silica phase, consistent with our experimental observations. IP: 455 

intermediate phase. 456 
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 457 
FIG. 6. Metadynamics simulation of α-quartz at 35 GPa and 300 K. The evolution of enthalpy, 458 

volume and cell parameters (starting from α-quartz) are along the ab initio metadynamics 459 

simulation sampling the potential energy surface. Here a, b and c axes refer to the three edges of 460 

the 2×2×1 simulation box. IP: Intermediate phase. 461 
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 462 

FIG. 7. Phonon softening of compressed α-quartz. (a) Sampling direction of phonon dispersion 463 

in the trigonal Brillouin zone along selected high-symmetry points. (b)-(d) Phonon dispersion 464 

curves of compressed quartz from 30-60 GPa. Γ point is the center of the Brillouin zone and 465 

other points K, M and A are located at the zone boundary. Imaginary modes are found around K 466 

point above 48 GPa, where the four coordiented Si-O sutructure units are no longer mechanically 467 

stable.   468 

 469 



 23

 470 

FIG. 8. Displacive transition pathway from α-quartz to C222 silica. (a) Phonon instability of α-471 

quartz at the K point was observed at 48 GPa. (b) Compressed α-quartz transformed to the C222 472 

silica at 50 GPa from first-principles MD. The structures were viewed along b-axis. The negative 473 

eigenmodes extracted from phonon analysis are visualized in (c), where the atoms of the α-474 

quartz phase move toward the C222 silica structure following the unstable modes (green arrows). 475 
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 476 
FIG. 9. The transition pathway from α-quartz to the C222 silica phase. Enthalpy values on the 477 

transition pathway were calculated by the ssNEB method. The inset shows the decrease of the 478 

enthalpy barrier from 30~60 GPa, where the energy barrier vanishes above 50 GPa and α-quartz 479 

spontaneously transforms to the C222 silica phase. The results match the phonon-instability 480 

rationale elucidated in the text. The lower panel shows the structural changes along the transition 481 

pathway. The initial and final structures are α-quartz and C222 silica phase, respectively. The 482 

structure taken at the saddle point of the transition path at 30 GPa shows that two thirds of the 483 

silicon atoms are five-coordinated (golden polyhedra). 484 
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Table 1.  K-point configurations for different silica polymorphs. 485 

silica polymorphs Z space group
k-points 

mesh 

irreducible  

k-points 

α-quartz 3 P3121 3×3×3 7 

Intermediate phase 12 P1 2×2×2 8 

C222 silica 3 C222 3×3×3 14 

stishovite 2 P42/mnm 5×5×5 18 

CaCl2 silica 2 Pnnm 4×4×4 30 

α-PbO2 silica 4 Pbcn 3×3×3 10 

P2/c, m-silica 4 P2/c 3×3×3 14 

 486 

 487 

 488 

Table 2. CV related parameters in metadynamics simulation. Here, a.u. stands for atomic unit. 489 

P (GPa) α1(a) α2(c) α3 
(coordination) δୱ(a.u.) h(kbT) 

30 3.5 4.5 2.0 0.08 1.0 

35 4.0 4.0 2.0 0.06 1.0 

40 4.0 4.0 2.0 0.05 1.0 

 490 
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Table 3. Lattice parameters and atomic coordinates of quartz obtained from the experiment (30.4 491 

GPa) and simulation (30 GPa), respectively. The α-quartz phase reported in Figure 1 is refined 492 

by the Rietveld method and other phases are solved by Le Bail refinements. The weighted R-493 

reliable factors and the χ2-goodness of fit are wRp=0.132, χ2=0.148 at 30 GPa. 494 

 Experiment 
(30.4 GPa) 

Simulation 
(30 GPa) 

Z 3 3 
Space group P3121 P3121 

a (Å) 4.359 (3) 4.314 
c (Å) 5.014 (9) 5.081 
V (Å3) 82.50(14) 81.89 

Si1(x,y,z) 0.437(8), 0.000, 0.167 0.428, 0.000, 0.167 
O1 (x,y,z) 0.296(10), 0.303(9), 0.253(9) 0.373, 0.324, 0.251 
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Table 4. The m-silica crystal lattice at 35 GPa from experiment and simulation. The atomic 495 

positions from simulation are provided on the right. 496 

 Experiment Simulation Wyckoff positions from simulation 
Z 4 4 Space group P2/c 

a (Å) 4.059(4) 3.982  x            y           z 
b (Å) 4.607(4) 4.574 Si1 0.000    0.152    0.250 
c (Å) 4.651(8) 4.700 Si2 0.500    0.652    0.250 

β 92.62(10) 91.20 O1 0.265    0.383    0.419 
ρ (g/cm-3) 4.59(3) 4.65 O2 0.765    0.117    0.581 

 497 


