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We investigate the accuracy and transferability of a recently developed high dimensional neural
network (NN) method for calcium fluoride, fitted to a database of ab initio density functional theory
(DFT) calculations based on the Perdew-Burke-Ernzerhof (PBE) exchange correlation functional.
We call the method charge equilibration via neural network technique (CENT). Although the fitting
database contains only clusters (i.e. non-periodic structures), the NN scheme accurately describes a
variety of bulk properties. In contrast to other available empirical methods the CENT potential has
a much simpler functional form, nevertheless it correctly reproduces the PBE energetics of various
crystalline phases both at ambient and high pressure. Surface energies and structures as well as
dynamical properties derived from phonon calculations are also in good agreement with PBE results.
Overall, the difference between the values obtained by the CENT potential and the PBE reference
values is less than or equal to the difference between the values of local density approximation (LDA)
and Born-Mayer-Huggins (BMH) with those calculated by the PBE exchange correlation functional.

I. INTRODUCTION

Atomistic simulations have become a widespread and
integral part of materials research in physics and chem-
istry, providing a powerful tool to predict materials prop-
erties prior to their synthesis. The accuracy of quanti-
ties obtained from such calculations however strongly de-
pends on the model employed to describe the atomic in-
teractions. A wide spectrum of methods have been devel-
oped, ranging from quasi exact many-electron wavefunc-
tion approaches1, density functional theory (DFT) calcu-
lations2 and semi-empirical quantum mechanical meth-
ods3,4 to empirical, classical potentials5. Methods based
on quantum mechanics in general allow an accurate pre-
diction of physical and chemical properties of materials.
However, the associated high computational cost may
prevent their use for target applications with systems
containing a large number of atoms. DFT has proven
to provide a convenient compromise between accuracy
and efficiency for many applications and has thus become
the quasi standard in materials science. Nevertheless, its
range of application still remains limited to few hundreds
of atoms whenever a large number of energy and force
evaluations are required, such as in molecular dynamics
simulations or in structure prediction. Numerous efforts
have been therefore made to develop empirical potentials
which preserve the accuracy of ab initio methods at re-
duced computational cost.

A variety of force fields (FF) have been proposed to
model ionic materials, e.g. the Buckingham potential6,
which are several orders of magnitude faster than ab ini-
tio methods. In a classical FF, the total energy is a sum
of atomic energies arising from physically motivated an-
alytic functions to model the atomic interactions which

contain parameters often fitted to experimental or (more
accurate) computational reference data. Most force fields
take into account classical electrostatic interactions, but
the charges giving rise to these interactions are often
fixed, limiting the accuracy of such FFs. Therefore, po-
larizable FFs7 and charge equilibration methods8 have
been developed to overcome these limitations. In some
of the most advanced charge equilibration schemes, such
as the charge optimized many body (COMB) potentials9

and the ReaxFF10 force field, the atomic charges depend
on the environment via some analytic functions. These
potentials have been successfully applied to study materi-
als and other condensed matter systems11–13. Neverthe-
less, the basic shortcoming of all standard FFs, namely
that the optimal analytical functional form is unknown,
still remain in these FFs.

In contrast to conventional FFs, machine learning
based potentials do not require a predefined, physically
motivated functional form to model the atomic interac-
tions. Such schemes have recently attracted considerable
attention since they are capable of reproducing a large
number of ab initio reference data with a very high ac-
curacy. High dimensional artificial NN14 (ANNs) and
Gaussian approximation potentials15 (GAP) are two of
the most promising approaches and have been success-
fully used in many studies involving atomistic simula-
tions14–21. In these methods, the total energy is again
a sum of atomic or pairwise energies, which are how-
ever directly obtained from a machine learning process.
In fact, majority of these methods are based on purely
mathematical models and do not account for any sort of
physical or chemical principles. However, there are sev-
eral attempts to combine machine learning techniques
with physically motivated energy functionals such as the
Coulombic interaction for zinc oxide bulk22 and the bond
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order potential for small silicon clusters.23 Although such
potentials give excellent results for systems with chem-
ical environments comparable to those used during the
training process, they often fail to describe structures
dissimilar to all training data: if a potential is trained
with molecular structures, it cannot be used for bulk en-
vironments with periodic boundary conditions.

A new approach was recently proposed by Ghasemi et
al.24, in which a short range intermediate physical quan-
tity, namely an environment dependent atomic elec-
tronegativity, is obtained from an ANN process while the
total energy is computed from a charge equilibration pro-
cess. The method is thus called charge equilibration via
neural network technique (CENT). By allowing the elec-
tronic charge to distribute itself in an optimal way in the
system, both neutral and charged systems can be equally
described with a high accuracy24.

In this work we train the CENT potential to calcium
fluoride (CaF2) clusters and investigated its transferabil-
ity to systems with different boundary conditions by com-
paring various bulk and surface properties to ab initio
results. CaF2 is representative of the fluoride-structured
halides, an important class of ionic materials with nu-
merous technological applications25–28. As a chemically
inert, wide band gap semiconductor, it can be grown in
high-grade single crystals with excellent optical transmis-
sion properties over a wide energy range and exhibits
a very high elastic compressibility29–32. Furthermore,
CaF2 is also well known for being a fast-ion conduc-
tor33,34. Here we evaluate the accuracy of the CENT
potential for bulk properties such as enthalpy differences
between polymorphs at high pressure, surface geometries,
vacancy formation energies and lattice dynamics. Our
results show that the CENT potential trained on clus-
ters can successfully predict crystalline properties with
accuracies close to DFT results. In fact, the difference
between the CENT results and the DFT reference meth-
ods used for the fitting process is less than or comparable
to the differences between both popular DFT exchange
correlation functionals and the empirical BMH potential.

II. METHODS

A. Feed-Forward Artificial Neural Network

ANN techniques are inspired by biological neural struc-
tures and provide a framework that can be used to ap-
proximate mathematical functions. In an ANN there
are many nodes which are connected through so-called
weights. These nodes are commonly distributed in lay-
ers, organized as an input, (multiple) hidden and an out-
put layer. In atomistic simulations, ANNs are used to
calculate total energies, where some representation of the
atomic coordinates is passed into the input layer, and the
output layer, which only contains a single node, provides
the desired scalar quantity (energy). Such ANNs usually
work in a feed-forward fashion where signals are only

transmitted in one direction along the layers. In high
dimensional ANN14,35 potentials, the total energy is the
sum of atomic energies, each obtained from an ANN pro-
cess. A major disadvantage of currently available ANN
potentials is that they can only reproduce bulk proper-
ties for structures that have been used in the fitting data
base, as demonstrated by Eshet et al36.

B. Charge Equilibration Via Neural Network
Techniques

In 2015, Ghasemi et al. proposed a new method to
generate interatomic potentials for ionic systems based
on NN by interpolating the electronegativity rather than
the total energy24. Here we provide a concise summary
of its essential concepts. In this scheme, the total energy
of a system containing N atoms is given by

Utot({qi}) =
N∑
i=1

(E0
i + χiqi +

1

2
Jiiq

2
i )+
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2
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|r− r′|
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where E0
i are the energies of individual, isolated atom i,

χi is the environment dependent atomic electronegativity
of atom i whose functional dependence is determined by
the ANN, qi are the atomic charges, Jii is the element-
dependent atomic hardness37 of atom i, and ρ(r) is the
charge density of the system, which in our implemen-
tation is given by a superposition of spherical Gaussian
functions centered at the atomic positions ri, each nor-
malized to the corresponding atomic charge qi. Thus,
Eq. (1) can be rewritten as follows:
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where γij = 1√
α2

i+α
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j

and αi are the widths of the Gaus-

sian atomic charge densities, and rij is the distance be-
tween the atoms i and j. The atomic charges qi are im-
plicitly environment dependent through the atomic elec-
tronegativity χi. As a consequence, long distance charge
transfers for a given system are possible while the to-
tal charge of the system is conserved. In the charge
equilibration process the atomic charges are distributed
such that the electrostatic energy is minimized. This is
done by differentiating Utot with respect to the atomic
charges using Lagrange multipliers, which constrain the
total charge to a constant value, leading to a system of
linear equations of the form ÃQ = −χ, where Ã is a
(N + 1) × (N + 1) matrix, and Q and χ are (N + 1)-
dimensional vectors. In the case of free boundary condi-
tions and a small number of atoms the system of linear
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equations is solved directly, whereas for large systems it
is solved iteratively. In contrast, for periodic systems it is
always solved iteratively irrespective of the system size.
Since the system of linear equations is well-conditioned
the total number of iterations to reach sufficient conver-
gence never exceeds 20 based on extensive tests. When
performing molecular dynamics simulations or local ge-
ometry relaxations with relatively small atomic displace-
ments in each time step, the initial guess for the first it-
eration can be taken from the atomic charges obtained in
the previous step, hence significantly reducing the num-
ber of iterations to reach convergence.

The input layer of a high dimensional NN is a set of
symmetry functions {Gi} to describe the chemical envi-
ronment of each atom. We use the symmetry functions
proposed in Ref. [35], which have the advantage that the
array representing the chemical environments is invari-
ant under translation and rotation of the structure. The
adopted functional form of the radial and angular sym-
metry functions used in this work is described in Ref. [24].
We used in total 70 symmetry functions, 16 and 54 for
the radial and angular part, respectively, parametrized
according to Ref. [38]. The cutoff radius for the symme-
try functions were well tested and a value of 6.35 Å was
sufficient to generate accurate potentials. The appropri-
ate values for Gaussian widths are 0.53 Å for both cal-
cium and fluorine atoms. The atomic ANNs contain two
hidden layers with 3 nodes each. Similar to Ref. [24], we
found that such a small number of nodes in the hidden
layers is sufficient to reduce the root mean square error
to less than 0.33 mHa per atom upon validation tests (see
Section II C). Furthermore, the optimal values found for
the atomic hardnesses of calcium and fluorine are 0.01
and 0.02 in atomic units, respectively.

Due to the well-defined functional form of the indi-
vidual terms in the ANNs, an analytic expression of the
atomic forces can be derived as follows:

Fj = −
N∑
i=1

(
qi
∂χi
∂ri

)
+

N∑
i>j

qiqj
∂Vij
∂rj

(3)

where Vij =
erf(γij)
rij

. The first term in Eq. (3) is cal-

culated during the neural network process based on the
chain rule for differentiation. In the case of fully periodic
systems the Hartree energy in Eq. (1) and its derivative,
i.e. the second term in Eq. (3), cannot be directly com-
puted and are evaluated in Fourier space. To calculate
the Hartree energy for slab systems, e.g. to evaluate sur-
face energies, the P3D method39 is employed which is
both efficient and accurate while preserving the original
boundary condition. In the P3D method, the Poisson
equation is solved by expanding the charge density and
potential in terms of plane waves in the periodic direc-
tions and by using finite elements in the non-periodic
dimension.

C. Preparation of the Training Data

The reference calculations to construct the ANN po-
tential were performed using DFT with the Perdew-
Burke-Ernzerhof (PBE)40 exchange-correlation func-
tional as implemented in the FHI-aims code41. A set
of reference structures consisting of 2800 charge-neutral
CaF2 clusters with sizes ranging from 24 to 99 atoms
was used to train the ANN potential. These structures
were not generated all at once. Instead, the final train-
ing data set was built up iteratively since it is of great
importance to train a NN potential on a set of diverse
structures. Therefore, we first generated a smaller set of
reference data points with random structures to train a
preliminary ANN potential. Then, using this ANN po-
tential together with the minima hopping global geom-
etry optimization method42,43 (MHM), the low energy
regions of the (preliminary) energy landscape were ex-
plored. Local geometry optimizations within the MHM
were performed with the recently developed and highly
efficient stabilized quasi-newton minimizer44 to reduce
computational cost. The resulting low energy structures
from these MHM runs were carefully filtered to avoid
duplicate structures and to ensure a large diversity in
structural motifs within the augmented data set, a task
performed by comparing structures with the fingerprint
method proposed in Ref. [45]. Thereby, a measure of
similarity is given by the configurational distance d(p, q)
between two structures p and q according to

d(p, q) = minP

(
N∑
k

| Gp
k −Gq

P (k) |
2

)1/2

(4)

where P is a permutation function to match an atom
k in structure p with atom P (k) in structure q. The
optimal permutation P which minimizes the configura-
tional distance is obtained through the Hungarian or
Munkres algorithm46. The complete process of perform-
ing MHM runs, filtering the structures, and then retrain-
ing the ANN potential was repeated several times. The
structures are thus reasonably diverse and contain var-
ious morphologies. They are disordered structures sim-
ilar to amorphous solids rather than ordered crystalline
motifs. In fact, they do not resemble any of well-known
CaF2 crystalline phases such as those illustrated in Fig. 2.
They do not contain vacancy-like structures or structures
containing void regions. The surface of the structures are
curved and do not resemble surfaces which are cut out
of bulk crystaline CaF2 structures along different crys-
tallographic planes. The final dataset contained 2800
clusters, and the following approach was used to vali-
date the training of CENT: 85% of the total data were
randomly selected as training points to obtain a CENT
potential, which was then used to predict the energies
of the remaining 15% of the structures for validation, a
common procedure to detect potential overfitting. This
process was repeated ten times, based on which a RMS
error of 0.33 mHa/atom was achieved with a standard



4

deviation of ±0.04 mHa/atom. Figure 1 shows a repre-
sentative error distribution for one of these training pro-
cesses. The error in the validation data is only slightly
larger compared to the errors in the training data, and
only a fraction of less 3% of the total data results in an
error larger than 1.0 mHa/atom. In machine learning
techniques, one way of avoiding overfitting is early stop-
ping, where we have also employed in our trainings. In
addition, since we do not use the information of atomic
forces as training data, we can monitor forces to check
how accurate the potential is and indeed, in the case of
overfitting the error of forces increases even if the erro on
energies continues decreasing.
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FIG. 1. (color online) Distribution of the errors in the to-
tal energies per atom with respect to reference DFT calcula-
tions for all data points in the training and validation sets.
The number of data points are nomalized such that the total
number of data points gives 100%. In total, the training and
validation sets contain 2379 and 419 structures, respectively.

III. NUMERICAL RESULTS

In this section we examine the transferability of the
CENT potential. Trained exclusively on a dataset con-
sisting of cluster reference structures as described in sec-
tion II C, CENT was used to compute various bulk and
surface properties. The results are compared to DFT
results to assess the accuracy of the CENT potential.
Furthermore, to provide a comparison between the re-
sults of the CENT potential and a FF, the BMH form of
Buckingham potential was used as implemented in the
GULP code47 and parametrized according to Ref. [48].
Note that the BMH potential was originally fitted to bulk
properties and is thus expected to perform well for peri-
odic systems.

A. Bulk Properties

As a first benchmark we computed the bulk proper-
ties of four well known CaF2 crystalline phases: the cu-

(a)                                      (b)

(c)                                      (d)

FIG. 2. (color online) Unit cell of the four different CaF2

polymorphs: (a) cubic fluorite (Fm3̄m), (b) P4/mmm, (c)
Pmc21 and (d) Pnma. The blue (large) and purple (small)
spheres denote Ca and F atoms, respectively.

bic fluorite (Fm3̄m) and three orthorhombic cotunnite
PbCl2-type structures with space groups Pnma, Pmc21,
and P4/mmm (see Fig. 2). Table I contains the lattice
constants, bulk moduli, formation energies, and the en-
ergy differences with respect to the most stable Fm3̄m
phase from CENT, BMH and DFT calculations together
with experimental data whenever available. The forma-
tion energies obtained with the CENT potential are close
to the reference training method, i.e. PBE. Based on the
average errors, which are around 1 %, 11 % and 56 % for
CENT, LDA and BMH, respectively, we conclude that
the error of CENT results with respect to PBE is much
smaller than the differences between LDA or BMH and
PBE. Furthermore, the standard deviations between the
predicted CENT, LDA and BMH energy differences and
the PBE values are 0.028, 0.018 and 0.069 (eV/atom),
respectively, indicating that the energies from the CENT
potential and LDA correlate well with the PBE results.
The lattice constants and the bulk moduli obtained with
CENT and BMH are considerably closer to the PBE re-
sults than those obtained with LDA.

Pressure induced phase transitions in CaF2 have been
reported and are well studied both experimentally and
theoretically (see Refs. [49, 51, 52, 55, 57, 61–64]). Cu-
bic Fm3̄m is known to transform into the orthorhombic
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TABLE I. Lattice constants (Å), bulk moduli B0 (GPa), cohesive energies Ef (eV/atom) and the energy differences E
′f

(eV/atom) with respect to cubic CaF2 of four CaF2 phases at ambient condition. The entries denoted with BMH, CENT, PBE
and LDA contain results from the present work, whereas the other results were taken from literature, either from calculations
(Theory) or experiments (Exp.). The values in parentheses next to the BMH, CENT and LDA values indicate the deviation
from PBE results.

Phase Method a0 b0 c0 B0 Ef E
′f

Fm3̄m BMH 5.460 (-0.055) 88.30 (10.34) -9.048 (-3.246)
CENT 5.483 (-0.032) 85.40 (7.44) -5.835 (-0.033)
PBE 5.515 77.96 -5.802
LDA 5.332 (-0.183) 101.23 (23.27) -6.379 (-0.577)
Exp. 5.46649 8749

Exp. 5.46350 8251

Theory 5.525252 7752 -4.29053

Theory 5.487254 79.5454

Theory 5.50955 7955

Theory 5.57956 77.0656

Pnma BMH 5.979 (-0.033) 3.607 (-0.040) 6.963 (-0.122) 96.52 (12.93) -8.978 (-3.229) 0.070
CENT 5.998 (-0.014) 3.608 (-0.039) 7.062 (-0.023) 104.28 (20.69) -5.799 (-0.050) 0.036
PBE 6.012 3.647 7.085 83.59 -5.749 0.053
LDA 5.797 (-0.215) 3.482 (-0.165) 6.846 (-0.239) 111.34 (27.75) -6.347 (-0.598) 0.032
Exp. 5.6349 3.4949 7.1549 7552

Exp. 5.9657 3.5857 7.0357 70.9254

Exp. 6.01858 3.61458 7.02358 6655

Theory 6.027452 3.668252 7.041352 -4.22658

Theory 5.982654 3.630354 7.049954

Theory 6.02055 3.66055 7.10855

Theory 5.990956 3.602556 7.071756 86.7856

Pmc21 BMH 3.511 (-0.030) 4.069 (-0.096) 5.999 (0.019) 79.347 (7.41) -8.778 (-3.160) 0.270
CENT 3.516 (-0.025) 4.035 (-0.130) 5.925 (-0.055) 82.998 (11.06) -5.659 (-0.041) 0.176
PBE 3.541 4.165 5.98 71.933 -5.618 0.184
LDA 3.395 (-0.146) 4.048 (-0.117) 5.785 (-0.195) 93.552 (21.62) -6.170 (-0.552) 0.208
Theory -4.08259

P4/mmm BMH 3.028 (0.008) 3.648 (-0.099) 3.728 (-0.019) 85.513 (9.99) -8.724 (-3.164) 0.324
CENT 2.926 (-0.094) 3.687 (-0.060) 3.687 (-0.060) 95.338 (19.81) -5.637 (-0.077) 0.198
PBE 3.020 3.747 3.747 75.528 -5.560 0.243
LDA 3.621 (0.601) 3.621 (-0.126) 2.927 (-0.820) 98.724 (23.20) -6.133 (-0.573) 0.246
Theory -4.03960

Pnma phase at a pressure between 8 and 10 GPa, ac-
companied by an increase of the coordination number
of Ca from 8 to 9. X-ray diffraction and Raman spec-
troscopy have shown that this high pressure phase is sta-
ble up to 49 GPa at room temperature49,51. In Fig. 3,
the enthalpy of the Pnma phase together with the Pmc21
and P4/mmm structures are plotted with respect to the
Fm3̄m phase as a function of pressure. Our calculations
show that the phase transition from Fm3̄m to Pnma oc-
curs at 4.6, 8, 6 and 10 GPa, in LDA, PBE, CENT and
BMH, respectively, all values close to experimental mea-
surements. The transition is accompanied by a collapse
of the unit cell volumes by 13.6%, 8.16%, 5.7% and 8.81%
for LDA, PBE, CENT and BMH, respectively, compara-
ble to the experimental value of 8.3% given in Ref. [64].

B. Surfaces

Next, we investigated the accuracy of the CENT po-
tential for surface properties, which have been the subject
of extensive experimental and theoretical studies in the
past65–71. Puchin et al65 for example performed a sys-
tematic theoretical investigation of various surfaces with
respect to their relative stabilities and the effect of sur-
face relaxation/reconstruction on bandgaps. Sicher et
al. performed extensive structure prediction calculations
with the MHM42,43 to compare the stability of hydrated
(100) and (111) surfaces, giving insight into different ex-
perimentally observed morphologies in CaF2 nanocrys-
tals (not yet published).

In the present work we considered three low-index
surfaces, namely (111), (110), and (100), which are il-
lustrated in Fig. 4. Equilibrium lattice parameters of
5.332, 5.515, 5.483 and 5.460 Å were used for LDA, PBE,
CENT and BMH calculations, respectively. The BMH,
LDA and PBE calculation were performed using slabs in
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FIG. 3. (color online) Enthalpy differences per atom with
respect to the Fm3̄m phase as a function of pressure for three
different polymorphs, using CENT (a), PBE (b), LDA (c) and
BMH (d).

a supercell including a vacuum region of more than 14 Å
to avoid interactions between periodic images. No vac-
uum region was required for the CENT calculations since
the P3D method was used to solve the Poisson equation
with surface boundary conditions. Polarized surfaces re-
quire additional care due to non-vanishing dipole inter-
actions. The (111) and (110) surfaces are dipole free,
whereas (001) is a polar surface (so-called Tasker-type-
III structure) consisting of oppositely charged planes.
Therefore, 50% of the fluorine atoms are moved from
the top of the slab to the bottom to suppress the dipole
moment.

After preparing the slabs from the ideal bulk structure,
all atoms were fully relaxed to release the strain induced
by the broken bonds at the surfaces. The amount of this
relaxation can be defined as the mean difference between
the first and second surface layers before and after relax-
ation. The same quantity, but with respect to the change
of the distance between the second and third sub-layers,
is called rumpling. The effect of the relaxation on the

(100) a (100) b

(110) a (110) b

(111) a (111) b

FIG. 4. (color online) Three different low-index surfaces of
CaF2 shown from the side along the a-axis (denoted by a) and
the top along the c-axis (denoted by b) after a local relaxation.
The blue (large) and purple (small) spheres denote Ca and F
atoms, respectively.

structure is shown in Fig. 4, and all numerical quantities
are summarized in Table II. Our calculations are qual-
itatively in good agreement with previous reports. A
detailed discussion of each of the three surfaces is given
below.

(111) Surface: We modeled the (111) surface with 12
atomic layers, which can also be interpreted as four
layers of combined F-Ca-F triple layers. The per-
fectly flat (111) surface after cleaving from bulk
is F− terminated, forming a hexagonal array on
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TABLE II. Thickness, atomic relaxation, and rumpling (all
in Å) of the (111), (110), and (100) surfaces. The quantities in
parentheses indicate differences with respect to PBE results.

Surface Method Thickness Relaxation Rumpling
(111) BMH 11.100(-0.065) -0.005(-0.024) -0.002(-0.054)

CENT 11.213(0.048) 0.033(0.014) 0.052(0.049)
PBE 11.165 0.019 0.003
LDA 10.778(-0.387) 0.010(-0.009) 0.004(0.001)

(110) BMH 19.435(-0.091) -0.176(-0.089) -0.123(-0.174)
CENT 19.368(-0.158) -0.130(-0.043) 0.079(0.028)
PBE 19.526 -0.087 0.051
LDA 18.879(-0.647) -0.102(-0.015) 0.036(-0.015)

(100) BMH 15.251(-0.436) -0.490(0.020) -0.019(-0.136)
CENT 15.543(-0.144) -0.425(0.085) 0.121(0.004)
PBE 15.687 -0.510 0.117
LDA 15.068(-0.619) -0.429(0.081) 0.041(-0.076)

the surface. The symmetry elements of the sur-
face are inversion and mirror planes perpendicular
to the surface, as well as the translational in-plane
symmetries of the slab. The ions Ca2+ and F− in
the second and third atomic layers have a three-
fold symmetry, which is preserved even after re-
laxation. The thickness of the complete 12-layer
slab, defined as the distance between the outmost
atoms of the whole slab, is listed in Table II af-
ter a local geometry relaxation, indicating that the
value obtained by the CENT potential is very close
to the PBE result. All the results show that the
outmost sublayers move only very little along the
non-periodic z-direction upon relaxation, which is
in good agreement with the results of Jockisch et
al72. While in the unrelaxed structure the out-
most F and Ca layers are separated by 0.792, 0.796,
0.770 Å in CENT, PBE, and LDA, respectively,
their distances increase to 0.824, 0.815, and 0.779 Å
upon relaxation. However, in the BMH results, this
distance decreases from 0.766 Åto 0.761 Å. In the
layers further away from the surface, i.e. deeper in
the slab, this relaxation effect vanishes rapidly. The
relative distances between units of F-Ca-F triple-
layer however increases when moving away from the
surface towards the center of the slab, in agreement
with earlier theoretical results.

(110) Surface: For the (110) surface we considered a
slab with 8 atomic layers. In contrast to the
(111) surface where atoms only relax within the
c-direction, a reconstruction within the ab-plane is
observed for the (110) surface. The outmost sub-
layer of the slab contains both Ca and F atoms:
while the F atoms move outwards away from the
slab upon relaxation, the Ca atoms move inwards.
Together, the F and Ca in the outer layer undergo
a net inward relaxation of 0.176, 0.13, 0.087, and

0.102 Å for BMH, CENT, PBE, and LDA, respec-
tively.

(100) Surface: We used a model with 12 atomic layer
for the (100) surface. Overall, the amount of re-
laxation within this surface is considerably larger
compared to the former two surfaces, accompanied
by in a strong reconstruction as illustrated in Fig. 4.
The outmost layer of F atoms is pushed inward to-
wards the center of the slab by 0.490, 0.425, 0.510,
and 0.429 Å in BMH, CENT, PBE, and LDA, re-
spectively.

The surface energy E
(hkl)
f is defined as the work re-

quired to separate a crystal into two parts along a certain
plane (hkl). In order to assess the accuracy of the CENT
potential in predicting the stability of the three surfaces,
their values were calculated according to

E
(hkl)
f =

1

2A
(E(hkl)

s − nEb) (5)

where A is the surface area, E
(hkl)
s is the total energy of

the equilibrium structure of the slab, Eb is the bulk total
energy per f.u., and n is the number of f.u. in the slab.
The factor 1

2 accounts for the presence of two surfaces at
either side of the slab.

According to our DFT and CENT results, the sur-
face energy of the (111) surface is roughly half of the
(100) surface. The energy of the (110) surface is consis-
tently higher than the (111) and lower than the (100) sur-
face. All potentials are qualitatively in agreement with
other theoretical and experimental studies as shown in
Table III. However, there are significant quantitative dis-
crepancies depending on which potentials or DFT func-
tionals are used. In particular, BMH significantly over-
estimates the (100) surface energy, which can be readily
attributed to the fixed charges used in the potential and
the polar character of the surface slab, whereas CENT on
the other hand performs much better due to the charge
equilibration process. Overall, the values obtained with
CENT are within the error bars spanned by the various
theoretical results and reasonably close to the PBE val-
ues.

C. Defects

Understanding and controlling the nature and concen-
tration of defects in materials, also referred to as defect
engineering, is an important task to tune materials prop-
erties, and atomistic simulations are often used to provide
a better theoretical insight78,79. The so-called F-centered
defect is often encountered in CaF2, where an electron is
trapped in an anion vacancy. The defect formation ener-
gies can be computed using the following equation

EAf = E(A) + E(V )− E(P ), (6)
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TABLE III. Surface energies (in J/m2) for the (111), (110), and (100) surfaces.

Present work Others
BMH CENT PBE LDA Exp. Theory

(111) 0.538(0.161) 0.539(0.162) 0.377 0.563(0.186) 0.4573 0.3974, 0.43732, 0.5267, 0.46765

0.45-0.575 0.3976, 0.49777, 0.47666

(110) 0.870(0.276) 0.763(0.169) 0.594 0.815(0.221) 0.6174, 0.71732, 0.8267, 0.81965

0.96977, 0.76066

(100) 1.964(1.070) 1.032(0.138) 0.894 1.195(0.301) 0.9-0.9575 0.8474, 0.95732, 1.18965

where E(A) is the energy for an isolated Ca or F atom
and E(V ) and E(P ) are the total energies of the bulk
with and without vacancy, respectively.

We performed defect calculations of bulk CaF2 with
3×3 supercells containing 324 atoms with the BMH and
CENT potentials and DFT with both the LDA and PBE
exchange correlation functionals. A comparison of the
defect formation energies listed in Table IV shows that
the formation of a F vacancy is energetically more favor-
able than a Ca vacancy in all four potentials. However,
unlike all other quantities where the CENT results were
rather accurate, the values of EAf using CENT differs sig-
nificantly from LDA and PBE. Although this outcome
might be somewhat discouraging, predicting defect ener-
gies can be considered one of the most difficult tests to
pass. Still, the CENT potential outperforms other force
fields with respect to the accuracy of these values80,81.
CENT could be further improved by specifically includ-
ing such defect data points in the training set.

TABLE IV. Defect formation energies EA
f (eV) of F and Ca

centers calculated by BMH, CENT, PBE, and LDA.

Atom BMH CENT PBE LDA
Ca 17.942 9.671 15.526 17.065
F 3.377 6.001 8.735 9.432

D. Lattice Dynamics

Up to now we had mainly assessed the accuracy of
properties that can be derived from computing total ener-
gies. Here we analyze how the CENT potential performs
when considering higher order derivatives of the energy
landscapes in lattice dynamics calculations. Phonon cal-
culations were carried out with the Phonopy package82

to obtain the phonon dispersion, free energies and heat
capacities. All structures were relaxed with a tight con-
vergence criterion of 1× 10−4 eVÅ−1 before atomic dis-
placements with an amplitude of 0.01 Å were created in
3×3×3 supercells. k-point meshes of 4×4×4 were used
in all DFT calculations, and q-meshes of 45 × 45 × 45
were used for the Brillouin zone integration.

The heat capacities and free energies at constant vol-
ume (CV ) as a function of temperature are shown in Fig-
ure 5 and Figure 6, respectively. Overall, the results
of the CENT potential and PBE calculations agree very
well. In the case of Fm3̄m, the LDA, PBE, BMH and
CENT calculations result in a Cv values of 65.107, 66.999,
64.266, and 65.346 (J/mol/K) at room temperature, re-
spectively, which are very close to the experimental re-
sults of 67.11 (Jmol−1K−1)83.
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FIG. 5. (color online) Heat capacity of CaF2 in four different
phases: (a) cubic fluorite (Fm3̄m), (b) (Pnma), (c) Pmc21

and (d) P4/mmm.

Fig. 7 shows the phonon band structure of CaF2 in
the Fm3̄m phase computed from the forces of the BMH
and CENT potentials and DFT with the LDA and PBE
functionals. The acoustic modes are qualitatively similar
in all methods, however, quantitatively the results from
the CENT potential agrees better with PBE than with
LDA and BMH. Furthermore, due to the crystal sym-
metry and the degeneracy of the transversal branches,
there are only six phonon branches along the [100] and
[111] directions, whereas along the [110] direction the de-
generacy is resolved and all nine phonon branches are
split. For a quantitative comparison of the three meth-
ods we list in Table V the maximum and minimum val-
ues of frequencies which are related to the longitudinal
optical modes (LOmax) and transversal acoustic modes
(TAmin) as well as the separation of the longitudinal and
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FIG. 6. (color online) Free energy of CaF2 in four different
phases: (a) cubic fluorite (Fm3̄m), (b) (Pnma), (c) Pmc21

and (d) P4/mmm.

transversal acoustic modes at the K and L points at the
zone boundaries. Note that the LO/TO splitting was
neglected.

TABLE V. The frequencies of the maximum longitudinal
optical mode (LOmax), minimum transversal acoustic modes
(TAmin), and the separation of longitudinal and transversal
acoustic modes at the K and L points (LA− TA) calculated
by BMH, CENT, PBE, and LDA. All values are in cm−1 and
the numbers in parentheses are the differences with respect
to PBE.

method Γ X W K L
BMH 0 135 (26) 149 (16) 147 (23) 156 (24)
CENT 0 134 (25) 141 (8) 138 (14) 150 (18)

TAmin PBE 0 109 133 124 132
LDA 0 157 (48) 177 (44) 169 (45) 143 (11)

BMH 317 (11) 466 (76) 403 (43) 429 (60) 495 (122)
CENT 336 (30) 445 (55) 426 (66) 430 (61) 383 (10)

LOmax PBE 306 390 360 369 373
LDA 339 (33) 417 (27) 389 (29) 398 (29) 391 (18)

BMH 0 43 (4) 107 (6)
CENT 0 42 (3) 77 (24)

LA− TA PBE 0 39 101
LDA 0 13 (26) 133 (32)

E. Elastic Properties

The final materials properties that we examined are
the mechanical quantities of CaF2 in the bulk Fm3̄m
phase. In order to characterize the elastic behavior at
equilibrium we calculated the single crystal second order
elastic stiffness constants Cij , the shear modulus G, the

Young’s modulus E, and the Poisson’s ratio ν using the
ElaStic software package84. The results obtained with
BMH, CENT, LDA, and PBE are listed in Table VI.
Although the values of these properties are pressure and
temperature dependent we list the experimental and the-
oretical values in Table VI at ambient conditions. Due to
symmetry there are only three independent elastic con-
stants for cubic crystals: C11, C12, and C44. Compar-
ing the elastic constants in the principal direction C11

shows that it is reproduced reasonably well by BMH and
CENT, and the differences between CENT and BMH po-
tentials and PBE are less than that between LDA and
PBE. The CENT shear constant in the main diagonal of
the elasticity matrix C44 is also in good agreement with
PBE. Finally, the off-diagonal element C12 obtained by
CENT has a marginal deviation and it differs from that
of PBE by merely 3.4%, significantly less than the differ-
ence between both LDA and BMH with PBE. Overall,
the elastic constants obtained with the LDA functional
are larger than those of PBE, a direct consequence of
the well known overbinding behavior of the LDA func-
tional, also leading to smaller lattice constants, a larger
bulk modulus, and larger elastic constants. Similarly, the
BMH potential also significantly overestimates the elas-
tic constants with respect to PBE. The calculations of
G, E, and ν were performed within the Hill approxima-
tion since the arithmetic average of the Reuss and Voigt
limits have been shown to give good estimates of the ac-
tual values. Based on the results presented in Table VI
we conclude that, similar to the elastic constants, the
CENT potential describes the elastic properties of CaF2

with an acceptable level of accuracy. Furthermore, the
values of the Poisson’s ratio obtained by BMH, CENT,
PBE and LDA are in the range of 1

5 ≤ ν ≤ 1
2 , which is

consistent with experimental observations.

IV. DISCUSSION AND CONCLUSIONS

Accurate force fields are urgently called for to effi-
ciently model large systems with thousands or tens of
thousands of atoms. The recent development of a new
generation of force fields based on machine learning tech-
niques is an important step in this direction. Since such
ANN potentials are not based on physically motivated
functional forms, the common perception up to now was
that they have limited transferability, i.e. that they can-
not reproduce highly accurate results for structural mo-
tifs which are not contained in the training data set. The
recently developed CENT method however differs signif-
icantly from previously available ANN potentials. By
aiming to predict a physically motivated quantity that is
highly local using ANN, namely the environment depen-
dent atomic electronegativity, a good transferability from
clusters to extended bulk systems can be readily achieved
by fitting the ANN to a data set of small molecules only.

In this paper we have examined the transferability of
the CENT method by generating a potential for CaF2
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TABLE VI. Elastic constants Cij , Young modulus E, shear modulus G, and Poisson ratio ν for CaF2 of the Fm3̄m phase.
All values, except ν, are in units of GPa.

Present work Previous work
BMH CENT PBE LDA Exp. Theory

C11 168.8 174.7 153.5 183 17485, 16486 16887, 15988, 19188

C12 48.2 39.2 40.6 60.3 5685, 4486 4887, 4188, 6188

C44 45.6 22.7 27.3 35.8 35.9385, 3486 4087, 3088, 4088

E 147.4 94.2 95.2 116.4 107.589 119.8587

G 51.0 35.8 36.7 44.5 40.789, 41.189 47.0887

ν 0.2 0.3 0.3 0.3 0.2890

based on clusters and evaluating its performance on var-
ious bulk properties. For each property that we investi-
gated we compared CENT to DFT results obtained with
the LDA and PBE functionals as well as to the empiri-
cal BMH potential. With the exception of vacancy for-
mation energies, all results show that CENT can repro-
duce the PBE results close to density functional accuracy.
This is the more impressive considering that the largest
clusters used in our training data set consists of only
99 atoms with no structural motifs predominant in crys-
talline structures. The BMH potential on the other hand
gives good results for bulk structural properties of cubic
CaF2, which is not surprising given its parameters were
originally fit to this phase. However, it performs poorly
for most other polymorphs and properties investigated in
this study (e.g. the surface energy of the polar (100) sur-
face), and CENT consistently produces results in better
agreement with PBE. In fact, this favorable behavior of
CENT is not only limited to CaF2 but extends to other
ionic materials, demonstrating for the very first time that

an ANN force field can be generated with a high predic-
tive power of materials properties at conditions which
significantly differ from those of the reference data.
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