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We show that the interaction between a superconducting order parameter and the magnetic mo-
ment of an atomic cluster in a two-dimensional s-wave superconductor with Rashba spin-orbit cou-
pling generates magnetic anisotropy that can be stronger or comparable to the magnetic anisotropy
due to the crystal field and the shape of the cluster. Transport current through the superconductor
produces the effective magnetic field acting on the cluster’s magnetic moment. The direction of the
effective field depends on the direction of the current, thus allowing one to manipulate the magnetic
moment by the superconducting current. Due to the large density of the superconducting current
this method of magnetization reversal can be more advantageous at low temperatures than the
spin-transfer torque method that requires a large spin-polarized current through a normal metal.

PACS numbers: 75.75.-c,74.78.-w,75.70.Tj

There is a growing interest to the interaction of super-
conducting currents with spins in nanostructures. It has
given rise to the field of superconducting spintronics1,2.
Initial focus had been on proximity effects at the inter-
face of a superconductor and a ferromagnet3 and on spins
inside Josephson junctions4–11. More recently, the search
for topological superconductivity and Majorana fermions
has ignited theoretical and experimental work on inter-
play between magnetic moments and superconductiv-
ity in one- and two-dimensional (2D) conductors12–15.
Progress in manufacturing 2D superconductors (see,
e.g., Refs. 16,17), specifically the ones with large spin-
orbit interaction18,19, led to the discussion of symmetry-
breaking persistent currents generated by nanoscale mag-
netic clusters and magnetic impurities20,21.

Driven by computer industry, switching of magnetic
moments by means other than applying the magnetic
field has been the paradigm of modern magnetism. Meth-
ods based upon application of short electric pulses to mul-
tiferroic and composite materials have been explored22.
Spin-polarized currents have been shown to do the job,
which has led to the commercialization of random access
memory (STT-RAM) devices23. The necessity to run
large currents through thin normal layers limits applica-
tions of this method. Superconductors can sustain much
greater currents, which, in some cases, could be a trade-
off for operating below room temperature. Recently, the
possibility of controlling magnetism by superconductivity
in FM/SC/FM structures has been demonstrated24,25.
In this paper we are asking whether it is possible to ma-
nipulate a nanoscale magnetic moment embedded in a
single superconducting layer by a superconducting cur-
rent. We demonstrate that 2D superconductors with
large spin-orbit coupling present such an opportunity.

Most of the previous research on interaction between
magnetism and superconductivity focused on the effect
of a static magnetic order on a superconducting order
parameter. This is justified by the fact that typical ex-
change energies that are responsible for the ferromagnetic
order are much greater than pairing interactions respon-

sible for superconductivity. While this is certainly true
for magnetic vs superconducting order, the equilibrium
orientation of the magnetic moment of a ferromagnet is
determined by the magnetic anisotropy that is of rela-
tivistic spin-orbit origin. In many cases it is comparable
to the superconducting gap. Consequently, it should not
come as a surprise that superconductivity can have a pro-
found effect on the orientation of the magnetic moment.

By computing the additional energy due to persistent
currents induced by the magnetic cluster in a 2D super-
conductor with spin-orbit coupling we show below that
the currents induce large easy-plane magnetic anisotropy
that forces the magnetic moment of the cluster to lie
in the plane of the superconductor. In addition we will
demonstrate that a transport current through the super-
conductor with spin-orbit coupling generates an effective
magnetic field in the cluster that is capable of switching
the direction of the magnetic moment between two op-
posite equilibrium orientations along the easy anisotropy
axis. This effect is a superconducting member of the
family of effects arising from the current-induced spin-
orbit torque that have been intensively studied in re-
cent years26. We also show that combination of a strong
easy-plane magnetic anisotropy due to the superconduc-
tor with a weak easy-axis anisotropy due to the crystal
field or the shape of the cluster may lead to a significant
rate of quantum tunneling of the magnetic moment, thus,
providing a possible design for a qubit.

As a generic example we consider an s-wave 2D super-
conducting layer with Rashba spin-orbit coupling

Hso = λ(σ × p)z (1)

in the limit

pF � pR = mλ� ∆

λ
, (2)

withm and pF being the electron mass and the Fermi mo-
mentum, pR = mλ being the Rashba momentum, and ∆
being the superconducting gap. We place a 2D nanoscale
ferromagnetic cluster of total spin S � 1, and of radius R
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Figure 1: Switching the magnetic moment by reversing the
superconducting current.

that is below the superconducting coherence length ξ, on
the surface of the superconductor as is shown in Fig. 1.
The condition S � 1 allows one to treat the spin of the
cluster classically. Its exchange interaction with electron
spins σ is assumed to be of a standard form

Hex = −1

2
JS

ˆ
d2rΨ†(r)[s(r) · σ]Ψ(r), (3)

with J being the exchange constant and s = S/S being
a classical unit vector in the direction of S.

The proximity of a ferromagnet induces a finite spin
polarization in the electron fluid. In turn, the spin-orbit
interaction, together with a broken inversion symmetry
at the surface, generates an additional term in the expres-
sion for the superconducting current. To the first order
on λ the corresponding superfluid flow (superconducting
current divided by the electron charge) is given by20

j =
~ns
2m

∇θ + α(ẑ× s), (4)

where θ(r) is the phase of the superconducting order pa-
rameter, ns is a 2D density of superconducting electrons,
and

α =

(
JS

2π~2

)
pR (5)

is a parameter proportional to both, the strength of the
exchange interaction, J , and the strength of the spin-
orbit interaction, λpF .

Eq. (4) follows from the minimization of the Ginzburg-
Landau free energy amended by the term arising from the
spin-orbit coupling,

F =

ˆ
d2r

[
ns
2m

(
~∇θ

2

)2

+ α(ẑ× s) ·
(
~∇θ

2

)]
. (6)

Writing from Eq. (4) (~∇/2)θ = (m/ns) [j− α(ẑ× s)]
and substituting it into Eq. (6) one obtains

F =
m

2ns

ˆ
d2r

[
j2 − α2(ẑ× s)2

]
. (7)

The persistent current, j = js(r), generated by the
ferromagnetic cluster of radius R < ξ has been computed
in Ref. 20 by solving the equation for the phase,

∇2θ =
2mα

ns
ẑ · [∇× s(r)] = −2mα

ns
ẑ · (r̂× s) δ(r −R),

(8)
that follows from the continuity condition ∇ · j = 0.
The solution was obtained by using the Green function,
G(r) = (2π)−1 ln(r), of the 2D Laplace equation, satisfy-
ing ∇2G(r) = δ(r). Substituting the resulting θ(r) into
Eq. (4), one gets for20

js(r) =
1

2
α(ẑ× s) (9)

at r < R and

js(r) = α

(
R

r

)2{
[r · (ẑ× s)]

r

r2
− 1

2
(ẑ× s)

}
(10)

at r > R.
Substitution of Eqs. (9) and (10) into Eq. (7) gives

F = Fs = −πmα
2R2

4ns
(ẑ× s)2 = const +Kss

2
z (11)

where we have used (ẑ× s)2 = 1− s2
z.

Thus, the induction of the persistent currents by
the magnetic cluster results in the easy-plane mag-
netic anisotropy, Ks = πmα2R2/(4ns), that confines
the magnetic moment of the cluster to the xy plane
of the 2D superconductor. To estimate the magnitude
of this anisotropy it suffices to write α in the form
α = [JS/(2EF )]λne, where EF = π~2ne/m is the Fermi
energy of a 2D electron gas of density ne = 〈Ψ†(r)Ψ(r)〉.
This gives

Ks =
π

4
mλ2

(
neR

2
)(ne

ns

)(
JS

2EF

)2

. (12)

Formally, Ks increases on decreasing ns. However, the
critical current decreases on decreasing ns as well. Since
the persistent current cannot exceed the critical current,
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this means that one can hardly achieve large Ks on ap-
proaching the critical temperature. It is, therefore, makes
sense to use ns ∼ ne for the estimate of Ks. Choosing
λ ∼ 105 m/s, neR2 ∼ 102, and JS ∼ 2EF , one obtains
from Eq. (12) Ks ∼ 10 eV. This is a very large magnetic
anisotropy that should force the magnetic moment of the
cluster to lie in the 2D plane.

Consider now a situation with a transport current
j0. Since Eq. (8) allows the addition of θ0(r) satisfying
∇θ0 = [2m/(~ns)]j0 = const to the solution θ(r) of the
nonuniform equation, the addition of j0 modifies the cur-
rent as j(r) = j0 + js(r). Substitution of the total current
j(r) into Eq. (7) leads to the addition of the terms to the
free energy that describe the coupling between the spin
and the transport current. Working out the integrals one
finds that the terms containing logarithmic dependence
on the system size cancel out, leaving the following cou-
pling energy

Fjs =
πmαR2

2ns
j0 · (ẑ× s) = −πmαR

2

2ns
s · (ẑ× j0). (13)

This equation shows that the effect of the transport cur-
rent on the magnetic moment in a 2D superconductor
with spin-orbit coupling is equivalent to the effect of the
magnetic field. Introducing the magnetic moment of the
cluster, M = geµBS, we have Fjs = −M ·Bj with

Bj =
πpR

4geµB
(neR

2)

(
J

EF

)
(ẑ× v0), (14)

where µB is the Bohr magneton, ge is the gyromagnetic
factor, and v0 = j0/ns is the drift velocity of the electron
fluid in the superconducting current.

Normally the ferromagnet would have an easy magne-
tization axis in the xy plane, say the y-axis for certainty.
Let us begin with the magnetization of the cluster look-
ing in the positive y-direction. Switching of the magnetic
moment by the superconducting current is illustrated in
Fig. 1. If the current j0 runs in the positive x-direction
the magnetic field Bj it generates due to the spin-orbit
coupling looks in the y-direction, that is, it is aligned
with the magnetization of the cluster. If the current is
now reversed, j0 → −j0, and begins to flow in the neg-
ative x-direction, so does Bj that is now looking in the
negative y-direction. This must lead to the magnetiza-
tion reversal if Bj is sufficiently large to overcome the
energy barrier due to magnetic anisotropy.

The magnetic energy can be written as27

FM =

ˆ
d2r

[
−1

2
β‖M

2
0y +

1

2
β⊥M

2
0z −M0 ·Bj

]
(15)

in terms of the 2D magnetization M0 = geµBS/(πR
2).

The first term in Eq. (15), with β‖ > 0, represents the
easy axis magnetic anisotropy in the xy plane, while the
second term with β⊥ = 2Ks/(geµBS)2 represents the
easy plane anisotropy generated by persistent currents
flowing around the magnet. The effective magnetic field

acting on the magnetic moment is

Beff = −δFM

δM0
= β‖M0ŷ − β⊥M0ẑ + Bj . (16)

Strong easy-plane anisotropy makes equilibrium M0 to
lie in the xy plane. The current j0 = ±j0x̂ generates
Bj = ±Bjŷ. According to Eq. (16) the reversal of M0

from the positive y-direction to the negative y-direction
requires Bj = −Bjŷ with Bj > B‖ = β‖M0. The field
β‖M0 is called the anisotropy field. For the majority of
ferromagnets it lies between 0.01 T and 0.1 T.

To estimate whether a superconducting current can
generate the effective spin-orbit magnetic field in the
magnet that is comparable to the anisotropy field we first
notice that according to Eq. (14) Bj depends neither on
S nor on ns. Independence from ns may create the wrong
impression that our results equally apply to the case of
ns = 0, that is, to a normal conductor. However, our
formulas rely on the assumptions that the currents are
non-dissipative, given by Eq. (4), and that R < ξ, which
justifies the validity of Eq. (9) and can only be true for
a superconductor. When materials of the ferromagnetic
cluster and of the superconductor are chosen the only
free parameters in the expression for Bj are the size of
the magnetic cluster R and the electron drift velocity v0

that can be very large in a superconductor as compared
to normal metals. At neR2 ∼ 102 and J ∼ 10−2EF , for
a sufficiently large spin-orbit coupling, λ ∼ 105 m/s, and
large current density, v0 ∼ 10 m/s (typically correspond-
ing to 0.1 A/cm for ns ∼ 1015 cm−2), one obtains from
Eq. (14) Bj ∼ 0.1 T. This demonstrates a principal pos-
sibility to reverse the magnetic moment of a nanoscale
ferromagnetic cluster by the current through a 2D super-
conducting layer with strong spin-orbit coupling. The ad-
vantage of a superconductor is that the required current
density is easier to achieve than the current needed to
induce magnetization reversal by a spin-transfer torque
in a normal metal.

Finally, we would like to comment on the possibility of
using spins in a 2D superconductor with spin-orbit cou-
pling as qubits. To have a functional qubit one needs a
quantum superposition of spin-up and spin-down states
that survives the decohering effect of the environment
long enough to permit computation. For practical pur-
poses it is also desirable to have a qubit with a sufficiently
large magnetic moment that one can easily measure. This
means a large total spin, S � 1, that can tunnel fast be-
tween up and down orientations. Generally speaking the
conditions of large S and large decoherence time are at
odds with each other because the WKB action associated
with the spin28 is proportional to the total spin S, thus
making the spin tunneling rate to decrease exponentially
with increasing S. However, in the problem discussed
above the possibility of a large tunneling rate for a large
spin is provided by the large easy plane anisotropy gener-
ated by non-dissipative currents of spin-orbit origin flow-
ing around the spin, see Eq. (12) and discussion below
it. At β⊥ � β‖ the enhancement of tunneling between
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opposite orientations of the magnetic moment along the
easy y-axis comes from the large second term in Eq. (15)
that does not commute with the first term when com-
ponents of M0 are treated as quantum operators. The
tunneling rate is proportional to exp(−U/TQ), where U
is the energy barrier due to the magnetic anisotropy and
TQ ∝ [β‖(β‖ + β⊥] is the characteristic temperature of
quantum fluctuations28. At β‖ ∼ β⊥ the WKB tunnel-
ing exponent is of the order of the tunneling spin S, which
makes the tunneling rate exponentially small for large S.
However, in the limit of β‖ � β⊥ the tunneling expo-
nent is 2S(β‖/β⊥)1/2, thus allowing a significant rate of
tunneling for S � 1. The tunneling rate can be further
increased by reducing the barrier U with the help of the
transport current.

In conclusion, we have shown that currents induced
by a magnetic cluster in a 2D superconducting layer
with spin-orbit coupling generate significant magnetic
anisotropy that affects equilibrium orientation of the

magnetic moment of the cluster. In addition, the trans-
port current in a superconductor generates the effective
magnetic field on the cluster that can switch the orienta-
tion of its magnetic moment. This provides an interest-
ing mechanism of magnetization switching by a current,
which is conceptually different from the switching by a
spin-transfer torque. While the latter relies on a large ex-
change interaction of the spin-polarized normal current
with ferromagnetic spins, the mechanism we propose re-
lies on a large spin-orbit interaction and large densities of
the transport current that can be achieved in supercon-
ductors. We also show that the proposed mechanism can
be used to achieve a significant rate of quantum tunneling
of the magnetic moment in a magnetic cluster deposited
on the surface of a superconductor.
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