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Measurements of the London penetration depth, ∆λ(T ), and tunneling conductance in single crys-
tals of the recently discovered stoichiometric, iron - based superconductor, CaKFe4As4 (CaK1144)
show nodeless, two effective gap superconductivity with a larger gap of about 6 - 10 meV and
a smaller gap of about 1-4 meV. Having a critical temperature, Tc,onset ≈ 35.8 K, this material
behaves similar to slightly overdoped (Ba1−xKx)Fe2As2 (e.g. x = 0.54, Tc ≈ 34 K), - a known
multigap s± superconductor. We conclude that the superconducting behavior of stoichiometric
CaK1144 demonstrates that two-gap s± superconductivity is an essential property of high tempera-
ture superconductivity in iron - based superconductors, independent of the degree of substitutional
disorder.

PACS numbers: 74.70.Xa,74.20.Rp,74.55.+v

Iron-based superconductors (IBS) are represented by a
diverse group of different structural families all contain-
ing iron layers, which are believed to play the key - role
in superconductivity with the superconducting transition
temperature, Tc, ranging from 2 to 56 K [1–3]. Most of
these compounds contain fractional amounts of different
ions forming superconducting domes as a function of the
composition, resulting in complex phase diagrams and
very rich physics [4–7]. The highest Tc is found at frac-
tional compositions, which unavoidably have finite de-
grees of substitutional disorder. This represents a serious
problem in understanding the pairing mechanism that is
ultimately responsible for the high Tc’s, because, in ma-
terials with anisotropic or sign - changing gaps, any disor-
der adds extra difficulty to quantify pair-breaking effects,
in addition to non-spin-flip scattering [8, 9]. Among the
few of stoichiometric IBS, KFe2As2 (Tc ≈ 3.6 K), LiFeAs
(Tc ≈ 18 K), LiFeP (Tc ≈ 5 K) or LaFePO (Tc ≈ 6 K),
FeSe (Tc ≈ 9 K in bulk crystals at ambient pressure)
and FeS (Tc ≈ 5 K), the recently discovered CaKFe4As4

(CaK1144) clearly stands out with a substantially higher
value of Tc,onset ≈ 35.8 K and Hc2,c(0) ≈ 71 T [10, 11]. In
addition, CaK1144 does not undergo structural or mag-
netic phase transitions [12]. Indeed, one could consider
the 1:1 ratio of Ca and K simply as an ordered stoichio-
metric substitution of Ca for K at 50 % “doping” level. It
is thus interesting to compare CaK1144 with hole-doped
Ba0.46K0.54Fe2As2 which has a similar Tc of 34 K [13] but
is randomly disordered on the single (Ba/K) site. Analy-
sis of the thermodynamic data in CaK1144 crystals from
the same batch as reported here estimates mean free path
of ` ≈ 12.5 nm, which is much larger than the coherence
length of ξ (0) ≈ 2.15 nm, placing this system in the clean
limit [11].

In this paper, the superconducting gap structure of

CaKFe4As4 was studied by measuring the tempera-
ture induced variation of the London penetration depth,
∆λ(T ), and the tunneling conductance at low tempera-
tures, both of which probe the density of states (DOS)
near the Fermi level, EF . The penetration depth shows
saturation at low temperatures and the tunneling spec-
tra exhibit a clear gap in DOS around EF . In-depth
data analysis leads to conclusion that CaK1144 has two
effective superconducting gaps. The smaller gap is in the
range of 1 - 4 meV and the larger gap is between 6 -
10 meV. The sizeable spread is characteristic of super-
conductors showing different magnitudes of the super-
conducting order parameter over the Fermi surface. The
larger ratio of the maximum to minimum gap values leads
to the overall behavior quite similar to the overdoped
Ba1−xKxFe2As2 (BaK122), x = 0.54, but different from
the optimally - doped BaK122, x = 0.35, where this ratio
is about two [13, 14].

Single crystals of CaKFe4As4 were synthesized by
high temperature solution growth out of FeAs flux, see
Ref. [11] for details of the synthesis and comprehensive
structural, thermodynamic, transport, magneto-optical
and spectroscopic characterization. Due to complexity of
the growth and potential for unwanted phases, each sam-
ple used in the present study was individually screened to
be single phase. To this end, the in-plane four-probe re-
sistivity was measured using a Quantum Design Physical
Property Measurement System (PPMS) in each sample
with typical dimensions of approximately 2 × 0.5 × 0.02
mm3 and we checked that selected samples showed no
extra features except for the superconducting transition,
see Fig. 1(c). These samples had RRR ≡ R(300 K)/R(40
K) of the order of RRR ≈15 (compared to RRR ≈7 of
optimally - doped BaK122 [15]).

The in-plane London penetration depth ∆λ(T ) was
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measured using a self-oscillating tunnel-diode resonator
(TDR) where the sample is subject to a small, 20 mOe,
AC magnetic field and the recorded resonant frequency
shift from the value of the empty resonator is propor-
tional to sample’s magnetic susceptibility, determined by
λ and sample shape. Detailed description of this tech-
nique can be found elsewhere Ref. [16–18].

For the STM experiment, the sample was mounted
onto a sample holder and a piece of brass was glued
on top of it. At liquid helium temperature, the sam-
ple holder was moved toward a copper beam, lifting off
the glued brass piece and leaving a freshly cleaved surface
for tunneling [19, 20]. Here we present data taken at 0.8
K. This corresponds to an energy resolution of about 70
µeV, determining roughly the interval between points in
the tunneling conductance curves [19, 21]. The measure-
ments were conducted using a normal metal (gold) tip.
The tunneling conductance was obtained by differentiat-
ing the I-V curves, as described in our previous works
[22, 23]. Flat surfaces for tunneling were found similar
to other STM studies, for example in BaK122 [24]. Note
that we have measured hundreds of topographical images
and millions of spectra and the detailed analysis will be
published separately. We emphasise that the ubiquitous
surface reconstruction discussed in STM work on the IBS
[24–26] is not found in CaKFe4As4. Instead, we observe
atomically flat surfaces showing atomic size features that
are separated by steps due to terminations of different
crystallographical planes.

Figure 1(a) shows the low-temperature, T/Tc ≤ 0.3,
variation of London penetration depth, ∆λ(T ), in a single
crystal CaK1144 compared with three other IBS with
comparable Tc values: BaFe2(As0.70P0.30)2 (Tc ≈ 30 K),
which exhibits a nodal gap [27] and two compositions of
(Ba1−xKx)Fe2As2 with x =0.35 (optimally doped, Tc ≈
39 K) with two isotropic gaps and x =0.54 (over-doped,
Tc ≈ 34 K) that shows no nodes, but an increased angular
anisotropy in at least one of the gaps [13]. Figure 1(c)
shows full - temperature range London penetration depth
and normalized resistivity with very sharp transition and
no signatures of other phases or transitions.

To numerically characterize the low temperature be-
havior, we look at the change of the penetration depth,
which is directly related to the population of quasipar-
ticles excited by thermal fluctuations, by using different
upper limits of the fitting range, Tmax, thus effectively
cutting off the quasiparticles with energies exceeding
kBTmax (note that throughout the paper we use kB = 1).
First, in Fig. 1(b) we characterize the curvature of ∆λ(T )
by using power - law fitting, ∆λ = C1+C2(T/Tc)

n. More
details of the procedure are given in our previous study
[13]. Offset and scaling coefficients, C1 and C2, are not
important, but the exponent n characterizes the curva-
ture. In case of a nodeless s++ gap, both clean limit and
non-magnetic dirty limit for either single band or multi
- band superconductivity, ∆λ(T ) is exponential at low
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FIG. 1. (Color online) (a) Variation of the London pene-
tration depth, ∆λ(T ) in CaK1144 (filled circles) compared
with other IBS, - BaFe2(As0.70P0.30)2 (nodal gap, Tc ≈ 30
K, open squares) [27] and Ba0.35K0.65Fe2As2 (no nodes, opti-
mally doped, Tc ≈ 39 K, open circles) and Ba0.46K0.54Fe2As2
(no nodes, over-doped, Tc ≈ 34 K, open triangles) [13]. (b) the
exponent n obtained from the power law fit, ∆λ = C1 +C2T

n

as function of the upper fit limit, Tmax/Tc. n =2 represents
the dirty-limit exponent for the sign-changing order parame-
ters, such as d−wave or s±. Symbols are the same as in (a).
(c) Full - temperature range variation of the in-plane London
penetration depth ∆λ(T ). (d) Normalized in-plane resistivity
ρab/ρab (300 K) showing only superconducting transition.

temperatures and may be described by a large exponent
n > 3. The symmetry - imposed line nodes result in linear
behavior, n =1, and approach n = 2 in the dirty limit.
Finally, in the case of sign-changing, but fully gapped,
s± pairing, the clean limit is exponential (experimentally
large n >3) and becomes quadratric, n = 2 in the dirty
limit [13, 28, 29]. In CaK1144 we find the values of n
clearly exceeding n = 2 ruling out a nodal gap. More-
over the exponent n vs. Tmax/Tc follows almost exactly
the behavior found in Ba0.46K0.54Fe2As2, which is also
seen directly in Fig. 1(a). This behavior is consistent
with the clean-limit s± pairing with two nodeless gaps
[13].

To probe the spectroscopic gap in the density of states
(which is generally different from the magnitude of the
order parameter due to scattering [30]) we use the low
- temperature Bardeen-Cooper-Schrieffer (BCS) asymp-
totic behavior expected for the penetration depth, ∆λ =
B1 + B2

√
πδ/2t exp (−δ/t), where t = T/Tc and B1,
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FIG. 2. (Color online) A representative BCS fitting with ∆/Tc

as a free fit parameter and fixed Tmax/Tc=0.14. Upper in-
set: ∆/Tc obtained from BCS fittings with different Tmax/Tc.
Lower inset: reduced χ2 vs. Tmax/Tc corresponding to the fit-
ting results shown in the upper inset.

B2 and δ ≡ ∆ (0) /Tc are free parameters [18]. Fig-
ure 2 shows an example of a good - quality fitting with
Tmax/Tc = 0.14. By plotting δ versus the upper fit limit,
Tmax/Tc, we expect a saturation when the fit becomes
truly exponential indicating a clean gap in the density
of states. Indeed, upper inset in Fig. 2 shows such sat-
uration below Tmax/Tc ≈0.14 at δ ≈ 0.32 ≈ 1 meV. Si-
multaneously, the quality of the fit becomes better and
saturates, indicated in the lower inset in Fig. 2, by the
lowest value of the reduced χ2 =

∑
(fdata−ffit)2/DOF ,

where the number of degrees of freedom, DOF =(number
of data points) - (number of free parameters).

In Fig. 3(a) we show a few representative tunneling
conductance curves obtained within an area whose to-
pography is shown in the insets in (a) and correspond-
ing current vs. bias voltage curves are shown in (b).
We observe most often a negligible tunneling conduc-
tance at zero bias, indicating no states close to the Fermi
level. We also observe well developed quasiparticle peaks
positioned at a bias voltage that changes depending on
the surface plane. At some surfaces (blue and violet in
Fig. 3), we observe a quasiparticle peak slightly above
10 mV and a kink at about 5mV. At other surfaces, we
observe quasiparticle peaks at about 5 mV and shoul-
ders somewhat below 10 mV (green and red in Fig. 3).
This is a common observation in the effective two-gap
Fe based superconductors (e.g., in BaK122 [24]). Dif-
ferent surface terminations lead to different matrix ele-
ments for the tunneling between the tip and the sample
[31, 32]. This, in turn, leads to spatially varying con-
tributions to the density of states from different parts
of the Fermi surface. When the gap is not uniquely de-
fined, as in a simple s−wave BCS superconductor, the
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FIG. 3. (Color online) (a) Tunneling conductance vs. bias
voltage curves measured at 800 mK (symbols) and corre-
sponding fits to BCS theory (solid lines). The curves are
shifted, and the zero conductance value is indicated by a hor-
izontal line in each curve. The left inset shows the topography
of the surface (image size is 100 × 100 nm2) and the right in-
set shows a profile taken along the line shown in the left inset.
Points along the line in the left inset provide the places where
we took the curves of the main panel. The step shown in
the profile is of the order of the unit cell c-axis parameter.
Orange arrows mark the position of the two maxima in the
distributions of ∆i (see text). (b) Tunneling current vs bias
voltage curves corresponding to the tunneling conductance
curves shown in (a). (c) Distributions of the superconducting
gap values (relative weight αi and gap size ∆i, see text) used
to obtain the lines in (a). Colors of symbols in (a) are used
to refer to corresponding curves in (b) and (c) and points in
the insets of (a).

gap sizes involved in the tunneling process differ from the
positions of the quasiparticle peaks in the bias voltage.
To obtain the tunneling conductance and find the super-
conducting gap values, we have convoluted a density of

states in the form αiRe

(
E√

E2−∆2
i

)
with the derivative

of the Fermi function to obtain the tunneling conduc-
tance [23, 31, 33, 34]. The lines in Fig. 3(a) show the
tunneling conductance calculated using the set of αi and
∆i shown in Fig. 3(c). The values of the superconducting
gap are spread between about 1 meV and 10 meV. The
αi provides the relative weight in the tunneling conduc-
tance from the different gap values (see, e.g., Ref. 33 for
similar results obtained in MgB2). At all locations there
are two peaks in the αi. The height of each peak varies
as a function of the tunneling plane. One peak is at ≈ 3
meV and another one at ≈ 8 meV. This corresponds, re-
spectively, to 0.54∆(0)/Tc and 1.45∆(0)/Tc compared to
∆(0)/Tc =1.76 for the isotropic single - gap weak - cou-
pling value. These values agree with the values inferred



4

from the superfluid density, discussed next.
The superfluid density ρs ≡ (λ(0)/λ(T ))2 can be ob-

tained from λ(T ), provided we can estimate the abso-
lute value of λ(0). The TDR technique is suitable for
the precision measurements of the changes in the pene-
tration depth [35], but not the absolute value. We use
two approaches to estimate λ(0). First, thermodynamic
Rutgers relation is used to estimate Ginzburg-Landau
parameter κGL = λGL/ξGL [11, 36]:

κGL =

√
Tc

8π∆C

∣∣∣∣∂Hc2,c

∂T

∣∣∣∣
Tc

(1)

where the jump of the specific heat, ∆C =9.6 J/mol K
= 8.32 ×105 erg/cm3/K (using molar volume of 115.4
cm3/mol) the slope of the upper critical field (mea-
sured parallel to the c−axis) at Tc, dHc2,c/dT =-4.4×104

Oe/K [11]. Eq. (1) gives κGL ≈60. As shown from
the detailed analysis of Hc2(T ), due to a very short
coherence length, ξ (0) =

√
φ0/2πHc2 (0) ≈ 2.15 nm

(Hc2 (0) ≈ 71 T), CaK1144 appears to be in the clean
limit [11]. Therefore, we can use clean-limit relation,
κ (0) = 1.206κGL = 68.7 from which λ (0) = ξ (0)κ (0) ≈
148 nm. Alternatively, we can estimate Ginzburg-

Landau ξGL =
√
φ0/2πTc

∣∣∂Hc2

∂T

∣∣
Tc
≈ 1.5 nm, which gives

λGL = ξGLκGL ≈ 83 nm. Therefore, λ (0) =
√

2λGL ≈
118 nm. These are quite close values resulting a small
variation of ρs at intermediate temperatures. For the fit-
ting analysis of the superfluid density we use the average
of these two values, λ (0) = 133 nm. The second deter-
mination of λ (0) was made directly by measuring the
field of the first vortex penetration on the sample edge
using recently developed sensitive and non-invasive opti-
cal magnetometry based on the NV centers in a diamond
film [37]. The penetration field is converted to the lower
critical field, Hc1 = φ0 (lnλ/ξ + 0.5) /

(
4πλ2

)
, according

to the theory developed by Brandt [38]. This direct ex-
perimental probe yields λ (0) = 239 nm. We used these
two values as lower and upper limits for λ (0) to fit the
results.

To further analyze multiband superconductivity, we fit
the superfluid density, ρs(T ), to a two-band γ−model
[39]. Importantly, the two values of the order parameter
are calculated self-consistently at each temperature. The
relative contribution, γ, from one band (and 1 − γ from
the second) is another fit parameter to obtain the total
superfluid density. We obtained a very good agreement
in the entire temperature range with the order parame-
ters shown in the inset in Fig. 4. In the fit, we λ (0) = 239
nm, we determined ∆1(0)/Tc = 1.86, ∆2(0)/Tc = 0.64, so
that ∆1(0)/∆2(0) = 2.9, which is almost a factor of two
larger than that found for BaK122 [13]. In energy units,
we obtain ∆1(0) = 5.70 meV and ∆2(0) =1.97 meV.
With λ (0) = 133 nm, despite the quite different magni-
tude, we obtained similar values of ∆1(0)/Tc = 1.88 and
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FIG. 4. (Color online) Superfluid density, ρs, calculated with
λ(0) = 133 nm (open squares) and λ(0) = 239 nm (open
circles). Self - consistent γ−mode fits with all coupling pa-
rameters is shown solid lines and interband-only coupling fit
is shown by the dashed line (for λ(0) = 239 nm case). Inset
shows the temperature dependence of the two order parame-
ters obtained from the fits in the main figure. Solid and dash-
doted lines are for the all-parameters fits for the two values
of λ(0), respectively. The dashed lines are for the interband-
only fit. The thick red lines mark the spread of the order
parameter values determined from the STM measurements.

∆2(0)/Tc = 0.66 or, in energy units, ∆1(0) = 5.77 meV
and ∆2(0) =2.0 meV. To explore all possibilities, we also
used interband-only s± model, used to analyse the Hc2

data in CaK1144 [11]. The dashed line in Fig. 4 shows
our attempt to fit ρs(T ) obtained with λ (0) = 239 nm to
the interband - only (pure s±) model. The result is quite
reasonable, although not as good as the full fit described
above. Here we obtain two gap amplitudes 9.6 meV and
2.4 meV. As shown in the inset, these values are in a good
agreement with 8 meV and 3 meV, as well as overall gap
size distribution between 1 and 10 meV, obtained from
the STM experiments. Indeed, more precise calculations
should take into account gap anisotropies and realistic
three dimensional electronic bandstructure. At present,
this formidable task is beyond the scope of this work due
to the lack of needed information.

In conclusion, precision measurements of the Lon-
don penetration depth and low temperature STM spec-
troscopy show unambiguously a fully gapped multiband
superconductivity in single crystals of CaKFe4As4. Anal-
ysis with two effective gaps gives small gap in the range
of 1-4 meV and the large gap is between 6 - 10 meV.
The overall behavior is quite similar to slightly overdoped
Ba0.46K0.54Fe2As2. Notably, while the overall spread of
gap values (mostly given by the difference between the
averages of the two ranges of gap sizes) is lower in the
presence of substitutional disorder (i.e., in BaK122), the
s± physics with two effective gaps is clearly present in
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stoichiometric and substituted systems with high Tc’s.
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