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On the triangular and kagome lattices, short-ranged resonating valence bond (RVB) wave func-
tions can be sampled without the sign problem using a recently-developed Pfaffian Monte Carlo
scheme. In this paper, we study the Renyi entanglement entropy in these wave functions using
a replica-trick method. Using various spatial bipartitions, including the Levin-Wen construction,
our finite-size scaled Renyi entropy gives a topological contribution consistent with γ = ln(2), as
expected for a gapped Z2 quantum spin liquid. We prove that the mutual statistics are consistent
with the toric code anyon model and rule out any other quasiparticle statistics such as the double
semion model.

Introduction. – Two-dimensional frustrated quantum
antiferromagnets can harbor a phase of matter called a
quantum spin liquid; a state with no conventional sym-
metry but emergent, topological order [1, 2]. These
phases are unique in that they exhibit gapped fractional-
ized quasiparticle excitations with exotic quantum statis-
tics and ground state degeneracies on topologically non-
trivial surfaces [3]. Although there is strong incentive to
identify minimal theoretical models which possess topo-
logically ordered phases, the fact that strong correlations
are a crucial ingredient means that numerical methods
necessarily play a large role. Numerical studies suffer
several serious challenges. First, the vast majority of
Hamiltonians and wave functions that may harbor can-
didate quantum spin liquid states are also afflicted with
the “sign problem”, precluding study by large-scale quan-
tum Monte Carlo (QMC) [4]. Also, the absence of a lo-
cal order parameter in a quantum spin liquid means that
topological order must be characterized through more re-
fined techniques, such as universal scaling terms in the
entanglement entropy - the topological entanglement en-
tropy (TEE) −γ [5, 6]. Since γ is sub-leading to the
diverging “area-law”, it can be challenging to extract in
numerical simulations [7–10]. Finally, distinct topolog-
ical phases defined by different emergent quasiparticles
can have the same TEE. To distinguish, one must rely
on the modular U and S-matrices, which encode infor-
mation on the quasiparticle statistics of the underlying
topological phase [11, 12].

In this Letter, we analyze the Renyi entanglement en-
tropy of the short-ranged spin- 12 resonating valence bond
(RVB) wave function on the kagome and the triangu-
lar lattice. Recently Ref. [13] introduced a sign-problem
free Pfaffian Monte Carlo scheme that can be used to
produce unbiased samples of the singlet wave function,
making it possible to evaluate local operators and their
correlation functions. That work demonstrated that the
RVB wave function on these two frustrated lattices has

FIG. 1: a) The 6-site unit cell of the kagome lattice and the
phase convention for singlets living on the lattice links. The
length of the cylindrical regions that the entanglement en-
tropy S2 is measured over is shown as x. b) The 2-site unit
cell, the respective phase convention and the definition of x
for the triangular lattice. c) and d) show the Levin-Wen areas
A,B,C and D for the kagome lattice of size (M,N) = (3, 5)
amounting to 90 sites, and the 10 × 10-triangular lattice, re-
spectively. The TEE −γ is obtained by a superposition of the
EE of four areas: −2γ = SABCD − SABC − SADC + SAC .

no local order parameter, and is gapped, consistent with
expectations for an SU(2)-invariant quantum spin liq-
uid. Here, we use the Pfaffian Monte Carlo technique
to calculate the TEE, which explicitly shows γ = ln(2),
as expected for a Z2 topologically-ordered phase. Fur-
ther, we prove that the mutual statistics are consistent
with the toric code anyon model in both the triangular
and kagome RVB states, ruling out any other underlying
anyon models such as the double semion.
RVB Wave Functions, Entanglement, and QMC. –

The RVB wave functions were conceived by Anderson 40
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FIG. 2: The Renyi entropy S2 for triangular (Tri) lattices
of size M × 2N = 4, 6, 8 × 12 and kagome (Kag) lattices for
various sizes (M,N) with total number of lattice sites 6MN .
There are four possible topological sectors for each wave func-
tion on a torus, each of which can be isolated independently
in the Pfaffian MC. For the triangular lattice, the inset shows
linear fits using S2 from M×2N = 6, 8×12 for lengths x = 7, 8
in order to extract γ′ for a single sector. In total, we average
over values stemming from fits for 4 ≤ x ≤ 8, and obtain an
average value of −γ′ = −0.64± 0.07.

years ago [14] for their variational appeal in demonstrat-
ing spin liquid physics. The simplest, nearest-neighbor
RVB state represents a stable phase only on non-bipartite
lattices. Although not typically discussed as ground
states of explicit local Hamiltonians, RVB wave func-
tions do sometimes allow for the construction of a lo-
cal parent Hamiltonian, as notable in particular on the
kagome lattice [15]. The uniqueness of the RVB-ground
states, modulo a topological degeneracy, (demonstrated
in Refs. [16, 17]) establishes that the Hamiltonian in
Ref. [15] truly stabilizes the RVB state. In this work,
we will directly consider the RVB wave function, defined
via

|RV B〉 =
∑

D

|D〉 . (1)

Here, D goes over all possible pairings of a given lattice
into nearest neighbor pairs (“dimer coverings”). Each
site of the lattice is equipped with a spin- 12 degree of
freedom. For each dimer covering D, |D〉 denotes a state
where each pair of lattice sites of the covering forms a
singlet, where a sign convention is used that corresponds
to an orientation of nearest neighbor links (see Fig. 1a &
b). We note that the wave function Eq. (1) has a fourfold
topological degeneracy on the torus for the kagome and
triangular lattices.
Like in any quantum wave function, the properties of

an RVB state can be investigated through its bipartite
entanglement entropy, where the lattice is divided into a
region A and its complement B. The Renyi entropy of
order n is defined as Sn = ln Tr(ρnA)/(1−n), where ρA =

TrB|Ψ〉〈Ψ| is the reduced density matrix of region A.
Ground states of local Hamiltonians are known to exhibit
a area law scaling in region size, which in two dimensions
can generically be written as, Sn(ρA) = αnLA − γ + · · ·
[18]. Here, the leading term is dependent on the “area”
(or boundary) of region A. The second term, the topo-
logical entanglement entropy (TEE) −γ [5, 6], is charac-
terized by the total quantum dimension D, which is de-
fined through the quantum dimensions of the individual
quasiparticles di of the underlying theory: D =

√

∑

i d
2
i

[5, 6, 19]. Conventionally ordered phases have D = 1,
while topologically ordered phases have D > 1 with the
TEE given by −γ = −ln(D).
Note that in the case where the area A has at least one

non-contractible boundary, such as a cylinder (see Fig. 1a
& b), γ becomes state-dependent. As shown in Ref. [11],
if one expresses any state in the basis of the minimum

entropy states (MES-states), |Ψα〉 =
∑

j cj |Ξj〉, then the
sub-leading constant to the area law from a two-cylinder
cut is,

γ′({pj}) = 2γ + ln

(

∑

j

p2j
d2j

)

. (2)

for S2, where pj = |cj |2. We further discuss MES-states
in the results to follow.
In contrast to bipartite lattices [20–27], RVB states

on non-bipartite lattices are not amenable to valence-
bond QMC; they have been studied previously by PEPs
representations [28–30], but should also be accessible to
QMC if a sign-problem free sampling method can be
constructed [13, 31, 32]. Here, we investigate entangle-
ment properties of the spin- 12 RVB wave functions using
the variational Pfaffian MC scheme for lattices of up to
128 sites. Note that the Pfaffian MC scheme allows one
to project onto each topological sector, and every linear
combination thereof. We will use this feature in the fol-
lowing results. To obtain the second Renyi entropy S2

for contractible and noncontractible regions, we employ
the standard QMC replica-trick [33, 34]. We refer to
Refs. [13, 35] for more details on the method.
Measurements of TEE. – We begin by calculating the

TEE using boundaries for region A that are contractible
around the toroidal lattice. To isolate γ, we perform
a Levin-Wen bipartition [5], which was successfully used
previously to detect a Z2 quantum spin liquid using QMC
simulations on toroidal lattices of restricted finite-size [7].
We obtain data for such bipartitions on both a triangu-
lar RVB of size M × 2N = 10 × 10 and two kagome
RVBs with (M,N) = (3, 5), (3, 6) amounting to 90 and
108 sites, respectively. The triangular lattice and the
(3, 5)-kagome geometries are shown in Fig. 1, which also
shows the Levin-Wen regions A,B,C,D used to obtain γ
[5]. For the (3, 6)-kagome, the A(C) regions are the same
as in (3, 5), whereas the regions B(D) are one link longer
in N -direction than in (3, 5). Using this procedure, the
triangular lattice gives −γ ≈ −0.80 ± 0.2, while for the
kagome, we end up with −γ = −0.89±0.22,−0.74±0.34
for (3, 5) and (3, 6), respectively.
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To improve accuracy, we now consider regions with
non-contractible boundaries. We examine a triangular
lattice RVB for fixed 2N = 12 and M = 4, 6, 8, and
a kagome lattice RVB of size 6MN with M = 4 and
N = 2, 3, 4. We subsequently calculate the Renyi entropy
S2 for cylindrical bipartitions (see Fig. 1). As the cylinder
length increases, S2 quickly saturates (Fig. 2). This type
of behavior is consistent with the system having a gap.
We point out that, as expected, several curves in Fig. 2
exhibit finite size effects, manifest clearly in the different
S2 for different topological sectors. This can be seen in
Fig. 3, 7 and 8 [35].
Figure 3 and Figures 7, 8 in the SM demonstrate

that, for large enough system sizes, S2 does not depend
on the topological sector for these two wave functions.
The four topological sectors |Ψi〉 of each wave function
can be distinguished by their two quantum numbers,
i = {ee, eo, oe, oo}, which are the even (e) or odd (o)

number of dimers cut along the two directions ~a and ~b.
One can make use of special linear combinations of these
topological sectors to devise another method of deter-
mining the TEE −γ. Here, we choose as a compatible
ansatz for Z2 spin liquids the minimal-entangled states
(MES) obtained for the toric code and the dimer model
on kagome/triangular lattices [11, 35] and examine its

properties. These MES-states for cuts along ~b are, up to
a phase eiΦj ,

|Ξ1,2〉 =
1√
2
(|Ψee〉 ± |Ψeo〉) ,

|Ξ3,4〉 =
1√
2
(|Ψoe〉 ± |Ψoo〉) . (3)

We apply this ansatz to our Pfaffian QMC data. First,
consider slices (of constant cylinder length x) through
the triangular lattice to obtain a plot of S2(L2M ) =
αL2M −γ′, as in the inset of Fig. 2. The intercept of this
plot is −γ′ which is now the state dependent TEE; we nu-
merically extract−γ′ = −0.64±0.07. We can thus obtain
the TEE using Eq. (2). First note that, as seen in Fig. 4 of
the SM, the entropy S2 does not depend on which MES-
state is used (within error bars), which implies that dj is
also the same for all four MES-states. Since every theory,
Abelian and non-Abelian, contains (at least) one quasi-
particle with quantum dimension unity, we conclude that
all quasiparticle dimensions are necessarily dj = 1. Since
the pj are fixed to be 1/4 by our ansatz Eq. (3), then for
the single sector plotted in Fig. 2, γ′ = 2γ+ln(1/4+1/4).
Thus, we conclude that γ = 0.67 ± 0.04 consistent with
Z2 topological order.
Next we turn to the kagome lattice RVB. As seen in

Fig. 3 (inset) and Fig. 8 in the SM [35], it takes a sys-
tem of size (M,N) = (4, 3) to eliminate finite-size effects
and reach agreement of S2 of all four topological sectors
within error bars. Since larger system sizes can become
computationally expensive, an extraction of γ′ using the
procedure of Fig. 2 becomes more difficult. Alternatively,
as discussed in Ref. [11], linear superpositions of different
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FIG. 3: S2 for kagome-lattice MES-state (|Ξ1〉) which is a
specific superposition of two topological sectors for different
lattice sizes and for two respective nonMES-states (|Σ1,2〉).
The difference between (M,N) = (3, 4) for the two nonMES-
states compared to the MES-state has to be 2γ = 2ln(2) ≈
1.38. If we average over differences obtained for lengths x =
5, 6, 7, we get −γ′ = −2γ = −1.36 ± 0.13. The inset shows
a comparison of S2 for cylindrical regions between sectors
1, 2, 3, 4 on the kagome lattice. We observe that for large
enough system sizes (M,N) = (3, 4) amounting to 72 lattice
sites, the EE S2 is the same for all four sectors within errors.

MES states can be used to extract all information about
the topological order from our measurement. Specifically,
the linear combination of all four MES-states,

|Σ1,2〉 =
1√
2
(|Ψee〉+ |Ψoe(oo)〉)

=
1

2

(

|Ξ1〉+ |Ξ2〉+ |Ξ3〉 ± |Ξ4〉
)

, (4)

will have γ′ = 0 according to Eq. (2). Here, index 1 (2)
corresponds to oe (oo), and + (−) in the second line.
We investigate the behavior of S2 for the MES-state,

Eq. (3), and the nonMES-states, Eq. (4), for the kagome
lattice RVB. We first note that the numerical data of
Fig. 3 (Figs. 7, 8 in the SM) suggests S2 to be indepen-
dent of MES-state (once finite-size effects are accounted
for). Since S2 is similarly the same across all four topo-
logical sectors, this implies that γ′ is the same for all |Ξi〉
and for all |Ψi〉, respectively. The latter means that each
of the four quasi-particles belonging to the four MES-
states have the same quantum dimension. Since every
phase, Abelian and non-Abelian, has (at least) one quasi-
particle with quantum dimension d = 1, this implies that
all quasi-particles have di = 1, indicating the Abelian
nature of the phase. We calculate the difference in S2

between MES (3) and nonMES (4) states by performing
an average over cylinder lengths x = 4, . . . , 8, and ob-
tain −γ′ = −1.36 ± 0.13. This matches the expectation
from Eq. (2) that this difference should be −2γ ≈ −1.38,
confirming that the MES ansatz is also correct for the
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kagome-lattice RVB.
Quasiparticle Statistics. – We point out that the nu-

merical confirmation of the MES-states ansatz Eq. (3)
essentially determines the topological order of our sys-
tem, and in particular distinguishes between toric code
and double semion topological order as we now explain.
We consider the matrices S and U , which describe the
quasiparticle statistics of the system and correspond to
modular transformations of the same name at the level of
the effective field theory. In a microscopic lattice model,
the corresponding transformations cannot necessarily be
realized as discrete symmetry operations. However, for
both the kagome and the triangular lattice, the transfor-
mation corresponding to US−1 is realized as the symme-
try under a π/3-rotation [35], as long as the lattice di-
mensions are chosen to be of the form (M,N) = (M, 2M)
or (M, 2N) = (2N, 2N) for the kagome or triangular, re-
spectively. Up to a phase ambiguity [11], the matrix ele-
ments Vij = 〈Ξi|Rπ/3|Ξj〉 are thus equal to those of the

matrix US−1, where Rπ/3 represents the π/3-rotation.

We therefore must have Vij = D†US−1D, where D is
a diagonal matrix of phases Djj = eiΦj corresponding
to the phase ambiguity. Vij is easily calculated from
Eq. (3) by working out the transformation properties of
the states |Ψα,β〉 under rotation [35, 36]. It is manifestly

real, as is US−1 for the toric code, and we find agree-
ment for Djj = 1 for all jj’s. In contrast, for the double

semion model, US−1, while having the same eigenval-
ues as in the toric code case, we note that U has some
purely imaginary diagonal entries. Therefore, in the dou-
ble semion case, D†US−1D must have imaginary entries
for any choice of D, and agreement with our MES-states
cannot be achieved.
Thus, the MES-states we identified demonstrate the

underlying quasiparticle statistics to be consistent with
the toric code model, ruling out any other statistics, in
particular double semion statistics.
Conclusion. – In this work, we have used a sign-

problem free Pfaffian quantum Monte Carlo (QMC)
to calculate the second Renyi entropy of the nearest-
neighbor RVB wave function on the triangular and
kagome lattices. Through a bipartition of each lattice
into Levin-Wen [5] regions, and cylindrical regions, we
confirm that the topological entanglement entropy (TEE)
is consistent with −γ = −ln(2), the value for a Z2 quan-
tum spin liquid. Finite-size scaling of the two-cylinder
Renyi entropy for the triangular lattice and comparisons
between S2 for different wave functions in MES-basis for
the kagome, confirm the ansatz MES-states taken for a

Z2 topological gauge structure. Further, we identify the
nature of the anyonic quasiparticles to be of toric code
type, by explicitly showing that our numerically con-
firmed MES-states ansatz leads to the modular US−1-
matrix of the toric code statistics and rules out any other
quasiparticle statistics including double semion statistics.

This work serves as an important example that all as-
pects of quantum spin liquid behavior, from the initial
demonstration of the liquid nature [13] to the characteri-
zation of the emergent gauge structure through the TEE,
to the full determination of the underlying statistics and
braiding of fractional quasiparticle excitations, can be
performed with un-biased QMC techniques. Thus, the
SU(2)-invariant RVB states on triangular and kagome
lattices add to the growing list of wave functions and
Hamiltonians that have been demonstrated to exist, and
can be simulated in practice, on non-bipartite lattices
without being vexed by the sign-problem [4, 37].

Finally, we emphasize that our results rely crucially
on the numerical extraction of the second Renyi entropy
of the quantum ground state. For RVB wave func-
tions (and all other many-body systems), the replica-
trick method used here [33] is the same as that employed
in recent experiments on interacting 87Rb atoms in a one-
dimensional optical lattice [38]. Hence, the concepts and
techniques used in this paper will be important for efforts
to characterize topological order in synthetic quantum
matter in the near future.
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