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Superfluid 3He is a spin-triplet (S = 1), p-wave (L = 1) BCS condensate of Cooper pairs with total angular

momentum J = 0 in the ground state. In addition to the breaking of U(1)gauge symmetry, separate spin or orbital

rotation symmetry is broken to the maximal sub-group, SO(3)S ×SO(3)L → SO(3)
J
. The Fermions acquire mass,

mF ≡ ∆, where ∆ is the BCS gap. There are also 18 Bosonic excitations - 4 Nambu-Goldstone (NG) modes

and 14 massive amplitude Higgs (AH) modes. The Bosonic modes are labeled by the total angular momentum,

J ∈ {0,1,2}, and parity under particle-hole symmetry, C = ±1. For each pair of angular momentum quantum

numbers, J,Jz, there are two Bosonic partners with C = ±1. Based this spectrum Nambu proposed a sum rule

connecting the Fermion and Boson masses for BCS type theories, which for 3He-B is M2
J,+ +M2

J,− = 4m2
F for

each family of Bosonic modes labeled by J, where MJ,C is the mass of the Bosonic mode with quantum numbers

(J,C). Nambu’s sum rule (NSR) has recently been discussed in the context of Nambu-Jona-Lasinio models for

physics beyond the standard model to speculate on possible partners to the recently discovered Higgs Boson at

higher energies. Here we point out that Nambu’s Fermion-Boson mass relations are not exact. Corrections to

the Bosonic masses from (i) leading order strong-coupling corrections to BCS theory, and (ii) polarization of

the parent Fermionic vacuum lead to violations of the sum-rule. Results for these mass corrections are given in

both the T → 0 and T → Tc limits. We also discuss experimental results, and theoretical analysis, for the masses

of the Jc = 2± Higgs modes and the magnitude of the violation of the NSR.

I. INTRODUCTION

One of the key features of spontaneous symmetry breaking
in condensed matter and quantum field theory is the emer-
gence of new elementary quanta - phonons in crystalline
solids, magnons in ferromagnets, the Higgs and gauge bosons
of the standard model. In the latter example, spontaneous
symmetry breaking (SSB) in the BCS theory of supercon-
ductivity played an important role in theoretical models for
the mass spectrum of elementary particles.1–3 In BCS super-
fluids the binding of Fermions into Cooper pairs leads to an
energy gap, ∆, in the Fermion spectrum, i.e. Fermions in the
broken symmetry phase (Bogoliubov quasiparticles) acquire a
mass mF = ∆, while condensation of Cooper pairs leads to the
breaking of global U(1) gauge symmetry, the generator being
particle number. The latter also implies that the Bogoliubov
Fermions are no longer particle number (Fermion “charge”)
eigenstates, but coherent superpositions of normal-state par-
ticles and holes. Charge conservation is ensured by an addi-
tional contribution to the charge current - a collective mode
of the broken symmetry phase. This massless Bosonic exci-
tation of the phase of condensate amplitude4,5 is the Nambu-
Goldstone (NG) mode associated with broken U(1) symmetry,
and is manifest as a phonon in neutral superfluid 3He.

II. NAMBU’S MASS RELATIONS

Nambu and Jona-Lasinio’s development of a dynamical
theory for the masses of elementary particles1 was influ-
enced by the BCS theory of superconductivity, and particu-
larly Bogoliubov5, Valatin6 and Anderson’s2,7 contributions
on the excitation spectrum of Fermions and the collective ex-
citations (Bosonic) associated with broken gauge symmetry.8

BCS-type theories, including the NJL theory, imply a con-

nection between the masses of the emergent Fermionic and
Bosonic excitations. In the case of conventional BCS theory
there are two Bosonic modes - the phase mode and the ampli-
tude mode with mass MH = 2∆. The phase mode, discussed
independently by Anderson and Bogoliubov, is the massless
NG mode (MNG = 0), while the amplitude mode is the Higgs
Boson of BCS theory.3,9 This doubling of the Bosonic spec-
trum reflects a discrete symmetry under charge conjugation,
C, (i.e. “particle ↔ hole” symmetry) of the symmetry un-
broken Fermionic vacuum,10,11 and is characteristic of spon-
taneous symmetry breaking of the BCS type, including BCS
systems with more complex symmetry breaking phase tran-
sitions. In particular, the amplitude (phase) mode has even
(odd) parity with respect to charge conjugation.10 Further-
more, the masses of the Fermions and the Bosons obey the
sum rule M2

NG
+M2

H
= (2mF)

2.

Nambu argued that similar sum rules apply to a broad class
of BCS type theories - from nuclear structure and QCD to ex-
otic pairing in condensed matter systems - that exhibit com-
plex symmetry breaking.12 The ground state of superfluid 3He
provides the paradigm. Superfluid 3He-B is a condensate of
p-wave (L= 1), spin-triplet (S= 1) Cooper pairs with total an-
gular momentum J = 0. Thus, in addition to the breaking of
U(1), the symmetry of the normal quantum liquid with respect
to separate spin or orbital rotations is broken to the maximal
sub-group, SO(3)S ×SO(3)L → SO(3)

J
. The Fermion spectrum

is isotropic and gapped with mass determined by the bind-
ing energy of Cooper pairs, mF = ∆. However, there are now
18 Bosonic excitations - 4 NG modes and 14 massive Higgs
modes. The Bosonic modes are organized into six multiplets
labeled by Jc - total angular momentum, J ∈ {0,1,2}, and par-
ity under charge conjugation (particle ↔ hole), C =±1.65 For
each J there are 2J+1 degenerate states with angular momen-
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tum projection m =−J, . . . ,+J, and for each pair of values of
J,m there are two Bosonic modes with c =±1.

The J = 0 modes are the NG mode associated with bro-
ken U(1)symmetry (Jc = 0−) and the Higgs mode (Jc = 0+),
which has the same quantum numbers as the B-phase vacuum,
i.e. the condensate of ground state Cooper pairs. There are six
J = 1 modes: 3 NG modes (Jc = 1+) corresponding to the de-
generacy of the B-phase ground state with respect to relative

spin-orbit rotations, and 3 Higgs modes (Jc = 1−) with masses
M1,− = 2∆.13 Finally, there are ten modes with J = 2, all of
which are Higgs modes with masses M2,± < 2∆, with original

calculations giving M2,+ =
√

2
5

2∆ and M2,− =
√

3
5

2∆.14–17

Nambu noted that all three multiplets obey a sum rule con-
necting the masses of the conjugate Bosonic modes and the
Fermionic mass,12

M2
J,++M2

J,− = (2mF)
2 , J ∈ {0,1,2} , (1)

and suggested that such Fermion-Boson relations are generic
to BCS-type NJL models in which both Fermion and Boson
excitations originate from interactions between massless pro-
genitor Fermions and spontaneous symmetry breaking (see
also Ref. 18). Nambu further speculated that these Fermion-
Boson mass relations reflected a hidden supersymmetry in
class of BCS-NJL models,12 and in the case of of conven-
tional s-wave, spin-singlet BCS superconductivity was able to
construct a supersymmetric representation for the static part
of the effective Hamiltonian, Hs, and identify the superalge-
bra as su(2/1). The Fermion operators in Nambu’s construc-
tion factorize Hs, and provide ladder operators connecting the
Fermionic and Bosonic sectors of the spectrum, and gener-
ate the Fermion-Boson mass relations: MNG = 0, mF = ∆, and
MH = 2∆.19,66

Recently Volovik and Zubkov argued that Nambu sum rule
(NSR) for 3He-B follows from the symmetry of the B-phase
vacuum and the quantum numbers (J,m) (c.f. Sec. 2.2 of Ref.
20). Based on the NSR for a NJL-type theory of top quark
condensation, the authors suggest the possibility that there
may be a partner to the Higgs Boson with a mass of 125GeV -
e.g. a Higgs partner near 270GeV,18,20 analogous to the Higgs
partners for the J = 2 Bosonic spectrum of 3He-B. Here we
point out that estimates of the mass of a Higgs partner based
on such sum rules may be imprecise because the NSR is gen-
erally violated. The origins of the violation of the NSR con-
tain detailed information about the parent Fermionic vacuum.
While one might expect that the masses for the J multiplets to
be protected by the residual symmetry of the broken symmetry
vacuum state, it is generally not the case. As a result the NSR
is not exact, particularly for BCS-type theories with multi-
plets of NG and Higss Bosons with quantum numbers that are
distinct from that of the broken symmetry vacuum state. We
discuss the violations of the NSR for the case of 3He-B in two
limits: (i) time-dependent Ginzburg-Landau (TDGL) theory
appropriate for T . Tc and (ii) a dynamical theory for coupled
Fermionic and Bosonic excitations of 3He-B within the BCS
theory for p-wave, spin-triplet pairing (i.e. one-loop approx-
imation to the self-energy) for temperature T → 0. In partic-
ular, interactions between the progenitor Fermions, combined

with vacuum polarization, lead to mass shifts of the Higgs
modes whose quantum numbers differ from the broken sym-
metry vacuum state, e.g. the Jc = 1± and Jc = 2± modes of
3He-B, and thus to violations of the Nambu sum rule. Ex-
plicit results for these mass corrections are derived in both the
T → 0 and T → Tc limits.

In Secs. III and IV we introduce a Lagrangian for the
Bosonic modes of a spin-triplet, p-wave BCS condensate
based on a time-dependent extension of Ginzburg-Landau the-
ory (TDGL). This allows us to identify and calculate the
Bosonic spectrum for 3He, and to quantify strong-coupling
corrections to the Bosonic masses in the limit T → Tc. In par-
ticular, strong-coupling feedback (i.e. next-to-leading order
loop corrections) leads to mass shifts, and thus violations of
the NSR. We also obtain a formula for the mass of the Jc = 2−

mode in the GL limit that could provide a direct determination
of the GL strong-coupling parameter β1 from measurements
of the Jc = 2− mode via ultrasound spectroscopy.

At low temperatures strong-coupling feedback corrections
are suppressed. However in Sec. V we show that vacuum po-
larization and four-Fermion interactions, in both the particle-
hole (Landau) and the particle-particle (Cooper) channels,
lead to substantial mass corrections for T ≪ Tc, and in some
cases strong violations of the NSR. We discuss experimental
measurements for the masses of the Jc = 2± modes, and com-
pare the observed mass shifts with theoretical calculations of
the polarization corrections to the masses from interactions in
the Landau and Cooper channels.

III. GINZBURG-LANDAU FUNCTIONAL

We start from a Ginzburg-Landau (GL) functional applica-
ble to p-wave, spin-triplet pairing beyond the weak-coupling
BCS limit, and use this formulation to obtain an effective La-
grangian for the Bosonic fluctuations of superfluid 3He-B in
the strong-coupling limit. The GL theory for superfluid 3He
was developed by several authors.21–23 We follow the notation
Ref. 24 which provides the bridge between the GL theory and
the microscopic theory of leading order strong-coupling ef-
fects. The order parameter is identified with the mean-field
pairing self-energy, ∆̂(p), which is a 2× 2 matrix of the spin
components of the pairing amplitude. For p-wave, spin-triplet
condensates the order parameter is symmetric in spin-space,
∆̂(p) = (iσα σy)Aα i (p̂)i, and parametrized by a 3×3 complex
matrix, Aα i, that transforms as a vector with respect to index
α = {x′,y′,z′} under spin rotations, and, separately, as a vec-
tor with respect to index i = {x,y,z} under orbital rotations.
This representation for the order parameter provides us with a
basis for an irreducible representation of the maximal symme-
try group of normal 3He, G= SO(3)S×SO(3)L×U(1)N×P×T.
The GL free energy functional is then constructed from prod-
ucts of Aα i and its derivatives, ∂ jAα i, that are invariant under
G. The general form for the GL functional for the condensa-
tion energy and gradient energy is

F [A] =

∫

V
dV {U(A)+W(∂A)} , (2)
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where

U =α(T )Tr
(
AA†

)
+β1

∣∣Tr(AAT )
∣∣2+β2

[
Tr(AA†)

]2
(3)

+β3Tr
[
AAT (AAT )∗

]
+β4Tr

[
(AA†)2

]
+β5Tr

[
AA†(AA†)∗

]
.

are the six invariants for the condensation energy density, and

W=K1∂ jAα i∂ jA
∗
α i+K2∂iAα i∂ jA

∗
α j+K3∂ jAα i∂iA

∗
α j , (4)

are the three second-order invariants for the gradient energy.
Weak-coupling BCS theory can be formulated at all tem-

peratures in terms of a stationary functional of ∆̂(p),25,26

which depends on material parameters of the parent Fermionic
ground state: N(0) = k3

f /2π2 v f p f is the single-spin quasipar-
ticle density of states at the Fermi surface, expressed in terms
of the Fermi velocity, v f , Fermi momentum and Fermi wave
number, p f = h̄k f . The GL limit of the weak-coupling func-
tional can be expressed in the form of Eqs. 3 and 4 with the
following material parameters,

α(T ) =
1

3
N(0)(T/Tc − 1) , β wc

1 ≡ 7ζ (3)

240

N(0)

(πkBTc)2
, (5)

2β wc

1 = −β wc

2 =−β wc

3 =−β wc

4 =+β wc

5 =−2βwc . (6)

Strong-coupling corrections to the weak-coupling GL β pa-
rameters based on the leading-order expansion of Rainer and
Serene24 were calculated and reported in Ref. 27 for quasipar-
ticle scattering that is dominated by ferromagnetic spin fluc-
tuation exchange. The results for the strong-coupling correc-
tions to the weak-coupling β wc

i are extrapolated to all pressures
as shown in Fig. 1, with p = 0bar corresponding to weak-
coupling.

The weak-coupling form of the gradient energy in Eq. 4 is
similarly obtained with the gradient coefficients given by

Kwc

1 = Kwc

2 = Kwc

3 =
1

5
N(0)ξ 2

GL
, (7)

ξGL =

√
7ζ (3)

12

h̄v f

2πkBTc

. (8)

The Cooper pair correlation length, ξGL, varies from ξGL ≃ 650
Å at p = 0bar to ξGL ≃ 150 Å at p = 34bar.

The Balian-Werthamer (BW) state defined by

ABW

α i =
∆√
3

eiϕR[~ϑ ]α i , (9)

where R[~ϑ ] is an orthogonal matrix, minimizes the GL func-
tional for ∆2 = −α(T )/2βB, with βB = β12 +

1
3
β345, in the

weak-coupling limit, β wc

B
= 5

6 β wc, and for all pressures P <
PPCP ≈ 21bar. Note that the amplitude of the order parameter,
∆, is fixed at the minimum of the effective potential. However,

the phase, ϕ , and the orthogonal matrix, R[~ϑ ], parametrized
by a rotation angle ϑ about an axis of rotation, n̂, define the
degeneracy space of the B-phase. In particular,

Bα i ≡
∆√
3

δα i , (10)

corresponding to pairs with L = 1, S = 1 and J = 0 is degen-

erate with states obtained by any relative rotation, R[~ϑ ], of the

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
p [bar]

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

β
s
c i
/β

w
c

βsc
1

βsc

2

βsc
3

βsc
4

βsc
5

FIG. 1: Strong-coupling corrections to the GL β parameters interpo-

lated from the results of Ref. 27 [data squares]. The β sc

i are extrapo-

lated below P = 12 bar to weak-coupling (β sc

i = 0) at p = 0 bar.

spin and orbital coordinates combined with a gauge transfor-
mation, eiϕ . Since the GL functional defined by Eqs. 3 and 4
is invariant under these operations we can use the J = 0 BW
state as the reference ground state.

IV. TIME DEPENDENT GL THEORY

Bosonic excitations of the BW ground state are repre-
sented by space-time fluctuations of the pairing amplitude:
Dα i(r, t)=Aα i(r, t)−Bα i. The potential energy for these fluc-
tuations is obtained by expanding the GL functional to 2nd

order in the fluctuations D(r, t): U [D ] = F [A]−F [B].28,29

Time-dependent fluctuations, Ḋα i = ∂tDα i, lead to an addi-
tional invariant, K = τ

∫
V

dV Ḋα iḊ
∗
α i, where τ is the effective

inertia for Cooper pair fluctuations.67 The Lagrangian for the
Bosonic excitations, L = K −U , takes the form,

L=
∫

dV

{
τ Tr
{
ḊḊ

†
}
−α Tr

{
DD

†
}
−

5

∑
p=1

βp up(D)

−
3

∑
l=1

Kl vl(∂D)−(ηα iD
∗
α i +η∗

α iDα i)

}
. (11)

The terms up(D) are the effective potentials corresponding
to fluctuations, D , relative to the BW ground state, which to
quadratic order in D are given in Eqs. 114-118 of the Ap-
pendix. The terms, wl(∂D), are obtained from Eq. 4 with
A → D , and the last pair of terms in Eq. 11 represent an ef-
fective external source potential for Cooper pair fluctuations.

The Euler-Lagrange equations,

δL

δD∗
α i

− ∂

∂ t

δL

δ Ḋ∗
α i

− ∂

∂x j

δL

δ∂ jD
∗
α i

= 0 , (12)

reduce to field equations for the Cooper-pair fluctuations,

τD̈α i−|α|Dα i+∆2
5

∑
a=1

βa
∂ ūa

∂D∗
α i

−
3

∑
a=1

Ka ∂k

∂ v̄a

∂ [∂kD
∗
α i]

=ηα i . (13)
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J M t
(J,M)
i j YJm(p̂)

0 0 1√
3

δi j 1

+1
√

3εi jke
(+)
k

−
√

3
2 p̂+

1 0
√

3εi jke
(0)
k

+
√

3 p̂z

−1
√

3εi jke
(−)
k

+
√

3
2 p̂−

+2 e
(+)
i e

(+)
j +

√
15
8 p̂2

+

+1

√
1
2

(
e
(0)
i e

(+)
j +e

(+)
i e

(0)
j

)
−
√

15
2 p̂zp̂+

2 0

√
3
2

(
e
(0)
i e

(0)
j − 1

3 δi j

)
+
√

5
4

(
3p̂2

z −1
)

−1

√
1
2

(
e
(0)
i e

(−)
j +e

(−)
i e

(0)
j

)
+
√

15
2 p̂z p̂−

−2 e
(−)
i e

(−)
j +

√
15
8 p̂2

−

TABLE I: Irreducible tensor representations, {t
(J,M)
i j }, of SO(3)J

for J ≤ 2, and corresponding spherical harmonics, YJM(p̂). The

base unit vectors: e
(0)
i = ẑi, e

(+)
i = − 1√

2
(x̂i + iŷi) and e

(−)
i =

+ 1√
2
(x̂i − iŷi) are orthonormal: e(µ)∗ · e(ν) = δµν .

The field equations reduce to coupled equations for pair
fluctuation modes of wavelength q: Dα i(r, t)→Dα i(q;t)eiq·r.
Furthermore, the BW ground state is invariant under joint
spin- and orbital rotations. Thus, the q = 0 Bosonic ex-
citations can be labeled by the quantum numbers, J, and
m ∈ {−J, . . . ,+J} for the total angular momentum and its
projection along a fixed quantization axis, ẑ. The dynamical
equations for the Bosonic modes decouple when expressed in
terms of spherical tensors that form bases for representations
of SO(3)J for J = 0,1,2,

Dα i(r, t) = ∑
J,m

DJ,m(r, t)t
(J,m)
α i , (14)

where the set of nine spherical tensors defined in Table I (i)
span the space of rank-two tensors, (ii) form irreducible rep-
resentations of SO(3)J and (iii) satisfy the orthonormality con-
ditions,

Tr
{

t̂(J,m)†
t̂(J

′ ,m′)
}
= δJ,J′ δm,m′ . (15)

In the absence of a perturbation that breaks the rotational
symmetry of the ground state, there are (2J + 1) degenerate
modes with spin J. There is, in addition, a doubling of the
Bosonic modes related to the discrete symmetry of the nor-
mal Fermionic ground state under charge conjugation. Thus,
the full set of quantum numbers for the Bosonic spectrum is
{J,m,c} where c = ±1 is the parity of the Bosonic mode un-
der charge conjugation. The parity eigenstates are the linear
combinations (i.e. real and imaginary amplitudes)68

D
(c)
J,m = (DJ,m + cD†

J,m)/2 . (16)

The sources can also be expanded in this basis: ηα i =

∑J,m,c η
(c)
J,m t

(J,m)
α i . The equations for the 18 Bosonic modes

Mode Symmetry Mass Name

D
(+)
0,m J = 0, c =+1 2∆ Amplitude

D
(−)
0,m J = 0, c =−1 0 Phase Mode

D
(+)
1,m J = 1, c =+1 0 NG Spin-Orbit Modes

D
(−)
1,m J = 1, c =−1 2∆ AH Spin-Orbit Modes

D
(+)
2,m J = 2, c =+1

√
8
5 ∆ 2+ AH Modes

D
(−)
2,m J = 2, c =−1

√
12
5 ∆ 2− AH Modes

TABLE II: Bosonic Mode Spectrum for the B-Phase of 3He. The

masses of the modes are given for weak-coupling in the GL limit.

then decouple into three doublets labeled by J,c, each of
which is 2J+ 1-fold degenerate as shown in Table II.

The equations of motion for the 18 Bosonic modes are ob-
tained by projecting out the J,m,c components of Eq. 13. In
the limit q = 0 the modes decouple into three doublets labeled
by J,c, each of which is 2J + 1-fold degenerate. The disper-
sion of the Bosonic modes can be calculated perturbatively to
leading order in (v f |q|/∆)2. Thus, the resulting equations of
motion can be expressed as

∂ 2
t D

(c)
J,m +ω

(c)
J,m(q)

2 D
(c)
J,m =

1

τ
η
(c)
J,m , (17)

where ω
(c)
J,m(q) =

√
M 2

J,c +
(

c
(c)
J,|m||q|

)2
, (18)

is the dispersion relation for Bosonic excitations with with
quantum numbers {J,m,c} and MJ,c is the corresponding ex-
citation energy at q = 0, i.e. the mass. For q 6= 0 the degener-
acy of the Bosonic spectrum is partially lifted, i.e. the veloc-

ities, c
(c)
J,|m|, give rise to a dispersion splitting that depends on

|m|, with quantization axis q.30,31

A. J = 0 Modes

The masses and velocities of the Bosonic modes obtained
from the TDGL Lagrangian in the weak-coupling limit are
summarized in Table II. The J = 0 modes correspond to the
two Bosonic modes that are present for any BCS conden-

sate of Cooper pairs, i.e. excitations of the phase, D
(−)
0,0 ,

and amplitude, D
(+)
0,0 , with the same internal symmetry as

the condensate of Cooper pairs. The Jc = 0− mode is the
Anderson-Bogoliubov (AB) phase mode. In particular, if we
consider only fluctuations of the phase of the BW ground state,

Aα i = Bα i eiϑ (r,t) ≈ Bα i(1+ iϑ(r, t)), then D
(−)
0,0 = i∆ϑ(r, t).

This is the massless NG mode corresponding to the broken

U(1) symmetry, with the dispersion relation ω
(−)
0,0 = c0,0|q|.

Within the TDGL theory the AB mode propagates with veloc-

ity c0,0 =
√
(K1 +

1
2
K23)/τ . In the weak-coupling limit for the

effective action derived by Bosonization of the Fermionic ac-
tion the velocity is c0,0 = v f /

√
3,32 showing that the Bosonic
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FIG. 2: Strong-coupling corrections to the Bosonic masses obtained

from the TDGL theory for the GL β parameters shown in Fig. 1. The

dashed lines correspond to the weak-coupling values for the masses.

excitation energies are determined by the properties of the un-
derlying Fermionic vacuum - in this case the group veloc-
ity of normal-state Fermionic excitations at the Fermi sur-
face. However, this result for the velocity of the NG phase
mode is further renormalized by coupling of the phase fluctu-
ations to dynamical fluctuations of the underlying Fermionic
vacuum which are absent from the Bosonic action based on
the TDGL Lagrangian of Eq. 11. This coupling leads to
c0,0 → c1 +(c0 −c1)Y (T/Tc), where c1(c0) is the first (zero)
sound velocity of the interacting normal Fermi liquid and
Y (T/Tc) measures the dynamical response of the condensate.
In particular, Y → 0 (Y → 1) for T → 0 (T → Tc). This re-
markable result shows that the velocity of the NG phase mode
is renormalized to the hydrodynamic sound velocity of normal
3He at T = 0, and that the J = 0,c =−1 NG mode is manifest
in superfluid 3He as longitudinal sound.33–35

The partner to the NG phase mode is the Jc = 0+ “ampli-
tude” mode. This is the Higgs Boson of superfluid 3He, i.e.
the Bosonic excitation of the condensate with the same inter-

nal symmetry (L = 1, S = 1, J = 0, c = +1) as condensate
of Cooper pairs that comprise the ground state.3 For this rea-
son the renormalizations of the Jc = 0+ Bosonic mass and the
mass of Fermionic excitations of the Jc = 0+ BW state are
equivalent; thus, M0,+ = 2mF, where mF = ∆ is the renormal-
ized Fermionic mass in the dispersion relation for Fermionic
excitations, E2

p = m2
F
+ v2

f (p− p f )
2. This allows us to fix the

effective inertia of the Bosonic fluctuations in the TDGL La-
grangian of Eq. 11 for the BW ground state as τ = βB ≡
β12 +

1
3
β345. Thus, Nambu’s sum rule, M2

0,− +M2
0,+ = 4m2

F
,

is obeyed for the J = 0 modes. However, strong-coupling
corrections to the TDGL Lagrangian lead to violations of
Nambu’s sum rule for Bosonic excitations with J 6= 0.

B. Violations of the Nambu Sum Rule for J 6= 0

In addition to the NG mode associated with broken
U(1) symmetry, there are 3 NG modes associated with
spontaneously broken relative spin-orbit rotation symmetry,

SO(3)S × SO(3)L → SO(3)J. These NG modes reflect the de-
generacy of the BW ground state with respect to relative spin-
orbit rotations, SO(3)L-S, whose generators form a vector rep-
resentation of SO(3). Thus, the corresponding NG modes are
the Jc = 1+ modes, which are spin-orbit waves with excita-
tion energies, ω1,m = c1,m|q|, and velocities, c1,0 = 1

5
v f and

c1,±1 = 2
5
v f in the weak-coupling limit.32 The velocities are

also renormalized in the limit T → 0 by the coupling to dy-
namical fluctuations of the underlying Fermionic vacuum.69

The partners to these NG modes are the Jc = 1− Higgs
modes with mass

M1,− = 2∆

(
−β1 +

1
3(β4 −β35)

β12 +
1
3
β345

) 1
2

, (19)

which reduces to Mwc

1,− = 2∆ in the weak-coupling limit for the

GL β parameters (Eqs. 6). However, in the strong-coupling
limit the masses of the Jc = 1− modes deviate from 2mF,
which implies a violation of the NSR for the J = 1 Bosonic
modes. Theoretical calculations of the strong-coupling β pa-
rameters predict that the Jc = 1− Higgs modes are pushed to
energies above the pair-breaking edge of 2∆, as shown in Fig.
2. This opens the possibility for the Jc = 1− modes to decay
into un-bound Fermion pairs. Thus, we expect the Jc = 1−

modes are at best resonances with finite lifetime.
For J = 2 there are two 5-fold multiplets of Higgs modes

with masses

M2,+ = 2∆

(
1
3
β345

β12 +
1
3
β345

) 1
2

, (20)

M2,− = 2∆

(
−β1

β12 +
1
3
β345

) 1
2

. (21)

Equation 21 provides a fifth observable that might be used to
determine GL β parameters from independent experiments in
the GL regime.36 In the weak-coupling limit with βi given by

Eqs. 6, the masses reduce to Mwc

2,+ =
√

8
5 ∆ and Mwc

2,− =
√

12
5 ∆.

Thus, the Jc = 2± Higgs modes obey the NSR in the weak-
coupling limit of the TDGL theory.12,18,20

However, the NSR is violated by strong-coupling correc-
tions to the Higgs masses, shown in Fig. 2 as a function
of pressure for the strong-coupling β parameters shown in
Fig. 1. The asymmetry in the mass corrections for M2,±
leads to a sizeable violation of the NSR at high pressures:

∑c M2
2,c/4m2

F
− 1 ≈ 20% at p = 34bar. The violations of

the NSR have the following origin: The strong-coupling La-
grangian for the Bosonic fluctuations, Eqs. 11 and 114-118,
depends on the symmetry of the mode; thus, the strong-
coupling renormalization of the Higgs masses depends on Jc.
For the J = 0+ mode the strong-coupling renormalization of
the mass is the same as that of the J = 0+ ground state am-
plitude ∆, and thus the Fermion mass, in which case the NSR
is satisfied even with strong-coupling corrections. However,
for modes with J 6= 0, the renormalization of the mass of the
Higgs mode is a different combination of the strong-coupling
β ’s than that which renormalizes ∆, leading to violations of
the NSR.
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V. BEYOND TDGL THEORY

The TDGL theory is limited in its applicability because it
is based on an effective action with only Bosonic degrees of
freedom. However, the parent state of a BCS condensate is
the Fermi liquid ground state (“Fermionic vacuum”). In or-
der to calculate effects on the Bosonic spectrum arising from
“back-action” of the Fermionic vacuum we require a dynami-
cal theory that includes both Fermion and Bosonic degrees of
freedom.

Microscopic formulations of the theory of collective exci-
tations in superfluid 3He-B were developed on the basis of
mean-field kinetic equations in Ref. 37, Kubo theory in Refs.
15 and 38, a functional integral formulation of the hydrody-
namic action in Ref. 17, and quasi-classical transport theory in
Refs. 39–42. We highlight the coupling between Bosonic and
Fermionic degrees of freedom that lead to mass shifts of the
Higgs modes. Results for the mass shifts of the Jc = 2± Higgs
modes reported in Ref. 39 are interpreted here in terms of in-
teractions that result from polarization of the Fermionic vac-
uum by the creation of a Bosonic mode that has different sym-
metry than that of the un-polarized vacuum. The Higgs modes
with different parities, c = ±1, also polarize the Fermionic
vacuum in different channels, activating different interactions
and leading to different mass shifts. Thus, the violation of the
J = 2 NSR is directly related to the vacuum polarization mass
shifts for the two charge conjugation partners of the J = 2
multiplet.

A. Particle-Hole Self Energy

For an interacting Fermi system the two-body interaction
between isolated 3He atoms is renormalized to effective in-
teractions between low-energy Fermionic quasiparticles that
are well defined excitations within a low energy band near the
Fermi surface, |ε| ≤ h̄Ωc ≪ E f , and thus a shell in momentum
space, δ p ≤ h̄Ωc/v f .

A disturbance of the vacuum state from that of an isotropic
Fermi sea, e.g. by a perturbation that couples to the quasi-
particle states in the vicinity of the Fermi surface, generates
a polarization of the Fermionic vacuum, and a correspond-
ing self energy correction to the energy of a Fermionic quasi-
particle. The leading order correction is given by the com-
bined external field, uαβ (p), plus mean-field (one loop) inter-
action energy associated with a particle-hole excitation of the
Fermionic vacuum state,

Σαβ (p) = p α p β

×

u + p α p β
Γph

. (22)

The interaction between Fermionic quasiparticles shown in
Eq. 22 is represented by a four-point vertex that sums bare
two-body interactions to all orders involving all possible in-
termediate states of high-energy Fermions. The vertex that
determines the leading order quasiparticle self energy, Γph, de-
fines the forward-scattering amplitude for particle and hole

pairs (Landau channel) scattering within the low-energy shell
near the Fermi surface.

Γ
ph
αβ ;γρ(p, p′) =

p
′
γ

p α

p
′
ρ

p β

Γph (23)

= Γ(s)(p, p′)δαγ δβ ρ +Γ(a)(p, p′)~σαγ ·~σβ ρ ,

with amplitudes Γ(s)(p, p′) for spin-independent scattering,

Γ(a)(p, p′), representing the spin-dependent “exchange” scat-
tering amplitude. The Fermion propagator in the presence of
the external perturbation, uαβ (p), is represented by

Gαβ (p) = 〈ψα(p)ψ̄β (p)〉 ≡ α β
+p +p

, (24)

where p = (p,εn) is the four-momentum, εn = (2n+ 1)πT is
the Fermion Matsubara energy, and α and β are the initial and
final state spin projections defining the Fermion propagator.

For 3He quasiparticles and pairs confined to a low-energy
band near the Fermi surface, the vertex function, which varies
slowly with |p| in the neighborhood of the Fermi surface,
can be evaluated with p = p f p̂, εn → 0 and p′ = p f p̂′,
ε ′n → 0 within the low-energy band, |εn|, |ε ′n| ≤ h̄Ωc. In
the same limit, we approximate the momentum space in-

tegral as
∫ d3 p′

(2π)3 (. . .) →
∫ dΩ p̂′

4π N(0)
∫

dξp′(. . .). The result-

ing vertex part reduces to functions of the relative momenta,
A(s,a)(p̂, p̂′) = 2N(0)Γ(s,a)(p f p̂,ε = 0; p f p̂′,ε ′ = 0), where
N(0) is the density of states at the Fermi level and ξp =
v f (|p|− p f ) is the quasi-particle excitation energy in the low-
energy band near the Fermi surface. Rotational invariance
implies that the vertex part can be expanded in terms of ba-
sis functions of the irreducible representations of SO(3)L, i.e.
spherical harmonics, {Yℓ,m(p̂)|m =−ℓ . . .+ ℓ}, defined on the
Fermi surface,

A(s,a)(p̂, p̂′) = ∑
ℓ

A
(s,a)
ℓ

+ℓ

∑
m=−ℓ

Yℓ,m(p̂)Y ∗
ℓ,m(p̂′) , (25)

where the sum is over relative angular momentum channels,
ℓ ≥ 0. The resulting spin independent (Σ(p̂)) and exchange

(~Σ(p̂)) self-energies defined on the low-energy bandwidth of
the interaction are given by

Σ(p̂) = Σext(p̂)+

∫
dΩ p̂′

4π
A(s)(p̂, p̂′)T ∑

εn′

′ g(p̂′,ε ′n) ,(26)

~Σ(p̂) = ~Σext(p̂)+

∫
dΩ p̂′

4π
A(a)(p̂, p̂′)T ∑

εn′

′~g(p̂′,ε ′n) ,(27)

where g and ~g are the scalar and spin-vector components of
the quasi-classical propagator obtained by integration over the
momentum shell −Ωc ≤ v f δ p ≤ Ωc near the Fermi surface,∫

dξp Gαβ (p) ≡ gαβ (p̂,εn) = g(p̂,εn)δαβ + ~g(p̂,εn) · ~σαβ .
Note that the Matsubara sum, ∑′, is restricted to |ε ′n| ≤ h̄Ωc,
and the self energies vanish for the undisturbed Fermi sea.
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B. Particle-Particle Self Energy

The Cooper instability results from repeated scattering of
Fermion pairs with zero total momentum (Cooper channel)
that leads to the formation of bound Fermion pairs. Un-
bounded growth of the particle-particle amplitude is regulated
by the formation of a new ground state, defined in terms of a
macroscopic amplitude

Fαβ (p) = 〈ψα (p)ψβ (−p)〉 ≡ α β
+p −p

, (28)

for a condensate of Fermion pairs with zero center of mass
energy and momentum. The condensate and interaction in the
Cooper channel also generates an associated mean-field

∆αβ (p) =+p α −p β
Γpp

= −T ∑
ε ′n

∫
d3 p′

(2π)3
Γ

pp
αβ ;γρ

(p, p′)Fγρ(p′) , (29)

where

Γ
pp
αβ ;γρ(p, p′) =

+p
′
γ

+p α

−p
′
ρ

−p β

Γpp

= Γ(0)(p, p′)(iσy)αβ (iσy)γρ (30)

+ Γ(1)(p, p′)(i~σσy)αβ · (iσy~σ)γρ , (31)

is the four-Fermion vertex that is irreducible in the particle-
particle channel, expressed in terms of the spin-singlet (S= 0),
even-parity and spin-triplet (S= 1), odd-parity pairing interac-
tions, Γ(0)(p, p′) and Γ(1)(p, p′), respectively. Thus, the pair-
ing self energy separates into singlet and triplet components

∆αβ (p) = d(p)(iσy)αβ + ~d(p) · (i~σσy)αβ . (32)

Fermion pairs with binding energy |∆|< Ωc are confined to a
low-energy band near the Fermi surface, |ε| ≤ h̄Ωc ≪ E , and
a shell in momentum space, δ p ≤ h̄Ωc/v f . Thus, the particle-
particle irreducible vertex, which varies slowly on with |p|
in the neighborhood of the Fermi surface, can also be evalu-
ated with p = p f p̂, εn → 0 and p′ = p f p̂′, ε ′n → 0. Thus, Γpp

reduces to even- and odd-parity functions of the relative mo-
menta, V (S)(p̂, p̂′) = 2N(0)Γ(S)(p f p̂,ε = 0; p f p̂′,ε ′ = 0), and
rotational invariance of the normal-state Fermionic vacuum
implies

V (0
1)(p̂, p̂′) = −

(even

odd)

∑
ℓ

vℓ

+ℓ

∑
m=−ℓ

Yℓ,m(p̂)Y ∗
ℓ,m(p̂′)

= −
(even

odd)

∑
ℓ

(2ℓ+ 1)vℓPℓ(p̂ · p̂′) , (33)

where the sum is over all even (odd) orbital angular momen-
tum channels, ℓ≥ 0, for spin-singlet (spin-triplet) pair scatter-
ing, and −vℓ is the pairing interaction (“coupling constant”) in
the orbital angular momentum channel ℓ.70 The singlet (d(p̂))

and triplet (~d(p̂)) self-energies are given by

d(p̂) = −
∫

dΩ p̂′

4π
V (0)(p̂, p̂′) T ∑

εn′

′ f (p̂′,ε ′n) , (34)

~d(p̂) = −
∫

dΩ p̂′

4π
V (1)(p̂, p̂′) T ∑

εn′

′ ~f (p̂′,ε ′n) , (35)

where fαβ (p̂,εn) ≡ ∫
dξp Fαβ (p) = f (p̂,εn)(iσy)αβ +

~f (p̂,εn) · (i~σσy)αβ is the quasi-classical pair propagator ex-
pressed in terms of the anomalous singlet and triplet compo-

nents, f and ~f .

The breaking of U(1) symmetry by pair condensation im-
plies mixing of normal-state particle- and hole states. Particle-
hole coherence is accomodated by introducting Nambu

spinors, Ψ =
(

ψ↑ , ψ↓ , ψ†
↑ , ψ†

↓

)
, or equivalently by a 4× 4

Nambu matrix propagator in the combined particle-hole and
spin space. In the quasi-classical limit the Nambu propagator
is represented by the diagonal and off-diagonal quasiclassical
propagators, ĝ and f̂ , and their conjugates, ĝ′ and f̂ ′,

ĝ =

(
g+~g ·~σ f iσy + ~f · i~σσy

f ′ iσy +~f ′ · iσy~σ g′−~g′ ·σy~σσy

)
, (36)

where g (~g) is the spin scalar (vector) component of the

Fermion propagator, while f (~f ) is the spin singlet (triplet)
component of the anomalous pair propagator. The lower row
of the Nambu matrix represents the conjugate propagators, ˆ̄g

and ˆ̄f , which are related to ĝ and f̂ by the combination of
Fermion anti-symmetry and particle-hole conjugation sym-
metries (c.f. App. X B). Similarly, the quasiparticle and pair-
ing self-energies are organized into a 4× 4 Nambu matrix,

Σ̂ =

(
Σ+~Σ ·~σ d iσy + ~d · i~σσy

d′ iσy +~d′ · iσy~σ Σ′−~Σ′ ·σy~σσy

)
, (37)

with the corresponding symmetry relations connecting the

conjugate self-energies to Σ,~Σ, d and ~d. This doubling of the
Fermionic and Bosonic degrees of freedom, which is forced
by the breaking of global U(1) symmetry, is the origin of the
doublets of Bosonic modes labelled by parity under charge
conjugation, c =±1, in BCS-type theories.

VI. EILENBERGERS’ EQUATIONS

The quasiparticle and anomalous pair propagators and self-
energies, organized into 4×4 Nambu matrices, obey Gorkov’s
equations.43 Eilenberger transformed Gorkov’s equations into
a matrix transport-type equation for the quasiclassical propa-
gator and self-energy,44

[
iεnτ̂3 − Σ̂(p̂,R) , ĝ

]
+ ih̄v p̂ ·∇ĝ = 0 . (38)
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In contrast to Gorkov’s equation, which is a second-order dif-
ferential equation with a unit source term originating from
the Fermion anti-commutation relations, Eilenberger’s equa-
tion is a homogeneous, first-order differential equation de-
scribing the evolution of the quasiclassical propagator along
classical trajectories defined by the Fermi velocity, v p̂ = v f p̂.
The form of Eilenberger’s equation in Eq. 38 governs the
equilibrium propagator, including inhomogeneous states de-
scribed by an external potential or a spatially varying mean

pairing self-energy, ∆̂(p̂,R), but must be supplemented by the
normalization condition,44

ĝ(p̂,εn;R)2 =−π2 1̂ , (39)

which restores the constraint on the spectral weight implied
by the source term in Gorkov’s equation. For the spatially
homogeneous ground-state of superfluid 3He-B Eilenberger’s
equation reduces to

[
iεnτ̂3 − Σ̂(p̂) , ĝ0

]
= 0 , (40)

and the homogeneous self-energy, Σ̂ ≡ ∆̂(p̂), is defined by the
mean-field pairing self-energy for the 3He ground state,

∆̂(p̂) =

(
0 ~∆(p̂) · i~σσy

~∆(p̂) · iσy~σ 0

)
, (41)

where~∆(p̂) = ∆ p̂ is the J = 0 BW order parameter. Here and
after we denote the equilibrium spin-triplet order parameter

as ~∆ and reserve ~d for the non-equilibrium fluctuations of the
spin-triplet order parameter. The 4× 4 matrix order parame-

ter for the BW state satisfies, ∆̂(p̂)∆̂(p̂) = −|∆|2 1̂. Thus, the
equilibrium propagator for the BW state is given by

ĝ0(p̂,εn) =−π
iεnτ̂3 − ∆̂(p̂)√

ε2
n + |∆|2

. (42)

Note that the diagonal component of ĝ0 is odd in frequency.
This implies that the diagonal (Fermionic) self-energy, Σ(p̂),
given by Eq. 42 vanishes in equilibrium. However, if the
ground state is perturbed, e.g. by a Bosonic fluctuation of the
Cooper pair condensate, the Fermionic self energy, in general,
no longer vanishes.

In equilibrium, the anomalous self-energy reduces to the
self-consistency equation (“gap equation”) for the spin-triplet
order parameter,

~∆(p̂) =−π

β ∑
εn

′
∫

dΩ p̂

4π
V (1)(p̂, p̂′)

~∆(p̂′)√
ε2

n + |~∆(p̂′)|2
. (43)

The linearized gap equation defines the instability tempera-
tures for Cooper pairing with orbital angular momentum ℓ,

1

vℓ
= πTcℓ ∑

εn

′ 1

|εn|
≡ K(Tcℓ) , (44)

for attractive interactions vℓ > 0. The function K(T ) is a
digamma function of argument, h̄Ωc/2πT ≫ 1, in which case

K(T )≡ πT ∑
εn

′ 1

|εn|
≃ ln

(
2eγE

π

h̄Ωc

T

)
, (45)

where γE ≃ 0.57721 is Euler’s constant. This function plays
a central role in regulating the log-divergence of frequency
sums in the Cooper channel. In 3He the p-wave pairing chan-
nel is the dominant attractive channel; the f-wave channel is
also attractive, but sub-dominant, i.e. 0 < Tc3

< Tc1
≡ Tc.

The anomalous self-energy in the p-wave channel also de-
termines the mass (gap), mF = ∆, of Fermionic excitations of
the Balian-Werthamer phase. In particular the p-wave projec-
tion of Eq. 43 reduces to the BCS gap equation,

ln(T/Tc) = 2πT
∞

∑
n≥0

(
1√

ε2
n +∆2

− 1

εn

)
. (46)

Note that both the pairing interaction, v1 and cutoff, Ωc, in
Eq. 43 have been eliminated in favor of the transition temper-
ature by regulating the log-divergent sum using Eq. 45 and
the linearized gap equation for Tc, Eq. 44.

The Balian-Werthamer state, which has an isotropic gap in
the Fermionic spectrum, is maximally effective in using states
near the Fermi surface for pair condensation. As a result
the B-phase is stable down to T = 0 in spite of the attrac-
tive f-wave pairing interaction.45 Nevertheless, sub-dominant
f-wave pairing plays an important role in the Bosonic exci-
tation spectrum of the B-phase. In particular, p-wave, spin-
triplet Higgs modes with J = 2 polarize the B-phase vacuum.
The J = 2 polarization couples to f-wave, spin-triplet Cooper
pair fluctuations with J = 2, leading to mass corrections to the
Jc = 2± Higgs modes. In the following we derive the dynam-
ical equations for the Bosonic modes including the polariza-
tion terms from the f-wave pairing channel, and self-energy
corrections from the Landau channel.

VII. DYNAMICAL EQUATIONS

In order to describe the non-equilibrium response, or fluctu-
ations relative to homogeneous equilibrium, we must general-
ize the low-energy quasiparticle and Cooper pair propagators
to functions of two time (τ1,τ2), or frequency (εn1

,εn2
), vari-

ables. Specifically, we must include the dependence on the
global time coordinate, ϒ = (τ1 + τ2)/2, or equivalently the
total Matsubara energy ωm, in addition to the relative time dif-
ference, τ1 −τ2, or corresponding Fermion Matsubara energy,
εn. Thus, the ξp-integrated quasiclassical propagator gener-
alizes to ĝ(p̂,εn) → ĝ(p̂,εn;q,ωm), where q is the total mo-
mentum, or wavevector for a Fourier mode associated with
the center of mass coordinate, R.

The space-time dynamics of the coupled system of
Fermionic and Bosonic excitations of the broken symmetry
ground state is encoded in the Keldysh propagator,46 which is
obtained here by analytic continuation to the real energy axes,
e.g. iεn → ε + i0+ followed by iωm → ω + i0+. Thus,

1

β ∑
εn

ĝ(εn;ωm)−−−−−−−→
iωm→ω+i0+

∫ +∞

−∞

dε

4π i
ĝK(ε;ω) , (47)

where ĝK(p̂,ε;q,ω) is the real-energy, and frequency depen-
dent Keldysh propagator. The Keldysh propagator determines
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the response to any space-time dependent excitation. For ex-
ample the particle current is given by,

J = N(0)
∫

dΩ p̂

4π

∫
dε

4π i
(vp)Tr

{
τ̂3ĝK(p̂,ε;q,ω)

}
. (48)

The off-diagonal Nambu components of the Kelysh propga-
tor determine the Bosonic modes of the interacting Fermionic
and Bosonic system. The spin-triplet Bosonic excitations

are obtained from the anomalous triplet propagator, ~f K , and
the self-consistent solution for the anomalous self-energy ob-
tained by analytic contiuation of Eq. 35,

~d(p̂;q,ω) =−
∫

dΩ p̂

4π
V (1)(p̂, p̂′)

∫
dε

4π i
~f K(p̂,ε;q,ω) .

(49)
To calculate the Keldysh propagator, ĝK , we generalize

Eilenberger’s transport equation for the two-time/frequency
non-equilibrium Matsubara propagator,

[
iετ̂3 − Σ̂

]
◦ ĝ− ĝ◦

[
iετ̂3 − Σ̂

]
+ iv p̂ ·∇ĝ = 0 , (50)

where the A ◦ B(εn1
,εn2

) ≡ 1
β ∑n3

A(εn1
,εn3

)B(εn3
,εn2

) is a

convolution in Matsubara energies. For the two-frequency,
non-equilibrium propagator the normalization condition is
also a convolution product in Matsubara frequencies,

ĝ◦ ĝ ≡ 1

β ∑
εn3

ĝ(εn1
,εn3

)ĝ(εn3
,εn2

) =−π2 β δεn1
,εn2

1̂ . (51)

If we express the full propagator as a correction to the equi-

librium propagator (Eq. 42),

ĝ(p̂,q;εn1
,εn2

)= ĝ0(p̂,εn1
)β δεn1

,εn2
+δ ĝ(p̂,q;εn1

,εn2
) , (52)

then to linear order in δ ĝ the normalization condition for the
correction to the propagator becomes after setting εn1

= εn +
ωm, εn2

= εn, and δ ĝ(p̂,q;εn1
,εn2

)≡ δ ĝ(p̂,q;εn,ωm)

ĝ0(εn +ωm)δ ĝ(εn,ωm)+ δ ĝ(εn,ωm)ĝ0(εn) = 0 . (53)

The Bosonic modes of the interacting Fermi superfluid are
obtained from the linearized dynamical equations for the fluc-
tuations of the anomalous self energy, δ ∆̂ = ∆̂− ∆̂0, where the
equilibrium self-energy, ∆̂0, is defined by off-diagonal mean-
field pairing self-energy for the 3He ground state (Eqs. 41
and 43). These fluctuations are coupled to fluctuations of the
Fermionic self-energy, δ Σ̂. The coupled dynamical equations

for the components of δ Σ̂(p̂;q,ω) are obtained solving the
non-equilibrium Eilenberger equation, Eq. 50, for ĝ to lin-

ear order in the self-energy fluctuations, δ Σ̂. The linearized
non-equilibrium Eileberger equation becomes,

{
i(εn +ωm)τ̂3 − ∆̂(p̂)

}
δ ĝ− δ ĝ

{
iεnτ̂3 − ∆̂(p̂)

}
− v p̂ ·q δ ĝ

+ ĝ0(p̂,εn +ωm)δ Σ̂− δ Σ̂ ĝ0(p̂,εn) = 0 . (54)

The normalization conditions, Eqs. 39 and 53, combined with
Eq. 42, provides a direct method of inverting Eq. 54 for the
non-equilibrium quasiclassical propagator,

δ ĝ =

( −1

π2D2
++(v p̂ ·q)2

)[
D+

{
ĝ0(εn +ωm)δ Σ̂ ĝ0(εn)+π2 δ Σ̂

}
+ v p̂ ·q

{
δ Σ̂ ĝ0(εn)− ĝ0(εn +ωm)δ Σ̂

}]
. (55)

where D+(εn,ωm) = D(εn +ωm)+D(εn), and

D(εn)≡
−1

π

√
ε2

n + |∆|2 , (56)

is the denominator of the equilibrium propagator.

To calculate the mass spectrum of the Bosonic modes we
need only the q = 0 propagators, in which case

δ ĝ =
−1

π2

1

D+

{
ĝ0(εn +ωm)δ Σ̂ ĝ0(εn)+π2 δ Σ̂

}
. (57)

In zero magnetic field, spin-singlet Bosonic fluctuations, if
they exist, do not couple to spin-triplet Bosonic fluctuations.
However, we must retain fluctuations of the Fermionic self-
energy, thus the form of the fluctuation self-energy becomes,

δ Σ̂ =

(
Σ+~Σ ·~σ ~d · i~σσy

~d′ · iσy~σ Σ′−~Σ′ ·σy~σσy

)
. (58)

where the conjugate spin-triplet order parameter amplitudes

are related by ~d′(p̂;q,ωm) = ~d(p̂;−q,−ωm)
∗ (App. X). The

linear combinations,

~d(±)(p̂;q,ωm)≡ ~d(p̂;q,ωm)± ~d′(p̂;q,ωm) , (59)

have charge conjugation parities, c=±1; the dynamical equa-
tions for Bosonic modes then separate into charge conjugation
doublets with opposite parity. The Bosonic modes of Cooper
pairs also couple to the fluctuations of the Fermionic self en-
ergy, in both the spin scalar and vector channels,

Σ(±)(p̂;q,ωm)≡ Σ(p̂;q,ωm)±Σ′(p̂;q,ωm) , (60)

~Σ(±)(p̂;q,ωm)≡~Σ(p̂;q,ωm)±~Σ′(p̂;q,ωm) . (61)

Note that the exchange and conjugation symmetry relations
for the diagnoal self-energies, Eqs. 123-124 and Eqs. 131-

132, imply that the Fermionic self-energies, Σ(±) and~Σ(±) are
also even (odd) with respect to charge conjugation parity, c =
±1.
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The dynamical equations for the spin-triplet Bosonic modes
are obtained from the off-diagonal and diagonal components
of δ ĝ in Eq. 55, the self-consistency equations for the leading
order mean-field self-energies, Eqs. 26, 27 and 35. Two re-
sponse functions are obtained from the propagator in Eq. 57
that determine the Bosonic and Fermionic self-energies,

γ(iωm) = − 1

β ∑
εn

[ 1

D(εn)
+

1

D(εn +ωm)

]
, (62)

λ (iωm) =
2

π2β ∑
εn

|∆2|
D+(εn,ωm)D(εn)D(εn +ωm)

. (63)

The Matsubara sum defining γ(iωm) is log-divergent, regu-
lated by the cutoff Ωc. The frequency dependence of γ can
be neglected, since it gives a negligible correction of order
(ωm/Ωc)

2 ≪ 1. Thus,

1

2
γ =

π

β ∑
εn

′ 1√
ε2

n + |∆|2
=

1

v1
, (64)

where the latter equality follows from the equilibrium gap

equations, Eqs. 44 - 46. The function λ (iωm) is defined by
a convergent Matsubara sum. Analytic continuation to real
frequencies of Eq. 63 à la Eq. 47 yields,

λ (ω)≡ |∆|2 λ̄ (ω) = |∆|2
∫ ∞

|∆|

dε√
ε2 −|∆|2

tanh
(

β ε
2

)

ε2 −ω2/4
, (65)

which is the Tsuneto function with ω → ω + i0+ defining the
retarded (causal) response.47 For |ω |< 2|∆|, λ (ω) is real and
defines the non-resonant frequency response of the conden-
sate, while for |ω |> 2|∆|, Imλ (ω) 6= 0 is the spectral density
of unbound Fermion pairs. In the T = 0 limit,

λ (ω) =





4|∆|2
ω

arcsin(ω/2|∆|)√
4|∆|2 −ω2

, ω < 2|∆| ,

π

2

(
4|∆|2

ω

)
1√

ω2 − 4|∆|2
, ω > 2|∆| .

(66)

Thus, analytic continuation to real frequencies for the q= 0 limit leads to the following dynamical equations for the spin-triplet
Bosonic modes of the B-phase ground state,39–42

~d(−)(p̂;ω) = −
∫

dΩp′

4π
V (1)(p̂, p̂′)

{[
1

2
γ +

1

4
(ω2 − 4|∆|2)λ̄ (ω)

]
~d(−)(p̂′;ω)+ λ̄(ω)~∆(p̂′)(~∆(p̂′) · ~d(−)(p̂′;ω))

−1

2
ω λ̄ (ω)~∆(p̂′)Σ(+)(p̂′;ω)

}
, (67)

~d(+)(p̂;ω) = −
∫

dΩp′

4π
V (1)(p̂, p̂′)

{[
1

2
γ +

1

4
ω2λ̄ (ω)

]
~d(+)(p̂′;ω)− λ̄(ω)~∆(p̂′)(~∆(p̂′) · ~d(+)(p̂′;ω))

+ i
2
ω λ̄ (ω)~∆(p̂′)×~Σ(+)(p̂′;ω)

}
, (68)

Note that the equations of motion for the Bosonic fluctuations
of the order parameter couple to the Fermionic self-energies
linearly in the frequency ω , and that only the even orbital par-
ity Fermionic fluctuations contribute in the q = 0 limit.

For the moment we omit pairing fluctuations in higher an-
gular momentum channels, i.e. set vℓ = 0 for ℓ ≥ 3. We then

expand the spin-triplet order parameter amplitudes, ~d±)(p̂),

in terms of the p-wave basis, d
(±)
α (p̂) = D

(±)
α i p̂i, where D

(±)
α i

is equivalent to the bi-vector representation of the order pa-
rameter discussed in the context of the TDGL theory for the
Bosonic modes. For the B-phase ground state with total an-

gular momentum J = 0, i.e. ~∆(p̂) = ∆p̂, or equivalently,

Aα i = ∆/
√

3δα i, Eqs. 67 and 68 can be solved by expand-
ing the pairing fluctuations in spherical tensors that define
bases for the representations of the residual symmetry group
of the B-phase, H = SO(3)J, with total angular momentum

J = 0,1,2,

D
(±)
α i = ∑

J=0,1,2
∑

m=−J,+J

D
(±)
J,m t

(J,m)
α i . (69)

Note that time-dependent fluctuations of the Fermionic self-
energy, e.g. ωΣ(+)(p̂;ω), appear as “source” terms in the
equations of motion for the order parameter collective modes.

A. Nambu-Goldstone and Higgs Modes with c =−1

In the case of the modes with parity c =−1 we can express

Σ(+)(p̂;ω) =
even

∑
J

∑
m

Σ
(+)
J,m (ω) p̂i t

(J,m)
i j p̂ j . (70)

Note that only self-energy fluctuations of even J couple to the
Bosonic modes with c =−1. Equation 67 then decouples into
the dynamical equations for Bosonic mode amplitudes with
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total angular momentum J. In particular, the equation for dy-
namical fluctuations with Jc = 0− is given by

ω2 D
(−)
0,0 = 2 |∆|ω Σ

(+)
0,0 . (71)

In the simplest case the J = 0 contribution to the Fermionic
self-energy represents a fluctuation in the chemical potential,

i.e. Σ
(+)
0,0 (ω) = 2δ µ(ω), and as discussed earlier the pairing

fluctuation with Jc = 0− represents time-dependent fluctua-

tions of the phase of the B-phase ground state, i.e. D
(−)
0,0 =

2i|∆|ϑ(ω). This is the massless Anderson-Bogoliubov mode,
which in the time domain for q = 0 obeys the Josephson phase
relation, h̄∂tϑ = −2δ µ . As we show below this result is
un-renormalized by interactions between Fermions in either
particle-hole or particle-particle channels.

Projecting out the pairing fluctuations with Jc = 1− from
Eq. 67 yields,

(
ω2 − 4|∆|2

)
D
(−)
1,m = 0 . (72)

This is a quite remarkable result: the Jc = 1− pairing fluctua-
tions do not couple to fluctuations in the Fermion self-energy.
Furthermore, neither d-wave, spin-singlet, nor f-wave spin-
triplet, pairing fluctuations couple the Jc = 1− modes, which
implies that the mass of Jc = 1− Higgs modes, M1,− = 2∆, is
un-renormalized by interactions to leading order in the expan-
sion.

By contrast the Jc = 2− modes obey the following dynam-
ical equations

[
ω2 − 12

5
|∆|2
]

D
(−)
2,m =

4

5
|∆|ω Σ

(+)
2,m . (73)

In the absence of Fermion interactions in the particle-

hole channel Σ
(+)
2,m(ω) represents external stress fluctuations,

u
(+)
2,m(ω) that couple directly to the Jc = 2− Bosonic modes.

In this case the mass of the this Higgs mode is equal to the
weak-coupling TDGL result, M2,− =

√
12/5∆, but now ex-

tended to all temperatures. However, the weak-coupling re-
sult for the mass of the Jc = 2− Higgs mode is renormal-
ized by Fermionic interactions. Qualitatively this is expected
given that external stress fluctuations couple directly to the
Jc = 2− pairing fluctuations. Excitation of a Jc = 2− Higgs
Boson polarizes the J = 0 Fermionic vacuum, inducing a
Fermionic self-energy correction of the same symmetry that
couples back to generate a mass correction to the Jc = 2−

Higgs modes. The polarization correction to the Higgs mass
is encoded in Eq. 138 in the limit q = 0, which can be ex-
pressed as

Σ(+)(p̂;ω) = u(+)(p̂;ω)

+

∫
dΩ p̂′

4π
F s(p̂, p̂′)

{
−λ (ω)Σ(+)(p̂′;ω)

+ 1
2
λ̄(ω)ω~∆(p̂′) · ~d(−)(p̂′;ω)

}
, (74)

where u(+)(p̂;ω) represents un-renormalized external forces
coupling to excitations of 3He-B, and we have expressed the

dynamical self-energy in terms of the spin-symmetric particle-
hole irreducible interaction, Fs(p̂, p̂′) (c.f. Appendix X C).
Projecting out the amplitudes with J = 0,2 defined in Eq. 70
gives,

(1+Fs
0 λ (ω))Σ

(+)
0,0 (ω) = u0,0(ω) (75)

+ F s
0 λ (ω)

(
ω

2|∆|

)
D
(−)
0,0 (ω) ,

(
1+ 1

5 Fs
2 λ (ω)

)
Σ
(+)
2,m(ω) = u2,m(ω) (76)

+ 1
5 Fs

2 λ (ω)

(
ω

2|∆|

)
D
(−)
2,m(ω) .

The key result shown in Eqs. 75-76 is that excitation of pairing

fluctuations, D
(−)
J,m (ω), polarizes the condensate and generates

an internal stresses that are proportional to: (i) interactions in
the particle-hole channel, F s

2,0, (ii) the time-derivative of the

Bosonic mode amplitudes, ω D
(−)
J,m (ω), and (iii) the dynamical

response of the condensate, λ (ω), even in the absence bulk
external forces, i.e. uJ,m(ω) = 0. In the case of the Jc = 0−

mode, combining Eq. 71, with Σ
(+)
0,0 (ω) now given by Eq. 75

still yields the un-renormalized dynamical equation for exci-
tation of the Anderson-Bogoliubov phase mode,

ω2 D
(−)
0,0 = 2 |∆|ω u

(+)
0,0 . (77)

The interaction, F s
0 , drops out because the polarization in-

duced by the Jc = 0− Bosonic mode has the same rotational
symmetry as the vacuum state.

However, in the case of the Jc = 2− Higgs modes, combin-

ing Eq. 73 with Σ
(+)
2,m(ω) given by Eq. 76, yields

D
(−)
2,m =

4
5
|∆|ω u

(+)
2,m(ω)

[
ω2 − 12

5
|∆|2 +λ (ω) 3

25
F s

2 (ω2 − 4|∆|2)
] , (78)

which has a pole at ω = M2,−, the renormalized mass of the
Jc = 2− mode. Before discussing the quantitative effect of the
Landau interaction on the Jc = 2− Higgs mass, we consider
the effect of interactions in the Cooper channel.

B. F-wave interactions in the Cooper channel

Theoretical models for fermionic interactions in the
particle-particle (Cooper) channel based on exchange of long-
lived ferromagnetic spin-fluctuations predict p-wave spin-
triplet pairing with sub-dominant attraction in the f-wave
Cooper channel, including a strong sub-dominant f-wave at-
tractive interaction at high pressures.48,49 The masses of the
Jc = 2− modes are sensitive to fermionic interactions in the
particle-particle channel, the most relevant being the f-wave,
spin-triplet channel. Pairing fluctuations in the Cooper chan-
nel couple to the p-wave, spin-triplet modes with J = 2 lead-
ing to re-normalization of the mass of the Jc = 2± Higss
modes. Note that f-wave pairing fluctuations do not couple
to the J = 0,1 Bosonic modes.



12

The generalization of Eqs. 73 and 76 to include the f-wave
pairing channel in the dynamics of the Jc = 2− modes is ob-
tained from Eqs. 67 and 74 by retaining both p-wave and
f-wave pairing amplitudes,

d
(−)
α (p̂) = D

(−)
α i p̂i +F

(−)
α ;i jk p̂i p̂ j p̂k (79)

where D
(−)
α i is a second-rank tensor under the residual symme-

try group of the B-phase, SO(3)J, representing p-wave, spin-
triplet fluctuations with odd charge conjugation parity (Eq.

69), and F
(−)
α ;i jk is a fourth-rank tensor with f-wave orbital

symmetry, and thus is completely symmetric and traceless
in any pair of the orbital indices (i jk). Spin-triplet, f-wave
pairing fluctuations couple only to the J = 2 p-wave, triplet
modes. Thus, for pure J = 2, S = 1, ℓ= 3 fluctuations,

F
(−)
α ;i jk =

5
9
{
(

δα iF
(−)
jk + δα jF

(−)
ik + δαkF

(−)
i j

)

− 2
5

(
F

(−)
α i δ jk +F

(−)
α j δik +F

(−)
αk δi j

)}
, (80)

where by contraction

F
(−)
jk ≡ 3

7 F
(−)
α ;α jk , (81)

is a rank two, traceless and symmetric J = 2 tensor. In partic-

ular, we can expand F
(−)
i j in the J = 2 base tensors,

F
(−)
i j =

+2

∑
m=−2

F
(−)
2,m t

(2,m)
i j . (82)

The J = 2− gap distortion is determined by both the p- and
f-wave J = 2 tensors,

~∆(p̂) · ~d(−)(p̂;ω) = ∆
(
D

(−)
i j +F

(−)
i j

)
p̂i p̂ j , (83)

and thus the J = 2− component of the Fermionic self-energy
induced by the Jc = 2− Higgs modes (c.f. Eq. 76) becomes,

(
1+ 1

5 Fs
2 λ (ω)

)
Σ
(+)
2,m(ω) = u2,m(ω)+ 1

5 F s
2 λ (ω) (84)

×
(

ω

2|∆|

)[
D
(−)
2,m(ω)+F

(−)
2,m (ω)

]
.

The Jc = 2− amplitudes satisfy coupled time-dependent
gap equations obtained by projecting out the p- and f-wave
components of Eq. 67 where vℓ are the pairing interactions in
orbital angular momentum channel, ℓ = 1,3, . . .. The p-wave

interaction is the dominant attractive channel. The relevant
measure of the strength of the sub-dominant f-wave pairing
interaction is

x−1
3 ≡

(
1

v1
− 1

v3

)−1

= ln
(
Tc3

/Tc

)
, (85)

where x−1
3 < 0 (x−1

3 > 0) for attractive (repulsive) f-wave pair-
ing. The latter equality, valid for attractive f-wave pairing,
is obtained from Eq. 44 for the eigenvalue spectrum of the
linearized gap equation, with Tc the p-wave transition tem-
perature and Tc3

the f-wave instability temperature for sub-
dominant f-wave pairing.

Projecting out the ℓ= 1, J = 2 component of Eq. 67, which
generalizes Eq. 73, leads to

[
ω2 − 12

5 |∆|2
]

D
(−)
2,m + 8

5 |∆|
2 F

(−)
2,m = 4

5 |∆|ω Σ
(+)
2,m . (86)

Projecting out the ℓ= 3 amplitudes from Eq. 67 gives

[
x3 +

1
4
λ̄ (ω)(ω2 − 4|∆|2)

]
d
(3,−)
α (p̂;ω) (87)

+7

∫
dΩ p̂′

4π
P3(p̂ · p̂′)

{
λ̄ (ω)∆α(p̂′)~∆(p̂′) · ~d(−)(p̂′;ω)

= 1
2
λ̄ (ω)ω ∆α(p̂′)Σ+(p̂′;ω)

}
.

The J = 2 components of Eq. 87 are obtained by contract-

ing with p̂α to obtain an equation for F (−)(p̂) ≡ F
(−)
i j p̂i p̂ j,

then evaluating the angular average using the addition the-
orem for the Legendre polynomials, (p̂ · p̂′)P3(p̂ · p̂′) =
1
7
{4P4(p̂ · p̂′)+ 3P2(p̂ · p̂′)}, to obtain

[
x̄3 +

1
4
(ω2 − 8

5
|∆|2)

]
F
(−)
2,m + 3

5
|∆|2 D

(−)
2,m = 3

10
|∆|ω Σ+

2,m , (88)

where x̄3 ≡ x3/λ̄(ω). Eliminating the Fermionic self-energy
between Eqs. 86 and 88 leads gives the sub-dominant f-wave,
Jc = 2− amplitude in terms of the dominant p-wave, Jc = 2−,

[
x̄3 +

1
4
(ω2 − 4|∆|2)

]
F
(−)
2,m = 3

8
(ω2 − 4|∆|2)D

(−)
2,m . (89)

The total Jc = 2− Higgs amplitude - the sum of the p- and

f-wave amplitudes, H
(−)
2,m (ω) ≡ D

(−)
2,m + F

(−)
2,m - that polarizes

the Fermionic vacuum (Eq. 76) is governed by the dynamical
equation obtained by combining Eqs. 86 and 89. This gives
the retarded propagator for the Jc = 2− Higgs mode,

H
(−)
2,m =

4
5 |∆|ω u

(+)
2,m(ω)

[
1+ 5

8 x−1
3 (ω2 − 4|∆|2)λ̄ (ω)

]
[
ω2 − 12

5
|∆|2 +λ (ω)(ω2 − 4|∆|2)

(
3

25
F s

2 +(ω/2|∆|)2 x−1
3

)] . (90)

The renormalized Jc = 2− Higgs mass is obtained from the pole of the propagator in Eq. 90. In the limit T → T−
c
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FIG. 3: Masses of the Jc = 2± Higgs modes vs. ℓ = 2 particle-hole

(F
s,a
2 ) and f-wave pairing (x−1

3 ) interactions at T = 0. The perturba-

tive results (Eqs. 92 and 113) for x−1
3 = 0 are shown as the dashed

black lines.

the Tsuneto function scales as λ (ω = M2,−) ∝ ∆(T )/Tc → 0.
Thus, the Jc = 2− Higgs mass scales to the the weak-coupling
TDGL result at Tc,

M2− ≈
√

12

5
∆(T )

[
1+

π

10

√
5

2

∆(T )

Tc

(F s
2/5+ x−1

3 )

]
, (91)

However, the leading order correction to the mass, ∝

∆(T )/Tc ∼ (1−T/Tc)
1
2 , onsets rapidly below Tc. Thus, mass

renormalzation becomes significant, of order F2
2 or x−1

3 , for
T → 0. For weak interactions in both the Landau and Cooper
channels, |F s

2 | ≪ 1 and |x−1
3 | ≪ 1, at T = 0 the renormalized

mass obtained from the pole of the Jc = 2− propagator in Eq.
90 is

M2− ≈
√

12

5
∆

[
1+ a(Fs

2/5+ x−1
3 )

]
, (92)

where a = 1√
6

arcsin

(√
3
5

)
≈ 0.362. The Landau channel

interaction F s
2 obtained from measurements of the zero sound

velocity ranges from F s
2 ≈ 0.5 at P = 0bar to Fs

2 ≈ 1.0 at P =
34bar, although earlier measurements reported F s

2 ≈ −0.5 at

p = 0bar.50

The f-wave interaction in the Cooper has been determined
from measurements of the mass of the Jc = 2−, m = 0
Higgs mode based on resonant absorption of longitudinal
zero sound. These experiments yield results ranging from
x−1

3 ≈ 0.0 at p = 0bar to x−1
3 ≈ −0.5 at p = 14bar (c.f. Fig.

50 in Ref. 51). Determinations of the mass of the Jc = 2−,
m = ±1 Higgs modes based on transverse sound propagation
and acoustic Faraday rotation by Lee et al.35,52, as well as
more recent measurements by Collett et al.53 yield attractive
f-wave interactions of similar magnitude. The f-wave inter-
action in the Cooper channel also contributes to the nonlinear
nuclear magnetic susceptibility for the B-phase.54 Analysis of

magnetic susceptibility measurements of Hoyt et al.55 yields a
stronger, but sub-dominant, attractive f-wave interaction with
x−1

3 ≃−1.75 (Tc f
/Tc ≃ 0.56) at low pressure.56

Figure 3 shows the mass of the J = 2c = 2− Higgs mode as
a function of F s

2 for various values of the f-wave pairing in-

teraction, x−1
3 , obtained from numerical solution for the pole

of the propagator, H
(−)
2,m , in Eq. 90. Note that ‘repulsive’ in-

teractions in either channel (F
s,a
2 > 0 or x−1

3 > 0) push the
mass above the weak-coupling result towards the mass of un-
bound Fermion pairs, while ’attractive interactions’ soften the
mode. In particular, M2,− → 0 for Fs

2/5 → −1, signalling a
dynamical instability of the ground-state. The soft mode is
the dynamical signature of the Pomeranchuk instability of the
underlying Fermionic vacuum.57

C. Nambu-Goldstone and Higgs Modes with c =+1

In the case of the Bosonic modes with parity c = +1
the Fermion self-energy that couples to these modes is ex-
pressed in terms of the momentum-dependent exchange field,
~Σ(+)(p̂;ω). Equation 68 decouples into the dynamical equa-
tions for Bosonic mode amplitudes with total angular mo-

mentum J and orbital angular momentum ℓ = 1, D
(+)
J,m , and

ℓ = 3, F
(+)
J,m . The self-energy fluctuations orginating from the

exchange contribution to the QP interaction are even under
p̂ → − p̂; thus only fluctuations with even J couple to the
Bosonic modes for c = +1. To obtain the dynamical equa-
tions for the J+ modes it is convenient to introduce

~G(+)(p̂;ω) =~∆(p̂)×~Σ(+)(p̂;ω)/|~∆(p̂)| , (93)

For the J = 0+ ground state ~G(+)(p̂;ω) = p̂×~Σ(+) is a vector
under spin rotations, odd under p̂ → − p̂ and enters Eq. 68
acts as an effective source field for Cooper pair fluctuations
with c =+1.

It is sufficient to retain only the ℓ = 0 and ℓ = 2 contribu-
tions to the particle-hole exhchange interaction, Fa(p̂, p̂′) =
Fa

0 + Fa
2 P2(p̂ · p̂), in which case we can express the vector

components of the quasi-particle exchange field in terms ℓ= 0
and ℓ= 2 spherical tensors,

Σ
(+)
γ (p̂;ω) = Σ

(0)
γ +Σ

(2)
γ:αβ p̂α p̂β , (94)

where Σ
(2)
γ:αβ is traceless and symmetric in the indices, α,β .

The vector function, ~G(+)(p̂;ω), by construction contains

only p-wave and f-wave orbital components, ~G(+)(p̂;ω) =
~G(1)(p̂;ω) + ~G(3)(p̂;ω), with G

(ℓ)
γ (p̂) = 〈(2ℓ + 1)Pℓ(p̂ ·

p̂′)G
(+)
γ (p̂′)〉 p̂′ , where 〈. . .〉 p̂ ≡

∫
dΩ p̂/4π(. . .). Equivalently,

the p-wave contribution is defined by a second-rank tensor un-
der joint spin- and orbital rotations,

G
(1)
γi = 〈3 p̂i G

(+)
γ (p̂)〉 p̂ = εα iγ Σ

(0)
γ +

2

5
εαβ γΣ

(2)
γ:β i

(95)

= G
(1,0)
γi +G

(1,1)
γi +G

(1,2)
γi , (96)

where the second equation is the reduction in terms of J =
0,1,2 tensors. The J = 0 component is defined by the trace,
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which is easily seen to vanish, i.e. G
(1,0)
α i ≡ 0. The J = 1

components can be expressed in terms of an axial vector,

G
(1,1)
α i = εα iν G

(1,1)
ν with G

(1,1)
ν = Σ

(0)
ν − 1

5 Σ
(2)
γ:γν . (97)

Finally, the J = 2 components are determined by the traceless,
symmetric tensor

G
(1,2)
α i = 1

5

(
εαβ γ Σ

(2)
γ:β i

+ εiβ γ Σ
(2)
γ:β α

)
, (98)

which can be expanded in the basis of J = 2 tensors,

G
(1,2)
α i =

+2

∑
m=−2

G2,m t
(2,m)
α i . (99)

These contributions to the exchange field couple to the
Bosonic mode amplitudes with quantum numbers, J,m and
c = +1, represented by second- and fourth-rank tensors that
are the c =+1 complements of those in Eq. 79,

d
(+)
α (p̂) = D

(+)
α i p̂i +F

(+)
α ;i jk p̂i p̂ j p̂k , (100)

where the spin-triplet, p-wave order parameter fluctuations are
expanded in the basis of tensors with J = 0,1,2,

D
(+)
α i = ∑

J=0,1,2

J

∑
m=−J

D
(+)
J,m t

(J,m)
α i , (101)

and similarly for spin-triplet, f-wave fluctuations with J = 2+,

F
(+)
α i = ∑+2

m=−2 F
(+)
2,m t

(2,m)
α i where F

(+)
α i = 3

7
Fγ:γα i

The equation governing the Jc = 0+ mode is

(
ω2 − 4|∆|2

)
D
(+)
0,0 = 0 . (102)

This is the dynamical equation for the Higgs mode with the
exact quantum numbers of the B-phase vacuum state. As a
result there is no coupling to the Jc = 0+ mode via acoustic
or magnetic fluctuations.71

The Jc = 1+ modes are Nambu-Goldstone modes associ-
ated with broken relative spin-orbit rotation symmetry. It is
convenient to express these mode amplitudes in the Cartesian

representation, D
(+,1)
α = 1

2
εαβ γ D

(+)
β γ . Projecting out these am-

plitudes from Eq. 68 yields,

iω D
(+,1)
α = 2∆

1+ 1
15

λ (ω)Fa
2

1− 2
45

λ (ω)2 Fa
0 Fa

2

(
− γ h̄

2
Hα(ω)

)
, (103)

where Hα(ω) is the Fourier component of the time-dependent
external magnetic field and γ is the gyromagnetic ratio of
3He. Exchange interactions renormalize the coupling of the
Jc = 1+ modes to an external field, but the massless NG
mode is protected by the continuous degeneracy of the BW
ground state with respect to relative spin-orbit rotations. At
finite wavelength these excitations correspond spin waves me-
diated by Jc = 1+ NG modes of the Cooper pairs with disper-
sion given by ω = cm q, where cm are the spin-wave veloci-
ties in 3He-B. See Sec. VII D discussion of weak symmetry-
breaking perturbations on the Jc = 1+ modes.

The Jc = 2+ excitations obey the dynamical equations,

[
ω2 − 8

5
|∆|2
]

D
(+)
2,m =

8

5
|∆|2 F

(+)
2,m − iω(2∆)G2,m . (104)

In the absence of Fermion interactions in the particle-particle

channel the f-wave amplitude vanishes, F
(+)
2,m ≡ 0. And, if we

also ignore Fermionic interactions in the particle-hole chan-
nel, then G2,m(ω) represents an external field that couples
to directly to the Jc = 2+ modes. In this case the mass of
this Higgs mode is equal to the weak-coupling result, M2,+ =√

8/5∆. However, M2,+ is renormalized by Fermionic in-
teractions in both the particle-particle and particle-hole chan-
nels. Just as in the case for the Jc = 2− modes excitation of
a Jc = 2+ Higgs Boson polarizes the J = 0+ Fermionic vac-
uum and introduces a Fermionic self-energy correction with
the same symmetry that couples back to generate a mass cor-
rection to the Jc = 2+ Higgs modes.

In addition, pairing interactions in the spin-triplet, f-wave
channel lead to dynamical excitations of the B-phase vacuum

with spin Jc = 2+,m, i.e. F
(+)
2,m , which mixes with the spin-

triplet, p-wave modes of the same symmetry. We obtain the

dynamical equation for the F
(+)
2,m amplitudes by projecting out

the f-wave orbital components of Eq. 68 to obtain,

[
4x̄3 +(ω2 − 12

5
|∆|2)

]
F
(+)
2,m +

12

5
|∆|2 D

(+)
2,m =+iω(2∆)G2,m ,

(105)
where x̄3 ≡ x3/λ̄(ω). Note that we have used the identity,

p̂ · ~G(p̂) = p̂ · ~G(1)(p̂)+ p̂ · ~G(3)(p̂) ≡ 0 to express the source
term in Eq. 105 in terms of the p-wave, J = 2 component of

~G(p̂), i.e. G
(3,2)
γi = −G

(1,2)
γi . Eliminating G2,m from Eqs. 104

and 105 gives the f-wave, Jc = 2+ amplitude in terms of the
corresponding dominant p-wave amplitude,

[
4x̄3 +(ω2 − 4|∆|2)

]
F
(+)
2,m =−(ω2 − 4|∆|2)D

(+)
2,m . (106)

The polarization corrections to the Jc = 2+ Higgs mass are
obtained from Eqs. 104, 106 and 139 in the limit q = 0, which
can be expressed as

~Σ(+)(p̂;ω) = ~h(+)(p̂;ω)+

∫
dΩ p̂′

4π
Fa(p̂, p̂′)

{

− λ (ω)
(
~Σ(+)(p̂′;ω) − p̂′(p̂′ ·~Σ(+)(p̂′;ω))

)

−
( ω

2∆

)
λ (ω) p̂′× ~d(+)(p̂′;ω)

}
, (107)

where ~h(+)(p̂;ω) represents the external field coupling to
Fermionic excitations via the magnetic moment of the 3He nu-
cleus, and Fa(p̂, p̂′) represents the spin-dependent exchange
interaction in 3He (c.f. Eq. 23, the paragraph preceeding Eq.
25 and Eq. 141. Note that Eq. 141 has been inverted and

used to express ~Σ(+)(p̂;ω) in terms of the Landau interac-
tion, Fa(p̂, p̂′). For c = +1 Bosonic excitations the coupling
of the Fermionic self-energy fluctuations is determined by the

p-wave, J = 0,1,2 components of ~G(+)(p̂;ω) in Eq. 96. Fluc-

tuations of G
(1)
γi with J = 0 vanish by symmetry as ~G(+)(p̂;ω)
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is purely transverse with respect to p̂. Fluctuations with J = 1

are defined by the ℓ = 0,2 orbital components of ~Σ(+)(p̂;ω)
in Eq. 97, while the J = 2 components are defined by Eq. 98.

The dynamical equation for G
(1,1)
α i = εα iγ

(
Σ
(0)
γ − 1

5 Σ
(2)
ν:νγ

)

is constructed from the equations for the ℓ = 0 and ℓ = 2 ex-
change fields,

(
1+ 2

3
λ Fa

0

)
Σ
(0)
γ =hγ − i 2

3

( ω

2∆

)
λ Fa

0
1
2
εαβ γ D

(1,1)
αβ , (108)

(
1+ 1

15
λ Fa

2

)
Σ
(2)
ν:νγ =i 1

3

( ω

2∆

)
λ Fa

2
1
2
εαβ γ D

(1,1)
αβ

, (109)

which shows that G
(1,1)
α i couples only to the ℓ = 1, Jc = 1+

Bosonic modes, thus leading to Eq. 103 for these NG modes.

The Fermionic self-energy that couples to the Jc = 2+

Bosonic modes is determined by the ℓ= 2 components of the

exchange field defined by G
(1,2)
α i in Eq. 98. The equation of

motion for the (2,m) components are then

(
1+ 1

5
λ Fa

2

)
G2,m = h

(1,2)
2,m − i

(
ω
2∆

)
3
25

λ Fa
2

{
2F

(+)
2,m −D

(+)
2,m

}
,

(110)

where h
(1,2)
2,m are the components of a generalized, momentum-

dependent, external magnetic field that couples to Fermionic
and Bosonic excitations with J = 2 via the nuclear spin. Com-
bining Eqs. 104, 106 and 110 we obtain the response function

for the Jc = 2+ Higgs amplitude, H
(+)
2,m = D

(+)
2,m +F

(+)
2,m ,

H
(+)
2,m =

−iω(2|∆|)h
(1,2)
2,m (ω)

(ω2 − 8
5
|∆|2)+λ (ω)(ω2 − 4|∆|2)

(
2

25
Fa

2 +(ω/2|∆|)2
x−1

3

) . (111)

The renormalized mass of the Jc = 2+ Higgs mode is ob-
tained from the pole of the propagator in Eq. 111; M2+ scales
to the the weak-coupling TDGL result for T → T−

c ,

M2+ ≈
√

8

5
∆(T )

[
1+

π

4

√
3

5

∆(T )

Tc

(Fa
2 /5+ x−1

3 )

]
, (112)

with the leading-order correction developing rapidly below Tc.
For weak interactions, |F s

2 | ≪ 1 and |x−1
3 | ≪ 1, the vacuum

polarization correction at T = 0 can also be calculated pertur-
batively,

M2+ ≈
√

8

5
∆

[
1+ b(Fa

2 /5+ x−1
3 )

]
, (113)

where b = 3

2
√

6
arcsin

(√
2
5

)
≈ 0.419. Note that the ℓ =

2 exchange interaction, Fa
2 , is reported by Halperin and

Varoquaux51 to vary between Fa
2 ≈ −0.88 at P = 0bar and

Fa
2 ≈ −0.01 at P = 32bar. Figure 3 shows the mass of the

Jc = 2+ Higgs mode as a function of the the ℓ = 2 exchange
interaction, Fa

2 , for various values of the f-wave interaction,

x−1
3 obtained from numerical solution for the pole of the prop-

agator, H
(+)
2,m , in Eq. 111. Repulsive interactions push the mass

above the weak-coupling result. Attractive f-wave and ex-
change interactions reduce the mass; the f-wave interaction is
less effective for strong ferromagnetic exchange, Fa

2 /5→−1,
for which M2+ → 0+, as is clear from the equation for M2+

defined by the pole of Eq. 111. In this limit the soft mode
is dominated by the Pomeranchuk instability of the underly-
ing Fermionic vacuum. Nevertheless, for fixed Fa

2 /5 > −1

M2+ → 0+ as Tc f
→ Tc (x−1

3 →−∞).
The charge conjugation parity of the Bosonic modes with

the same orbital, spin and total angular momentum quantum
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FIG. 4: Deviation of Nambu’s Sum from polarization corrections to

the the J = 2 Higgs modes of 3He-B for a range of interactions in

both the Landau and Cooper channels.

number is reflected dramatically in the polarization correc-
tions to the masses of the Higgs modes. The Jc = 2− modes
couple to a quadrupolar excitation of the Fermionic vacuum,
leading to a mass shift from the interaction Fs

2 in the spin-
symmetric particle-hole channel, which is generally repulsive
except possibly near p = 0bar.51 By contrast excitation of the
Jc = 2+ modes is coupled to a quadrupolar spin-polarization,
and thus has a polarization correction to its mass from the
interaction Fa

2 in the anti-symmetric (exchange) particle-hole
channel; this interaction is expected to be attractive at all pres-
sures. In addition, both Jc = 2± Higgs modes couple to f-
wave pairing fluctuations with the same J and parity c. In
this case the asymmetry in the mass shifts for Jc = 2± origi-
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nates from (ω/2|∆|)2 x−1
3 . Thus, the aysmmetry in the weak-

coupling mass spectrum, i.e.
√

12/5∆ vs.
√

8/5∆, leads to
additional asymmetry in the polarization corrections from the
f-wave interactions in the Cooper channel. These trends are
shown explicitly by the perturbative results in Eqs. 92 and
113. Figure 4 summarizes the magnitude of the corrections to
the NSR for a range of interactions in the Landau and Coopoer
channels. The violation of the NSR onsets rapidly below Tc,
with deviations of order 20− 30% for the Fermionic interac-
tions characteristic of normal 3He.

Excitation of the Jc = 2+,m modes typically occurs
through weakly coupled channels at finite wavelength, q 6= 0,

as coupling via an external field with symmetry h
(1,2)
2,m is not

easily realized. Koch and Wölfle showed that the weak viola-
tion of particle-hole symmetry by the normal-state Fermionic
vacuum lifts a selection rule that otherwise prohibits the cou-
pling of the Jc = 2+ Higgs modes to density and mass current
fluctuations.58 Thus, the Jc = 2+,m modes can be excited by
density and mass current channels, albeit with a coupling that
is reducted by the factor, ζ ≈ kBTc/E f ≪ 1, the measure of
the asymmetry of the spectrum of particle and hole excita-
tions of the normal Fermionic vacuum at ε ≈ kBTc.41 This cou-
pling leads to resonant excitation of the Jc = 2+ Higgs mode
by absorption of zero-sound phonons. Indeed ultra-sound ab-
sorption spectroscopy provided the first detection of the Higgs
mode in a BCS condensate.59,60 The definitive identification
of the absorption resonance as the Jc = 2+ Higgs mode was
made by Avenel et al. who observed the five-fold Zeeman
splitting of the zero-sound absorption resonance in an applied
magnetic field.61

Acoustic spectroscopy provides precision measurements of
the mass of the Jc = 2+ Higgs mode. The magnitude of
the polarization correction to the the Jc = 2+ Higgs mass
for T → 0 is measured to be δM2+ ≈ −0.19∆, as shown
in Fig. 5, indicating that the interactions giving rise to the
mass shift are net attractive. The data are from Ref. 60
for a pressure of p = 13bar (yellow diamonds), and from
Ref. 61 for pressures, p = 0.8− 3.5bar (red squares). Also
shown are theoretical results for the polarization correction
calculated as a function of temperature. In this case we as-
sumed the most attractive estimate for the exchange interac-
tion, Fa

2 =−0.88,51, which accounts for only half of the mea-

sured value of δM2+ . An attractive f-wave interaction, x−1
3 ≈

−0.2, in the Cooper channel provides the additional polariza-
tion correction. If we use the weaker value of Fa

2 ≃ −0.37

reported by the Helium-Three Calculator50 for p = 13bar we
obtain a correspondingly stronger attractive f-wave interac-
tion, x−1

3 ≃−0.35. An attractive f-wave interaction of similar

magnitude, x−1
3 ≃ −0.33 at p ≈ 4.3bar, is also inferred from

an analysis of acoustic Faraday rotation of transverse sound
that is mediated by the Jc = 2− Higgs mode.35,52 Analysis
of recent acoustic Faraday rotation measurements, outside the
regime of the linear Zeeman splitting of the energy levels of
the Jc = 2+,m modes, report comparable or smaller values:
x−1

3 ≈ −0.4 to x−1
3 ≈ −0.2.53,62 A complete and systematic

determination of the relevant interactions in the Landau and
Cooper channels is possible from the combined measurements
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FIG. 5: Jc = 2+ Higgs Mass. The data are for a pressures of p =
13bar (yellow diamonds),60 and for p= 0.8−3.5bar (red squares).61

Theoretical calculations of the mass are for Fa
2 = −0.88 and values

of the f-wave interaction in the Cooper channel given in the legend.

of the masses of the Jc = 2± modes using longitudinal and
transverse sound spectroscopy, combined with measurements
of the velocities of zero-sound, first-sound, and the magnetic
susceptibilties in both the normal- and superfluid phases of
3He.

D. Light Higgs Modes in the Jc = 1+ Sector

The Jc = 1+ mode amplitudes can be related to the pa-
rameters of the degeneracy space of relative spin- and or-
bital rotations, i.e. R[ϑn] ∈ SO(3)L-S, where n is the axis
of rotation, defined by polar and azimuthal angles, and a
third variable being angle of rotation, ϑ . The angles de-
fine massless NG modes reflecting the spontaneous breaking
of separate symmetries under spin- and orbital rotations, i.e.
SO(3)L ×SO(3)S. The Jc = 1+ multiplet provides a novel ex-
ample of mass generation corresponding to the “Light Higgs”
extension of the standard model in particle physics.63 The
Light Higgs scenario works as follows: In 3He separate in-
variance under spin- and orbital rotations is broken by the
nuclear dipole-dipole interaction, which acts as weak sym-
metry breaking perturbation with an energy scale of order
VD ∼ 10−7 K per particle compared to the characteristic two-
body interaction energy of order V ∼ 1K. The dipolar en-
ergy lifts the degeneracy with respect to separate spin and or-
bital rotations, which renders the Jc = 1+ multiplet a triplet
of “pseudo Nambu-Goldstone modes” in which one or more
of the NG modes acquires a mass from the weak symmetry
breaking field. Long wavelength excitiations of the axis of ro-
tation, n, remain gapless; however, excitations of the rotation
angle, ϑ , acquire a mass gap MLH/h̄ = ΩB ≃ 10kHz≪ 2∆/h̄≃
100MHz, where ΩB is the longitudinal NMR resonance fre-
quency of 3He-B. An external magnetic field further lifts the
degeneracy of the remaining zero mass NG modes which split
into an optical magnon with mass, Mopt = h̄γB, and a massless
acoustic magnon. A direct detection of the Light Higgs Boson
in 3He-B was recently achieved by measuring the decay of op-
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tical magnons created by magnetic pumping (a magnon BEC).
A sharp threshold for decay of optical magnons to a pair of
Light Higgs modes was observed by tuning the mass of the op-
tical magnons on resonance, i.e. Mopt = h̄γB≥ 2MLH = 2h̄ΩB.63

VIII. SUMMARY AND OUTLOOK

Mass generation based on spontaneous symmetry breaking
and the introduction of an internal symmetry (particle-hole
symmetry in BCS theory) implies a connection between the
masses of the Fermion and Boson excitations of the broken
symmetry vacuum state, and a hidden supersymmetry in the
class of BCS-NJL theories.12,19 Nambu’s proposed sum rule,
inspired in part by the Bosonic spectrum of 3He-B, however,
is not protected against symmetry breaking perturbations to
the broken symmetry vacuum state, including polarization of
the vacuum state by excitation of a Higgs boson with symme-
try distinct from that of the vacuum. For the case of 3He-B,
we show that corrections to the weak-coupling BCS theory
and Fermionic interactions combined with vacuum polariza-
tion by the Higgs fields, lead to corrections to the masses of
the Higgs modes, and in general a violation of the NSR. Our
reults, as well as other effects of weak perturbations like the
nuclear dipolar energy, the Zeeman energy and weak viola-
tions of particle-hole symmetry, highlight the roles of sym-
metry breaking perturbations.

Current research in topological condensed matter addresses
the transport properties and spectrum of Fermionic excita-
tions confined near surfaces, interfaces and edges of topolog-
ical insulators and topological superconductors. Relatively
recent theoretical work has shown how supersymmetry can
also emerge at the boundary of topological superfluids.64 The
B-phase of superfluid 3He is the realization of a 3D time-
reversal invariant topological superfluid, with a spectrum of
helical Majorana Fermions confined on any bounding sur-
face. Thus, a frontier in topological quantum fluids is the
role of confinement as a symmetry breaking perturbation on
the Bosonic spectrum of confined 3He-B, and the possible
signatures of the surface spectrum of Majorana Fermions in
the Bosonic modes of confined 3He-B. New studies of the ef-
fects of confinement and symmetry-breaking perturbations on
both the bulk and surface Bosonic and Fermionic excitations
of topological superfluids will hopefully shed new light on the
connection between spontaneous symmetry breaking, hidden
supersymmetry and topology of the broken symmetry vacuum
state in topological superfluids.

IX. ACKNOWLEDGEMENTS

The research of JAS was supported by the National Sci-
ence Foundation (Grants DMR-1106315 and DMR-1508730).
The work of JAS was also carried out in part at the Aspen
Center for Physics with partial support by National Science
Foundation grant PHY-1066293. The work of T. M. was sup-
ported by JSPS (No. JP16K05448) and “Topological Materi-
als Science” (No. JP15H05855) KAKENHI on innovation ar-
eas from MEXT. We thank Chandra Varma, Grigory Volovik
and Anton Vorontsov for discussions on the spectrum of col-
lective modes in superfluid 3He and unconventional supercon-

ductors that informed this work.

X. APPENDIX

A. TDGL Effective Potentials

The potentials that enter the TDGL functional that deter-
mine the masses of the Bosonic modes are given by up =∆2 ūp

ū1 = 4
3
Tr
{

D

}
Tr
{

D
∗
}
+Tr

{
DD

tr

}
+Tr

{
DD

tr

}∗
, (114)

ū2 = 2Tr
{

DD
†
}
+ 1

3

(
Tr
{

D

}
+Tr

{
D

∗
})2

, (115)

ū3 = 1
3

(
Tr
{
DD

tr

}
+Tr

{
DD

tr

}∗)

+ 2
3

(
Tr
{
DD

†
}
+Tr

{
DD

∗
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. (116)

ū4 = 4
3 Tr
{
DD

†
}
+ 1
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(
Tr
{
D

2
}
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D

2
}∗)

, (117)

ū5 = 1
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(
Tr
{
DD

†
}
+Tr

{
DD

†
}∗)

+ 1
3

(
Tr
{
D

tr
D

}
+Tr

{
D

tr
D

}∗)
+ 2

3 Tr
{
DD

∗
}
. (118)

Note that these potentials are defined relative to the BW
ground state, and thus invariant only under SO(3)J ×T.

B. Symmetry Relations

The components of the 4×4 Nambu propagator are related
by fundamental symmetries with respect to (i) permutation ex-
change symmetry and (ii) conjugation symmetry. These sym-
metries imply the following relations between the components
of the quasiclassical propagator,

1. Exchange symmetry

g′(p̂,εn;q,ωm) = +g(− p̂,−εn;q,ωm) , (119)

~g′(p̂,εn;q,ωm) = +~g(− p̂,−εn;q,ωm) , (120)

f (p̂,εn;q,ωm) = + f (− p̂,−εn;q,ωm) , (121)

~f (p̂,εn;q,ωm) = −~f (− p̂,−εn;q,ωm) , (122)

as well as for the mean-field self energies,

Σ′(p̂;q,ωm) = +Σ(− p̂;q,ωm) , (123)

~Σ′(p̂;q,ωm) = +~Σ(− p̂;q,ωm) , (124)

d(p̂;q,ωm) = +d(− p̂;q,ωm) , (125)

~d(p̂;q,ωm) = −~d(− p̂;q,ωm) . (126)

Note that Eqs. 125 and 126 reflect the fact that spin-singlet
Cooper pairs have even parity, while spin-triplet pairs are odd-
parity.
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2. Conjugation symmetry

The conjugation symmetry relations follow from complex
conjugation of the two-point functions.

g′(p̂,εn;q,ωm) = +g(− p̂,εn;−q,ωm)
∗ , (127)

~g′(p̂,εn;q,ωm) = +~g(− p̂,εn;−q,ωm)
∗ , (128)

f ′(p̂,εn;q,ωm) = + f (− p̂,εn;−q,ωm)
∗ , (129)

~f ′(p̂,εn;q,ωm) = −~f (− p̂,εn;−q,ωm)
∗ . (130)

Σ′(p̂;q,ωm) = +Σ(− p̂;−q,ωm)
∗ , (131)

~Σ′(p̂;q,ωm) = +~Σ(− p̂;−q,ωm)
∗ , (132)

d′(p̂;q,ωm) = +d(− p̂;−q,ωm)
∗ , (133)

~d′(p̂;q,ωm) = −~d(− p̂;−q,ωm)
∗ . (134)

C. Dynamical Equations

~d(−)(p̂;q,ω) =

∫
dΩp′

4π
V (1)(p̂, p̂′)

{[
1

2
γ +

1

4
(ω2 −η ′2 − 4|~∆(p̂′)|2)λ̄ (p̂′)

]
~d(−)(p̂′)+ λ̄(p̂′)~∆(p̂′)(~∆(p̂′) · ~d(−)(p̂′))

−1

2
η ′ λ̄ (p̂′)~∆(p̂′)Σ(−)(p̂′)− 1

2
ω λ̄(p̂′)~∆(p̂′)Σ(+)(p̂′)

}
, (135)

~d(+)(p̂;q,ω) =
∫

dΩp′

4π
V (1)(p̂, p̂′)

{[
1

2
γ +

1

4
(ω2 −η ′2)λ̄ (p̂′)

]
~d(+)(p̂′)− λ̄(p̂′)~∆(p̂′)(~∆(p̂′) · ~d(+)(p̂′))

+ i
2 η ′ λ̄(p̂′)~∆(p̂′)×~Σ(−)(p̂′)+ i

2 ω λ̄(p̂′)~∆(p̂′)×~Σ(+)(p̂′)
}
, (136)

Σ(+)(p̂;q,ω) = Σ(+)
ext

(p̂)+
∫

dΩp′

4π
As(p̂, p̂′)

[( ω2

ω2 −η ′2

) (
1−λ (p̂′)

)
Σ(+)(p̂′)+

(
ωη ′

ω2 −η ′2

) (
1−λ (p̂′)

)
Σ(−)(p̂′)

+
1

2
ω λ̄ (p̂′)~∆(p̂′) · ~d(−)(p̂′)

]
(137)

Σ(−)(p̂;q,ω) = Σ(−)
ext

(p̂)+

∫
dΩp′

4π
As(p̂, p̂′)

[( ωη ′

ω2 −η ′2

) (
1−λ (p̂′)

)
Σ(+)(p̂′)+

{
1+

(
η ′2

ω2 −η ′2

) (
1−λ (p̂′)

)}
Σ(−)(p̂′)

+
1

2
η ′ λ̄ (p̂′)~∆(p̂′) · ~d(−)(p̂′)

]
(138)

~Σ(+)(p̂;q,ω) = ~Σ(+)
ext

(p̂)+

∫
dΩp′

4π
Aa(p̂, p̂′)

[( ω2

ω2 −η ′2

) (
1−λ (p̂′)

)
~Σ(+)(p̂′)+ λ̄(p̂′)

(
~∆(p̂′) ·~Σ(+)(p̂′)

)
~∆(p̂′)

+

(
ωη ′

ω2 −η ′2

) (
1−λ (p̂′)

)
~Σ(−)(p̂′) − i

2
ω λ̄ (p̂′)~∆(p̂′)× ~d(+)(p̂′)

]
(139)

~Σ(−)(p̂;q,ω) = ~Σ(−)
ext

(p̂)+

∫
dΩp′

4π
Aa(p̂, p̂′)

[{
1+

(
η ′2

ω2 −η ′2

) (
1−λ (p̂′)

)}
~Σ(−)(p̂′)− λ̄(p̂′)

(
~∆(p̂′) ·~Σ(−)(p̂′)

)
~∆(p̂′)

+

(
ωη ′

ω2 −η ′2

) (
1−λ (p̂′)

)
~Σ(+)(p̂′) − i

2
η ′ λ̄ (p̂′)~∆(p̂′)× ~d(+)(p̂′)

]
(140)

The particle-particle interaction vertex in the spin-triplet
channel is parametrized by an interaction parameter, vℓ, for
each odd-parity angular momentum channel, as in Eq. 33.
In the case of the particle-hole interaction vertex, the func-
tions As,a(p̂, p̂′) are the forward scattering amplitudes for spin-
independent (As) and spin-exchange (Aa) scattering of quasi-
particles with momenta near the Fermi surface. These ampli-
tudes are related to the the Landau interactions, F s,a(p̂, p̂′), by
the integral equation,

As,a(p̂, p̂′) = F s,a(p̂, p̂′)+
∫

dΩp′′

4π
F s,a(p̂, p̂′′)As,a(p̂′′, p̂′) .

(141)
The standard parametrization of the Landau interaction func-
tion in terms of the Landau parameters is Fs,a(p̂, p̂′) =
∑ℓ≥0 F

s,a
ℓ Pℓ(p̂ · p̂′).
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