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We use the Chern-Simons (CS) fermion representation of s = 1/2 spin operators to construct
topological, long-range magnetically ordered states of interacting two-dimensional (2D) quantum
spin models. We show that the fermion-fermion interactions mediated by the dynamic CS flux
attachment may give rise to Cooper pairing of the fermions. Specifically, in an XY model on the
honeycomb lattice, this construction leads to a “CS superconductor,” which belongs to a topologi-
cally non-trivial in 2D symmetry class DIII, with particle-hole and time-reversal symmetries. It is
shown that in the original spin language, this state corresponds to a symmetry protected topological
state, which coexists with a magnetic long-range order. We discuss physical manifestations of the
topological character of the corresponding state.

I. INTRODUCTION

Two-dimensional quantum spin models is a fascinat-
ing subject, which continue to attract attention of the-
oreticians and experimentalists alike1–11. What makes
it particularly challenging from the theory standpoint is
the absence of a simple weakly interacting picture and
controlled theoretical tools to describe the plethora of
possible ground states where strong quantum fluctua-
tions abound. Much of the earlier theoretical work in
quantum magnetism has focused on long-range-ordered
magnetic phases, usually well-described in terms of the
Schwinger boson representation of the spin operator,
with subsequent employment of a mean-field theory or
other methods (e.g., large-N approaches and variational
analyses)1,4,5,9.

Another prominent class of ground states are spin liq-
uids, which have received much attention since the early
nineties, boosted by the discovery of high-temperature
superconductivity and some of its exotic scenarios12–15.
A hallmark of most spin liquids is a lack of a long-range
order and a local order parameter. The theoretical de-
scription of these states often involves fractionalization
- where the spin operators (or equivalently the opera-
tors of hardcore bosons) are represented as a product
of two fermions (“partons”), which can “fall” into vari-
ous mean-field states. This construction often leads to
gauge theories, non-locality, and topological order of the
underlying quantum liquid16–29. By now, these kinds of
spin liquids have been thoroughly classified, and there is
a promising experimental evidence for their actual exis-
tence in solid-state materials30,31.

Very recently, there has been a tremendous progress
in identifying and classifying symmetry-protected topo-
logical (SPT) phases of interacting fermionic29,32–37 and
bosonic29,38–41 systems. The SPT phases have some
properties of short-range entangled trivial phases, but are

also distinct from those, e.g., by exhibiting edge modes.
Hence, they in effect represent a third class of possible
ground states of strongly-correlated systems, including
quantum magnets. In this paper, we propose a micro-
scopic technical construction that appears to give rise to
exotic states of this latter type (and their “gauged” ver-
sions) in interacting lattice spin models.

A particularly simple example of an SPT spin phase
was proposed by Levin and Gu39, who considered
the Ising paramagnet on a triangular lattice with
the deceptively simple Hamiltonian ĤLG = −

∑
r∈4

Ŝxr ,

where the spin operators are either Pauli matrices
Ŝxr = 1

2 σ̂
x
r (which indeed makes the corresponding

phase a trivial Ising paramagnet) or Ŝxr ≡ B̂xr =
1
2 σ̂

x
r

∏
(r′r′′) exp

[
i
4 (1− σ̂zr′ σ̂zr′′)

]
, where we use Levin-Gu

notations for ”twisted” spin operators with r′ and r′′

running over the six triangles containing site r. These
operators satisfy the usual su(2) algebra’s commutation
relations and give rise to a distinct SPT phase, with
non-trivial edge physics. To motivate the central ques-
tion of this paper, we note that the Levin-Gu topolog-
ical Ising model may appear in an interacting quantum
spin model where the symmetry is broken either “exter-
nally” or spontaneously, e.g., a twisted XY -model on a
triangular lattice, ĤTXY = −

∑
〈rr′〉∈4

B̂+
r B̂
−
r′ . Indeed, the

mean-field ordered state (e.g., with the mean-field mag-
netization along the x-direction) essentially reproduces

the SPT Ising model above ĤTXY = −〈B̂x〉
∑
r∈4

B̂xr .

Note that edge excitations and fluctuation effects in the
“TXY -model” may lead to qualitative changes in the na-
ture of the mean-field topological (SPT-like) phase, but
the above simple construction does suggest that there
exist topologically non-trivial long-range-ordered states of
interacting quantum magnets.
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II. CHERN-SIMONS FERMIONIZATION

This paper provides an example and effective descrip-
tion of a topological long-ranged-ordered state of a quan-
tum spin model. We will focus on a specific Hamiltonian
– see, Eq. (3) below – but the general method we use
works for a wide class of lattice models and is based on
the Chern-Simons (CS) flux attachment25,26,42–49 - the
Jordan-Wigner-type transform that “converts” hardcore
bosons/spins into fermions via attaching a string to each
particle:

Ŝ±r = f̂±r Û±r , Û+
r = exp

ie∑
r′ 6=r

arg(r− r′)n̂r′

 . (1)

Here Ŝ±r are the spin-1/2 raising/lowering operators on a

lattice cite r, n̂r = Ŝzr +1/2 = f̂+
r f̂r, the sum runs over all

lattice sites except r, and e is an odd integer CS charge,

which makes f̂±r into the fermion creation/annihilation
operators. The resulting theory depends on a Hamilto-
nian and a lattice of course, and generally takes the form
that is not amenable to an exact treatment. However, the
theory - fermions coupled to the CS gauge field resulting
from transformation (1),

iÛ+
r ∂µÛ−r → Aµ(r) = εµν

∑
r′ 6=r

(r− r′)ν
|r− r′|2

nr′ (2)

(with µ, ν = 1, 2, and εµν being an antisymmetric tensor)
provides a convenient field-theoretic platform to formu-
late an effective description of various stable phases of
quantum magnets.

These constructions usually proceed as follows. The
CS gauge potential is represented in terms of a mean-
field part (assumed static in the Lagrangian formulation)
and fluctuations around the mean-field, A = 〈A〉 + δA.
The fermions are integrated out on the background of
the mean-field configuration (to be determined a pos-
teriori via a variational analysis). Notice that in this
construction the CS fermions are assumed to simply fill
up the single-particle bands (albeit with a non-trivial
Hofstadter-type energy landscape) without undergroing
a phase transition. The remaining low-energy theory - an
expansion in the CS fluctuations, δA - provides a field-
theoretical description of the underlying mean-field. This
way one can obtain various states - both exotic and or-
dered ones. For example, an integer quantum Hall state
of fermions generates a CS term, which can either add
up to the statistical Chern-Simons field originating from
transform (1) (this corresponds to a chiral spin liquid) or
cancel it with the remaining Maxwell term representing a
gapless phonon45 (this corresponds to an ordered state).

This elegant approach is not without its downsides.
Just about any mean-field Ansatz for 〈A〉 “accidentally”
breaks physical symmetries that one may want to pre-
serve. Furthermore, the CS fermions are actually not
free, but rather represent strongly interacting entities.

These interactions may lead to instabilities and hence
new underlying spin phases. In this paper, we propose
such an alternative construction of a topological long-
range-ordered spin state via the CS flux attachment,
where instead of assuming a specific mean-field for the
CS gauge field, we treat it non-perturbatively as an in-
teraction between the fermions that are shown to become
unstable against pairing.

III. THE MODEL

The specific model we use as our starting point is the
bulk spin-1/2 antiferromagnetic Hamiltonian on the hon-
eycomb lattice with nearest-neighbor couplings:

Ĥ = J
∑
〈rr′〉∈7

[
(1 + γ)Ŝxr Ŝ

x
r′ + (1− γ)Ŝyr Ŝ

y
r′

]
, (3)

We emphasize that the purpose of our theory below is not
to “solve” the particular model (in the sense of finding its
lowest energy ground state, whose properties in the con-
ventional setting are well known), but to illustrate that
the appearance of topologically non-trivial long-range-
ordered states is possible in a class of models. The ease
and naturalness with which the calculation goes through
strongly suggests that this approach is generic in bipar-
tite lattices (a similar calculation for a different model
on the square lattice will be presented in a subsequent
publication). Eq. (3) describes a 2D anisotropic XY-type
model, whose bulk supports an antiferromagnetic (J > 0)
ground state. At γ > 0 it corresponds to a doubly de-
generate gapped phase with Néel oder parameter 〈Ŝxr 〉
with Z2 Ising symmetry which in this case is equivalent
to reflection.

In the absence of a net magnetization, CS fermion-
ization yields a half filled fermionic system. The Fermi
level of fermions on the honeycomb lattice consists of
two Dirac points conventionally denoted by K and K ′.
Using the fermion representation of Eq. (3), and upon
expansion in the vicinity of these Dirac points (below,
we present calculation details for γ = 0; for a finite γ
the calculation is essentially similar) a gauge transfor-
mation generates the covariant derivative ∂µ − ieAµ(r)
(and kinetic momentum). The CS gauge field Aµ, that
enters into the kinetic term, is bilinear in fermion opera-
tors and thus generates a two-particle interaction vertex.
This brings the following momentum space representa-
tion of the Hamiltonian (3): Ĥ = Ĥ0 + Ĥint, where

Ĥ0 = vF
∑
k

[
f̂+
k,αk · σαβ f̂k,β − ˆ̄f+

k,αk · σTαβ ˆ̄fk,β
]
(4)

Ĥint = −
∑

k,k′,q

V αα
′,ββ′

q f̂+
k,α

ˆ̄f+
k′+q,α′

ˆ̄fk′,β f̂k+q,β′ .

Here vF =
√

3Jε
2 is the velocity at the Fermi level, ε is lat-

tice constant of the two triangular sub-lattices, f̂±k,α and
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ˆ̄f±k,α are low energy fermions with momenta measured

from K and K ′ points respectively, and spinor indices
correspond to the sub-lattices α = A,B. The interaction
vertex V in Eq. (4) reads

V αα
′,ββ′

q = 2πievF εµν

(
σµαβδα′β′ + δαβ [σµ]Tα′β′

)
Aνq, (5)

where Aq = q/|q|2 is the Fourier image of the vector
potential of the vortex gauge field, δαβ is the Kronecker
delta symbol, and the summation over repeating indices
is implied.

It is worth noting here that our fermionic Hamil-
tonian (4) in momentum representation consists of

graphene-like kinetic energy term Ĥ0 and non-local two-
particle interactions that arise from integrating out the
vortex operators in the fermionized representation. Aside
from expanding in the vicinity of K and K ′ points of the
Brillouin zone, the above procedure is formally exact.

IV. COOPER PAIRING OF CHERN-SIMONS
FERMIONS

To proceed further we make use of the Hubbard-
Stratonovich transformation based on Cooper pair oper-

ators ˆ̄f−k,αf̂k,α′ and f̂+
k,α

ˆ̄f+
−k,α′ to decouple four fermion

interaction term in the Hamiltonian (4). By introducing

fluctuating superconducting order parameter fields ∆αβ
k

we obtain

H = H0 +
∑
k

f̂+
k,α

ˆ̄f+
−k,α′∆

∗αα′

k + ∆αα′

k
ˆ̄f−k,αf̂k,α

]
+
∑
k,k′

∆∗αα
′

k

[
V −1

]αα′,ββ′

k−k′ ∆ββ′

k′ , (6)

where V −1 is the inverse of the interaction vertex (5). In-
tegrating out the fermionic degrees of freedom in Eq. (6)

define an effective action W (∆αβ
k ) for the superconduct-

ing order parameter ∆αβ
k . We treat the latter in the

stationary field approximation, similarly to the standard
BCS theory of Cooper pairing. The corresponding saddle

point equations, δW/δ∆αβ
k = 0, lead to:

∆αα′

k =
∑
ββ′k′

V αα
′,ββ′

k−k′ 〈 ˆ̄f−k′,β f̂k′,β′〉. (7)

Since the vertex function V αα
′,ββ′

k−k′ in this expression is

sharply momentum dependent, the order parameter ∆αα′

k
also turned out to be momentum dependent: ∆11

k =
∆22

k = ∆3k, ∆12
k = −∆21

k = ∆x
0k − i∆

y
0k. Here we have

a vector order parameter ∆0k = (∆x
0k,∆

y
0k) and a rota-

tion scalar ∆3k. The latter corresponds to the pairing of
fermions residing on the same sublattice, in contrast to
the conventional BCS pairing, where particles having the
same spin (here, instead of spin we have a pseudospin de-
gree of freedom associated with two sublattices) do not

get paired. The lowest energy solution corresponds to
p-wave pairing51–53; namely we look for the momentum
dependence of ∆0k in the form ∆0k = ∆0kk/k, where
∆0k = |∆0k| . Substituting the solution (7) into Eq. (6)
we obtain the Bogoliubov-de Gennes (BdG) Hamiltonian.

In the basis of 4-spinors ψk = (f̂Ak , f̂
B
k ,

ˆ̄fA+
−k ,

ˆ̄fB+
−k ), it ac-

quires the form

HBdG =

(
vFkσ ∆̂k

∆̂†k −vFkσ

)
, (8)

where ∆̂k = ∆3k1+∆0k×σ and 1 is the identity matrix.

HBdG gives a 4-band gapped spectrum ±E(a)
k , with the

quasiparticle energy E
(a)
k =

√
|avFk + ∆0k|2 + |∆3k|2

and a = ± distinguishing between two upper/lower
bands. As we see the spectrum is U(1) rotationally in-
variant.

To proceed, one needs to solve the self-consistency
Eqs. (7) for the order parameters. Replacing the sum
over 2D momenta by an integral and performing the an-
gular integration one arrives at (for the details see the
supplementary material)

∆0k =
evF

2

∑
a=±

∫ k

0

dk′
k′∆3k′

kE
(a)
k′

,

∆3k =
evF

2

∑
a=±

∫ Λ

k

dk′
∆0k′ + avF k

′

E
(a)
k′

, (9)

where we have introduced a cutoff parameter Λ around
K(or K ′) points defined by the area of the half of Bril-
louin zone (BZ). Solutions of Eqs. (9) in both halfs of
BZ should be glued with each other on the boundary to
recover periodicity of the spectrum (see Fig.1).

The solution of Eq. (9) depends on the CS charge,
which in the case of Hamiltonian (3) must be an odd
integer e = 1, 3, 5 · · · . Remarkably, the simplest choice
of e = 1 yields only a trivial solution, with zero order
parameter. However, the states with e ≥ 3 (mathemat-
ically a solution exists for any e > ec, where the critical
ec = 2/31/2; see the supplementary material) give rise
to a nontrivial, gapped solution to Eq. (9), indicating
that the CS fermions are unstable against pairing. The
CS charge, e, is determined by energetics of a particular
model and we found that e = 3 yields the lowest energy
(interestingly, an analysis of nearest-neighbor spin-spin
correlators in our exotic state is quite close to those in
the actual ground state of the conventional XY model50).

Numerically found gap-functions for the CS supercon-
ductor are plotted in Fig. 1. We see, that ∆0,k is linear

at k < J/vF : ∆0,k ' 3vF k
2 , as follows from the first of

Eqs. (9). This asymptote corresponds to the solution of
the gap equation in one half of BZ, (e.g., around the K
point, i.e. on the segment (0,Λ) of the momentum axis).
By flipping signs of ∆0,k and ∆3,k in gap equations (9),
we generate a solution with opposite chirality. This is
the solution in the vicinity of K ′.
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V. MAGNETIC LONG-RANGE ORDER

Now we turn to the discussion of the properties of the
Chern-Simons superconducting state. First, we prove
that the corresponding magnetic state has off-diagonal
long-range order and an associated local order param-
eter. The most natural correlation function to look
at is the spin-spin 2-point correlation function, which

in the fermion language takes the form:
〈
Ŝ+
r Ŝ
−
0

〉
=〈

f̂†r f̂0e
iΦr

〉
, where Φr = e

∑
r′

[arg r′ − arg (r− r′)] n̂r′ .

The existence of the non-local string makes the calcula-
tion of the correlator complicated (we have not been able
to evaluate it). However, one can construct high-order
correlators, where the string effectively disappears and
the spin and fermion correlators are one-to-one related.
Note that the CS transform is one of infinitely many
Jordan-Wigner-type fermionization transforms, that at-
tach strings in different ways through the lattice. The
observables (such as spin-spin correlators) must not de-
pend on the “gauge” choice of a specific Jordan-Wigner
string. One can check that there exists a choice of the
string such that the four-point spin correlator - see Eq.
(10) - is identically equal to the corresponding fermion
one. On the other hand, the fermion correlation functions
corresponding to two different Jordan-Wigner choices dif-
fer only by a phase and hence we arrive at the following
relation

C(4)(r− r′) = 〈Ŝ+
r Ŝ

+
r+eŜ

−
r′ Ŝ
−
r′+e〉 ∼ 〈f̂

+
r

ˆ̄f+
r+ef̂

−
r′

ˆ̄f−r′+e〉,

where the ∼ symbol implies that the two are equal mod-
ulo a phase. The fermion 4-point correlator is calculated
using the Wick’s decoupling and approaches a constant
as |r − r′| → ∞. Therefore, C(4)(∞) = const and we
have an ordered state. This proves the existence of a
spin-nematic-type long-range order, but does not prove
(or rule out) the existence of a “stronger” magnetic order,
which would require calculation of 2-point correlators.

VI. SYMMETRIES AND TOPOLOGY OF THE
CHERN-SIMONS SUPERCONDUCTOR

We now discuss symmetries of the BdG Hamiltonian
(8). Importantly, it fulfills simultaneously (i) particle-
hole (PH) symmetry, σ2H

∗
BdGσ2 = HBdG, physical

meaning of which is conservation of pseudo-spin linked
with Fermi statistics; and (ii) time reversal (TR) sym-
metry τ1H

T
BdGτ1 = −HBdG. Here, the Pauli matrix τ1

acts in the space of K, K ′ blocks, which is also locked
with the Nambu space. The combination of the effec-
tive PH and TR symmetries forms a chiral symmetry
τ1σ2HBdGτ1σ2 = −HBdG, which defines the symmetry
class DIII for the Hamiltonian Eq. (8) according to
Altland-Zirnbauer classification [32,35,36].

The presence of an effective chiral symmetry implies
that one can choose a different basis, where the BdG

0 π
2

π

Δ0,k

Δ3,k

π
2

π0

k

L R

R L

L

L R

R

−π/2−π π/2 πE

FIG. 1: (Color online) Upper figure: Numerical solution of
gap equations (9) for e=3 shown in arbitrary units. Cutoff
parameter is Λ ∼ π/(2ε). Lower figure: Thick black lines
represent the low lying part of the bulk spectrum, dotted
black lines represent the higher branches. R and L mark the
branches corresponding to R/L states, see Eq. (10). Full red
lines show R and L brunches of edge state energies.

Hamiltonian decouples into two models having oppo-
site chiralities. Using a unitary transformation φk =
(φLk , φ

R
k ) = Uψk we can reduce H to a simpler form

by introducing two copies of two component “left” (L)
and “right” (R) fermions with masses of opposite signs,
±∆3,k:

U+HU =

(
HL 0
0 HR

)
, U =

1√
2

(
σ3 1
−1 σ3

)
, (10)

where HR/L = ±∆3k/2 + (∆0,k/k ∓ vF )k · σ. Fig-
ure 1 depicts the spectrum of the lower energy branch
of R/L states. Eq. (10) describes a superconducting
state, which supports a pair of couter-propagating mass-
less edge states, R and L, that are protected by the chiral
(combination of TR and PH) symmetry. Note that the
edge states are present not only in the theory with γ = 0
(an isotropic spin model in the original language), but
also at a finite γ. In fact, the existence of a CS super-
conducting state in the latter is more natural, in that it
does not require spontaneous symmetry breaking. Since
the gauge symmetry is broken from the outset by the
non-zero γ, there aren’t Goldstone excitation and the
corresponding bulk ground-state is truly gapped.

In this work we showed that the CS superconductor is
free from a Z2 topological order. The reason for this is
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that we employed the direct flux attachment procedure
Eq. (1) to fermionize spin-1/2 operators by introducing
single fermionic degree of freedom on a honeycomb lat-
tice with nonlocal interactions and no additional gauge
fields. In the action formulation, the model can be equiv-
alently formulated as as a theory fermions coupled to a
U(1) CS field with K-matrix being just unity (for details
see e.g. Refs. 26,45). The fact that the CS mediated
superconductivity can be free from topological order, is
one of the novelties of the present work.

In principle, one can obtain an excited, Z2 topolog-
ically ordered state in the model (3) by applying a
fermionization transformation on different sublattices (A
and B) separately. This procedure, upon superconduct-
ing mean-field approximation, will result in a mutual
U(1)×U(1) CS theory54–56 – a theory of a Z2 topological
order (including also Kitaev’s toric code model57).This is
a theory with an effective CS Lagrangian containing two
mutual U(1) gauge fields, (Aa0 ;Aaµ), a = 1, 2; µ = 1, 2,

and the K-matrix given by K = ({0, 2}; {2, 0})54–56.

VII. RELATION TO SPT PHASES

The existence of two counter-propagating Majorana
edge modes in the Bogoliubov-de Gennes mean-field of
the CS superconductor should correspond to some low
energy edge excitations in the original lattice spin model
with a boundary. Specifically, the edge theory should
be equivalent to the 1D critical quantum spin-1/2 Ising
chain51–53,58 – an example of 1+1D conformal field the-
ory with central charge c = (1/2, 1/2). The choice of
spin-1/2 operators in the original Hamiltonian (3) as

Ŝr = ~
2 σ̂r, where σ̂jr, j = x; y; z, are the Pauli matri-

ces, yields a topologically trivial, conventional XY mag-
net, H = HXY (γ), with the well-known antiferromag-
netic Néel ground state. It does not exhibit any edge
states. One can show that the reason is that the micro-
scopic edge Hamiltonian for would-be gapless modes of
such a model, breaks the chiral symmetry and thus the
corresponding edge-states are actually gaped.

Nevertheless this suggests that CS p-wave supercon-
ductor corresponds to the spin operators being not
the Pauli matrices, but “twisted spin operators” – B-
operators of Levin and Gu, mentioned in the introduc-
tion. Indeed, the Levin-Gu construction hinges on the ex-
istence of non-trivial element(s) of the group H3[G, U(1)]
in Wen’s29,38,40 classification of SPT states. In the case
of an Ising model on the triangular lattice, the group G is
the Ising Z2 symmetry, giving rise to two kind of phases,
which can be associated with two types of spin opera-
tors - the Pauli matrices (yielding the trivial phase) and
B-operators (yielding the non-trivial SPT phase). Simi-
larly in our case of two copies of Levin-Gu-type models
for each triangular sub-lattice, there is non-trivial ele-
ment of H3 indicating the B-operators representation.
The corresponding edge Hamiltonian complies with the
bulk symmetries, keeping edge-modes gapless.

Our construction of p-wave CS superconductor thus
corresponds to such new kind of a XY model that can be
dubbed twisted XY or TXY model. We notice that this
SPT state coexists with the long-ranged nematic (and
possibly Neel) order, spontaneously breaking the U(1)
symmetry of the parent Hamiltonian (3) at γ = 0. One
attribute the TXY model must have is that it should be
possible to gap out its counter-propagating edge states on
two sublattices and turn it into a conventional XY mag-
net by breaking the “protecting” symmetry, reproducing
a topologically trivial state at the mean-field level.

In conclusion, we note that gauging the Chern-Simons
superconductor gives rise to the topologically ordered
state (in the sense that it allows anyon excitations in the
bulk). We also note that the corresponding state is differ-
ent from the Moore-Read state (which corresponds to a
gauged p+ ip superconductor, while our parent fermionic
state preserves time-reversal symmetry). We defer a de-
tailed discussion of this kind of topological order to future
studies.
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Appendix: The Threshold for Chern-Simons
Superconductivity

In this Appendix, we present details on (i) the deriva-
tion of gap equations (9) of the main text for supercon-
ducting order parameters ∆0k and ∆3k and (ii) their
asymptotic solution. We start with the saddle point
equations Eq. (7) that follow from minimization of ac-
tion:

∆αα′

k =
∑
ββ′k′

V αα
′,ββ′

k−k′ 〈 ˆ̄f−k′,β f̂k′,β′〉. (A.1)

The vacuum expectation value of Cooper pair an-

nihilation operator 〈 ˆ̄f−k′,β f̂k′,β′〉 can be represented
as the derivative of the effective fermionized action
W ({∆αα′

k }) =
∑

k,a=±E
(a)
k with respect to Hubbard-

Stratonovich fields ∆ββ′

k as

〈 ˆ̄f−k′,β f̂k′,β′〉 =
δW ({∆αα′

k })
2δ∆ββ′

k

. (A.2)

Substituting Eq.(A.2) into (A.1), one obtains

∆αα′

k =
1

2

∑
ββ′k′

V αα
′,ββ′

k−k′
δW ({∆αα′

k })
δ∆ββ′

k

. (A.3)
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Following the reasoning of the main text, we introduce
the following convenient notations

∆12
k = −∆21

k = ∆x
k − i∆

y
k = ∆0kk

−/k

∆11
k = −∆22

k = ∆3k, (A.4)

where k± = kx± iky. Then, using the dispersion relation

E
(a)
k =

√
|avFk + ∆0k|2 + |∆3k|2, it is straightforward

to take the variation of the action W ({∆αα′

k }) with re-
spect to the Hubbard-Stratonovich fields. Finally, we use
explicit expression (5) of momentum dependent interac-

tion vertices V αα
′,ββ′

k−k′ ,

V 12,11
k−k′ = 2πevFA

−, V 21,11
k−k′ = −2πevFA

+

V 12,22
k−k′ = 2πevFA

−, V 21,22
k−k′ = −2πevFA

+ (A.5)

V 22,12
k−k′ = −2πevFA

+, V 11,12
k−k′ = −2πevFA

+

V 11,21
k−k′ = 2πevFA

−, V 22,21
k−k′ = 2πevFA

−,

to rewrite self-consistent gap equations (A.3) in the fol-
lowing form:

∆0k
k−

k
= −πevF

∑
k′,a=±

A−k−k′
∆3k′

E
(a)
k′

,

∆3k =
πevF

2

∑
k′,a=±

A−k−k′k′+ +A+
k−k′k′−

k′

× ∆0k′ + avF k
′

E
(a)
k′

. (A.6)

Here, Aq = q/|q|2 is the Fourier image of the vector
potential of the vortex gauge field A(r) , and A±q = Axq±
iAyq.

Eqs. (A.6) can be simplified further, namely integra-
tion over the relative angle φ between k and k′ vectors
can be performed analytically. This task can be accom-
plished using the following identities:∫ 2π

0

dφ

2π

(k− k′)k′

(k− k′)2
=

∫ 2π

0

dφ

2π

k − k′ cos[φ]

k2 + k′2 − 2kk′ cos[φ]

=
1

k
θ[k − k′]∫ 2π

0

dφ

2π

k − k′eiφ

k2 + k′2 − 2kk′ cos[φ]
=

1

k
θ[k − k′]. (A.7)

After performing the angular integration in Eqs. (A.6),
one obtains

∆0k =
evF

2

∑
a=±

∫ k

0

dk′
k′∆3k′

kE
(a)
k′

,

∆3k =
evF

2

∑
a=±

∫ Λ

k

dk′
∆0k′ + avF k

′

E
(a)
k′

. (A.8)

In this way, one reproduces gap equations of the main
text. Below we will discuss the asymptotic solution of
these equations.

0 2 4 6 8 10

-1

0

1

2 F(e,u)

u

e = 0.1
e = 0.75

e =1
ec=2/3

1/2

e =1.6

e = 2−
e = 2+

e = 3
e = 5

FIG. 2: (Color online) The function F (e, u) is plotted vs u
for various values of e. At e > ec = 2/

√
3 the function F (e, u)

crosses the dashed line giving raise to a solution to F (e, u) = 0
equation. Exactly at the critical point e = ec the function
F (ec, u) asymptotically approaches the dashed line from be-
low.

In the limit k → 0 it is seen upon inspecting the first
Eq. (A.8) that ∆0k→0 ' evF k/2 + O(k)3 and ∆3k→0 ≡
∆3 = const · (vFΛ) + O(k)2 is indeed a solution of it.
The self-consistency requires however that this asymp-
totic solution should also satisfy the second Eq. (A.8).
Substituting ∆0k→0 and ∆3 into the latter, and using

the form of the spectrum E
(a)
k , one obtains

∆3 =
evF

2

∫ Λ

0

dk′

 ( e2 + 1)vF k
′√(

e
2 + 1

)2
(vF k′)2 + ∆2

3

+
( e2 − 1)vF k

′√(
e
2 − 1

)2
(vF k′)2 + ∆2

3

 . (A.9)

Integration over k′ in Eq. (A.9) can be readily per-
formed. Upon introducing a new dimensionless variable
u = (ΛvF )/∆3, Eq. (A.9) assumes the simple algebraic
form:

F (e, u) = 0, (A.10)

where

F (e, u) =
e

2

[
1

e
2 + 1

(√(e
2

+ 1
)2

u2 + 1− 1

)

+
1

e
2 − 1

(√(e
2
− 1
)2

u2 + 1− 1

)]
− 1. (A.11)

The function F (e, u) is plotted vs u for various values of e
in Fig. 2. We see that the solution to Eq. (A.10) (and thus
to self-consistent gap equations Eq. (A.8)) exists only for

e > ec = 2/
√

3. Such a phase transition at ec can be seen
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from large and small u asymptotes of function F . These
are given by

F (e, u� 1) =
eu

2
[1 + sgn(e− 2)] +

3e2 − 4

4− e2
+O(1/u),

F (e, u� 1) = −1 +
e2u2

4
+O(u)4. (A.12)

We see that at e < ec = 2/
√

3, the monotonically increas-
ing function F (e, u) at u→∞ asymptotically approaches
a negative constant value, F (e,∞) = (3e2 − 4)/(4− e2),

implying that there is no solution to Eq. (A.10) in this
region. The large-u behavior of F (e, u) is the same at
2 > e > ec, but in this region the constant F (e,∞) is pos-
itive, and thus F (e, u) passes through zero (notice that
F (e, 0) = −1), giving raise to a solution to Eq. (A.10) at
some finite u. For e > 2, the linear large-u asymptote
sets in and the condition Eq. (A.10) is being satisfied at
even smaller u. At e = 3, the equation F (3, u) = 0 has
a solution u = u0 = 0.814. This means that for physical
value e = 3, the order parameter acquires the asymptotic
form ∆3k→0 ' 1.23ΛvF +O(k)2.
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