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We study two-band one-dimensional superconducting chains of spinless fermions with inter and
intra-band pairing. These bands hybridize and, depending on the relative angular momentum of
their orbitals, the hybridization can be symmetric or anti-symmetric. The self-consistent competi-
tion between intra and inter-band superconductivity and how it is affected by the symmetry of the
hybridization is investigated. In the case of anti-symmetric hybridization the intra and inter-band
pairings do not coexist while in the symmetric case they do coexist and the interband pairing is
shown to be dominant. The topological properties of the model are obtained through the topological
invariant winding number and the presence of edge states. We find the existence of a topological
phase due to the inter-band superconductivity and induced by symmetric hybridization. In this case
we find a characteristic 4π-periodic Josephson current. In the case of anti-symmetric hybridization
we also find a 4π-periodic Josephson current in the gapless inter-band superconducting phase, re-
cently identified to be of Weyl-type.

PACS numbers: 74.50.+r, 74.20.-z, 03.65.Vf

I. INTRODUCTION

Traditional models of topological superconductors only
consider a single band even though this is usually a sim-
plification. At the single-band level it is well known
that the single-band Kitaev model1–3 – anti-symmetric
pairs of spinless fermions in 1D with an effective spin
triplet pairing – is the simplest model that exhibits a
topological phase with Majorana modes in the ends of a
p-wave chain, depending on the state of the system. In
the trivial phase, the chain is superconducting with no
end states3. Triplet superconductivity is, however, rare
in nature. Thus, the pursuit of alternatives to create
triplet superconductivity lead to engineering a topologi-
cal insulating chain (made with strong spin-orbit mate-
rial) in proximity of a normal superconductor and in the
presence of an applied magnetic field4–9. Another pro-
posal for an effective one-dimensional model considered
placing magnetic impurities on top of a conventional or
triplet superconductor10–12 increased the interest on the
realization of an effective one-dimensional system with
topological properties13–15. Additionally, triplet pairing
has been found to be physically realizable in some sys-
tems. In Ref. [16] it was shown that odd-parity super-
conductivity occurs in superconducting (SC) multilay-
ers, where this state is a symmetry-protected topological
state. In addition, triplet pairing is found in 3He17 and in
Sr2RuO4

18, as well as in some rare noncentrosymmetric
systems19. Triplet pairing was also studied in the context
of extended Hubbard chain20.

Multiband models for the superconducting state and
their topological properties have also received increasing
attention recently16,21–25. This consideration has been
important to explain many important effects in topolog-
ical systems. For instance, topological semimetals26 and
chiral superfluidity27 have been predicted in multiorbital

models where orbitals with different symmetries interact.
Two component fermionic systems with occupied s and
p orbital states were shown to have a rich phase diagram
in both one and two dimensions24. A general connec-
tion between multiband and multicomponent supercon-
ductivity has also been made28. Topological properties
in three-band models were also studied29–32. The inter-
est in multiband bands is also justified for instance in
studies of three-dimensional CuxBi2Se3 which has two
orbitals per lattice cell. This leads in general to mul-
tipocket Fermi surfaces that in the case of odd number
may be topological33–35. Another proposed example of a
multiband superconductor with triplet p + ip pairing is
Sr2RuO4, referred above.

An interesting example of a multiband system with
non-trivial edge states are the zigzag edges of mono-
layer transition metal-dichalcogenides for which it has
been proposed that under appropriate conditions, such
as due to the presence of intrinsic spin-orbit coupling,
proximity coupled to a conventional superconductor and
an in-plane magnetic field, the edges display Majorana
edge states36–38. Under these conditions the system is
equivalent to the Kitaev chain that in the simplest case
reduces to only one band in the vicinity of the chemical
potential. More complex situations may be explored that
involve the presence of more bands (a minimal model con-
siders three orbitals). A strictly one-dimensional multi-
band model that has a topological nature is the SSH
model for polyacetylene39 that, when coupled to a triplet
superconductor (such as for instance Sr2RuO4), leads
to an interesting problem of a dimerized superconduc-
tor (two bands) with different types of edge states. In
one regime is equivalent to the Kitaev model (with one
edge mode at each edge) and in another regime dis-
plays two edge modes (winding number two)40, which
are however of a fermionic type and not of Majorana



2

type. Other possible realizations of the model are en-
gineering the Rashba spin-orbit interaction by placing
micromagnets41–47 or quantum-dot array48. The realis-
tic presence of longer range hoppings or pairings in a
Kitaev like model leads to a multiplicity of edge Majo-
rana modes and complex phase diagrams49–52. In general
this problem is equivalent to a multiband system. Exper-
imentally this can be achieved considering two or more
magnetic chains superimposed on a two-dimensional con-
ventional superconductor11,53. For instance, considering
two chains this is equivalent to a two band model.

Motivated by the recently discussed topological charac-
ters of multiband models16,24, and based on the simplest
model that describes the topological properties of a chain
of spinless fermions, we study the Kitaev model with two
orbital-bands. We include and discuss inter- and intra-
band superconducting couplings. A characteristic fea-
ture of multiband systems is the hybridization between
the different orbitals. This arises from the superposi-
tion of the wave functions of these orbitals in different
sites. It can have distinct symmetry properties depend-
ing on the orbitals involved. If this mixing involves or-
bitals with angular momenta that differ by an odd num-
ber, hybridization turns out to be anti-symmetric, i.e., in
real space we have Vij = −Vji or in momentum, k-space,
V (−k) = −V (k). Otherwise hybridization is symmetric
respecting inversion symmetry in different sites54.

The bulk-edge correspondance guarantees that in the
topological phases there are subgap edge states. In the
case of a topological superconductor, zero energy Ma-
jorana modes are predicted to appear and great effort
has been devoted to prove their existence. Methods
that provide signatures of their presence have been pro-
posed and experimentally tested via for instance tun-
neling experiments55,56, interferometry3, point contacts
using the Andreev reflection57 through the detection of
zero-bias peaks58, using the quantum waveguide theory59
which gives the correct bulk-edge correspondence35 and
fractional Josephson currents1,3,60. Also signatures of
the Majorana states may be found in bulk measurements
such as the imaginary part of frequency dependent Hall
conductance61 and the d.c. Hall conductivity itself62.

The existence of topological phases is detected in this
work numerically calculating the winding number and
by showing the existence of edge states at the ends of
the chain. In addition, we calculate the Josephson cur-
rent accross the junction between two superconductors
to identify regimes where the periodicity of the Joseph-
son current on the phase differences between the super-
conductors (original proposal by Kitaev1) or the equiv-
alent situation of a superconducting ring threaded by a
magnetic flux and interrupted by an insulator changes
from the usual value of 2π to a 4π value63. As shown
before1,63–73 the existence of the Majoranas at the edges
allows tunneling of a single fermion at zero-bias leading
to a 4π−periodic current in contrast to the usual Cooper
pair transport accross the junction which leads to the
usual 2π−periodic current. Experimental realization to

detect 4π-periodic Josephson junction has been presented
in Ref. [74] and an application to multiband systems has
recently been presented in Ref. [75].

II. MODEL AND SELF-CONSISTENT
CALCULATIONS

We consider a two-band superconductor with hy-
bridization and triplet pairing in 1D, i.e., a chain of sites
supporting two orbitals, let’s say orbitals A and B. The
pairing between fermions may exist on different bands
(inter-band) or in each band (intra-band) and are always
of p-wave type, in the sense that pairs of spinless fermions
are spatially anti-symmetric. The problem can be viewed
as a generalization of the Kitaev model to two orbitals.
We also have the hybridization term between the orbitals
A and B that may be symmetric or anti-symmetric. The
simplest Hamiltonian in momentum space that describes
those types of superconductivity and hybridization may
be written as H = H0 +Hh+HSC where the kinetic part
is

H0 =
∑
k

{(
εAk − µ̄

)
a†kak +

(
εBk − µ̄

)
b†kbk

}
, (1)

where a†k
(
b†k

)
is the creation operator of spinless fermion

at A (B)-band with momentum k. Also, µ̄ is the chemical
potential and εAk , ε

B
k are the band hopping energies. The

hybridization term is

Hh =
∑
k

{
V (k) a†kbk − V (−k) b−ka

†
−k + h.c.

}
, (2)

where V (k) = 2iVas sin (k) ≡ Vas,k if the hybridization
is anti-symmetric or V (k) = 2Vs cos (k) ≡ Vs,k if the
hybridization is symmetric, and V is the hybridization
amplitude. Finally, the mean-field superconducting con-
tribution to the Hamiltonian is

HSC =
∑
k

{
∆ka

†
kb
†
−k + ∆kb

†
ka
†
−k

+∆A,ka
†
ka
†
−k + ∆B,kb

†
kb
†
−k + h.c.

}
, (3)

with ∆k = i∆ sin (k) where ∆ is the superconduct-
ing inter-band pairing amplitude, and ∆(A,B),k =
i∆(A,B) sin (k) where ∆A and ∆B are the supercon-
ducting intra-band pairing amplitudes. We could
also include a superconducting term that changes
Cooper pairs between different orbitals, which in
terms of two particles interaction may be writ-
ten as

∑
k,k′ gJ (k, k′)

(
b†kb
†
−ka−k′ak′ + a†ka

†
−kb−k′bk′

)
,

where gJ is the interaction strength. Without fluctua-
tion, i.e., in the BCS theory, this term appears as an
additive parameter to ∆A and ∆B, thus besides enhanc-
ing the intra-band superconductivity it does not change
qualitatively the topological properties of the Hamilto-
nian considered here.
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Figure 1. The left panel shows the phase diagram for anti-symmetric hybridization, for different values of chemical potential µ
and hybridization Vas, both normalized by the hopping aplitude t. Phase I is a gapless inter-band superconducting phase. II
is a gapped intra-band superconducting phase. III is a topological insulating phase. IVa shows a trivial gapped inter-band SC.
IVb is a trivial insulating phase. Finally, V is a metallic phase. The phase diagram for the symmetric case is shown on the right
panel. Phase I carries both types of pairings and has non-trivial topological properties. Phase IIa is a gapped superconducting
phase also with both inter- and intra-band pairings, but trivial topological properties. Phase IIb is a normal insulator. Both
phase diagrams are symmetric around µ = 0 and we show the results for g/2 = gA = gB = 1.7. The solid lines represent a gap
closing, while the dashed lines represent a phase separation without closing the gap.

In the more compact BdG form, the Hamiltonian
may be written in the Nambu representation76 as H =∑
kC
†
kHkCk, where C†k =

(
a†kb
†
ka−kb−k

)
and

Hk = −µΓz0 − εkΓzz + ∆kiΓyx

+∆A,k
1

2
(iΓy0 + iΓyz) + ∆B,k

1

2
(iΓy0 − iΓyz)

+Vk · I, (4)

where Γij = τi � sj , ∀ i, j = 0, x, y, z; τ and s are
the Pauli matrices acting on particle-hole and sub-band
spaces, respectively, and s0 = τ0 are the 2 × 2 iden-
tity matrices. Also, for convenience, we have defined
−µ = (1/2)(εAk + εBk )− µ̄ as the chemical potential rela-
tive to the hopping energies of the bands and the hopping
energy (1/2)(εAk − εBk ) = 2t cos (k) ≡ εk as the difference
between the bands energies, where t is the hopping am-
plitude. With respect to the Hamiltonian parameters:
Vk = Vas,kiΓzy if the hybridization is anti-symmetric or
Vk = Vs,kΓzx if the hybridization is symmetric.

The Hamiltonian defined in Eq. (4) can be solved us-
ing BdG transformations. The self-consistent solution
implies that the pairings can be obtained using

∆ = g
1

L

∑
k

i sin (k) (〈akb−k〉+ 〈bka−k〉) , (5)

∆A = gA
2

L

∑
k

i sin (k) 〈aka−k〉 , (6)

∆B = gB
2

L

∑
k

i sin (k) 〈bkb−k〉 , (7)

where g, gA and gB are the strength of the interactions

between fermions in different orbitals, in orbitals A and
in orbitals B, respectively.

A. Phase diagrams

In Fig. 1 we show the phase diagrams for the symmet-
ric and anti-symmetric hybridization. The latter is in-
cluded for comparison since a very similiar diagram was
reported in ref. [77]. The solid lines represent a gap
closing, while the dashed lines represent a phase separa-
tion without closing the gap. As we can see, the consid-
eration of inter-band, intra-band superconductivity and
(anti-)symmetric hybridization results in rich phase dia-
grams.

In the left panel, for anti-symmetric hybridization,
phase I is a gapless superconducting phase, driven by the
inter-band coupling, and it was shown77 to behave like
Weyl superconductor. The phase II is a two-band su-
perconductor with only intra-band couplings. Phase III
is a topological insulator. The phase IVa shows gapped
superconductivity and represents the strong inter-band
coupling superconducting phase. The phase IVb is a triv-
ial insulator. Finally, phase V is a normal metallic phase.
All those phases are symmetric around µ = 0. Since the
intra- and inter-band pairings do not coexist, the phases
with no intra-band pairing are similar to the results pre-
viously obtained77. The main difference results from the
appearance of the intra-band pairing in some regions of
the phase diagram.

The right panel is for the symmetric case. Phase I
and IIa are gapped superconducting phases, with the co-
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existence of inter- and intra-band couplings, but domi-
nated by the inter-band one. Phase IIb is an insulating
phase and there is no SC. All those phases are symmet-
ric around µ = 0. The more interesting phase is phase
I, which allows both types of couplings and shows non-
trivial topological properties. This phase is characterized
by localized edge states and finite winding number, as will
be shown in the next section.

Consider the case of symmetric hybridization (Vs),
when the orbitals angular momenta have equal parities,
like orbitals s and d. In Figs. 1 we show the results for
g/2 = gA = gB = 1.7. First, we notice that the intra-
band SC distinguishes between different bands, since
there is a change of sign between them. Unlike the anti-
symmetric case, here there is a coexistence of inter- and
intra-band SC. Remarkably, the inter-band has the larger
order parameter for all region of parameters. In general,
this indicates that the inter-band SC has higher critical
temperature, which turns out to be responsible for the
superconductivity appearing in the material. Note that
symmetric hybridization is responsible for the emergence
of intra-band SC. Very strong symmetric hybridization
eventually destroys superconductivity.

The strength of the coupling g itself only changes the
superconducting amplitude of the SC phases (inter- or
intra-band ones), thus its choice does not change quali-
tatively the results presented. It is interesting to point
out that the self-consistent results for the superconduct-
ing order parameters may converge to different results
depending on the initial guesses. This is a consequence
of the first order nature of the quantum phase transitions
between the different ground states. Therefore it is nec-
essary to calculate the energy of the different states to
obtain the true ground state for a given set of parame-
ters.

III. TOPOLOGICAL PROPERTIES

A. Winding number in the BDI class

The Hamiltonian of equation (4) has particle-hole sym-
metry and simplified time reversal symmetry for spin-
less fermions78. In the presence of both symmetries,
the Hamiltonian belongs to the BDI class of topologi-
cal systems, and the one-dimensionality guarantees that
the space of the quantum ground state is partitioned into
topological sectors labeled by an integer (Z) number78,79.

Proceeding with the standard calculation the winding
number79,80, the Chiral operator Γxo brings the Hamil-
tonian to the block off-diagonal form

R−1 Hk R =

(
0 q (k)

q† (k) 0

)
, (8)

where R = Γxx − Γzx. Writing a generic Hamiltonian in
the form

Hk =
∑
i,j

hijΓij , i, j = 0, x, y, z, (9)

whose coefficients hij may be extracted from any generic
Hamiltonian H through hij = 1

4Tr (ΓijH), if we apply
the PHS to Eq. (9) as Hk = −Γx0HT−kΓx0 and proceed
with the block off-diagonal calculations described above
we find that

q (k) =
∑
j

cj (hzj + ihyj)σj , j = 0, x, y, z, (10)

where c0 = cx = +1 and cy = cz = −1, σx,y,z are the
Pauli matrices and σ0 is the 2× 2 identity matrix.

The winding number, W , is defined as the number of
revolutions of det [q (k)] = m1 (k) + im2 (k) around the
origin in the complex plane when k changes from −π to
π,

W =
1

2π

ˆ π

−π

∂θ (k)

∂k
dk, (11)

with

θ (k) = arg det [q (k)] = tan−1 m2 (k)

m1 (k)
. (12)

For the generic case considered above we have that

m1 (k) =
∑
j

dj
(
h2
zj − h2

yj

)
and

m2 (k) = −i
∑
j

dj (2hzjhyj) , (13)

where d0 = +1 and dx,y,z = −1.
Results – The topological numbers calculations to the

anti-symmetric case are discussed in ref. [77]. If we com-
pare Eq. (4) – with symmetric hybridization Vs,k – and
Eqs. (13) we have m1 (k) = µ2 −∆2

k −∆2
0,k − V 2

s,k − ε2k
and m2 (k) = −2 (Vs,k∆k + εk∆0,k). We have consid-
ered the case of ∆B = −∆A = ∆0 which came from the
self-consistent results. This suggests that the symmetric
hybridization may induce a topological phase, since we
have non-vanishing m2 even zero chemical potential. To
be sure that the phase is topological we must calculate
the winding number itself, or see if the parametric plot of
m̄1 (k) and m̄2 (k) contains the origin when k ∈ [−π, π].
The results for the winding number and the parametric
plot are shown in Fig. 2 for the parameters Vs = 1.2,
µ = −1.04. This figure shows that the parametric plot
wraps the origin twice; it means that the winding number
in this case is two, W = 2. The results for the winding
number clearly show the topological phase, induced by
symmetric hybridization, and dominated by inter-band
superconductivity for small values of the chemical poten-
tial that grows as the hybridization, Vs, grows.

B. Edge states in a finite chain

In order to find the energy spectrum of a finite chain of
fermions through the BdG transformation we write the
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Figure 2. In the left panel we show the winding number calcu-
lated from the self-consistent results for symmetric hybridiza-
tion, over the phase space of parameters. The red line in
Vs = 0 highlight the fact that the system is gapless in that
region and W = 0. In the right panels we show the normal-
ized parametric plot of real and imaginary parts of det [q (k)].
The number of times det [q (k)] wraps the origin is the winding
number and is illustrated in the right side.

Hamiltonian, Eq. (4) transformed to real space, in the
form

H = C†HC, (14)

where

C =
(
a1 b1 a†1 b†1 · · · aN bN a†N b†N

)T
(15)

and the operators a†i (ai) and b
†
i (bi) create (annihilate) a

fermion in the orbital A and B, respectively, at position
i in the chain. The matrix H is defined as

H =

H11 · · · H1N

...
. . .

...
HN1 · · · HNN

 , (16)

and is comprised by the following (4× 4) interaction ma-
trices
Hr,r = −µΓz0,

Hr,r+1 = −tΓzz − i∆
2 Γyx − i∆0

2 Γy0 + V (r + 1) ,

Hr,r−1 = −tΓzz + i∆
2 Γyx + i∆0

2 Γy0 + V (r − 1) ,

Hr,r′ = 0 ∀ r′ 6= r, r + 1 or r − 1,

(17)
where V (r + 1) = −V (r − 1) = −iV2 Γzy for anti-
symmetric hybridization, and V (r + 1) = V (r − 1) =
V
2 Γzx for symmetric one.
Results – Since we have defined the topological region

of the parameters, we may analyse the zero-energy modes
explicitly through the energy spectrum of a finite chain.
Similar results are shown in ref. [77], then we focus here

Figure 3. Here we show the energy spectrum of the self-
consistent results, for two fixed values of the chemical po-
tential and increasing symmetric hybridization (µ = 0 on (a)
and µ = −1.4 on (b)).

on symmetric hybridization. We have calculated the en-
ergy spectrum for a chain of L = 100 sites, therefore,
we get 4L energies for the spectrum. We have checked
that this size is large enough to prevent finite size effects.
We analyze the energy spectrum for two fixed values of
chemical potential, µ = 0 and µ = −1.4, and increasing
the hybridization according to the self-consistent solution
of Fig. 1b. The results are shown in Fig. 3. What we
immediately see is that the zero-energy states are robust,
i.e., even when µ is non-zero they are present, which char-
acterizes the zero-energy modes in the superconducting
phase. We notice that those states are four-fold degen-
erated. We have checked that they have wavefunctions
that are localized exponentially close to the edges if the
system is large enough.

IV. 4π JOSEPHSON EFFECT

In the last part of previous section we have considered
an open chain, i.e., there was no connection between sites
1 and N . In terms of eq. (17) we have HN,1 = H1,N = 0.
Now we may think of a chain as a ring with a Josephson
junction coupling the ends, see Fig. 4. An extra hopping
term t′ couples the end point of the ring to the first point
via some insulating junction. If a uniform magnetic field
(Φ) flows through this ring, its effect may be captured
by a Peierls substitution in the extra hopping term, t′81.
Thus, the Josephson junction may be represented by the
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Figure 4. Schematic figure illustrating the 1D superconduct-
ing ring with a Josephson junction.

following boundary conditions

HN,1 = H∗1,N =


−e−iφ/2t′ 0 0 0

0 e−iφ/2t′ 0 0
0 0 eiφ/2t′ 0
0 0 0 −eiφ/2t′

 ,

(18)
where the superconducting phase difference φ across the
junction is related to the magnetic flux through the ring
by φ = 2πΦ/Φ0, and Φ0 = h/2e is the superconducting
flux quantum. Notice that t′ is a tunneling amplitude
inversely proportional to a barrier amplitude, across the
junction. As mentioned above this is equivalent to the
original proposal of the Josephson junction between two
different superconductors with different pairing phases
also separated by some tunneling amplitude accross an
insulator (or metal).
Results – we will analyse the topological properties of

the system via Josephson junction scheme (Fig. 4). We
start looking to the excitation spectrum (bogoliubons)
during two pumps for each superconducting phase in the
phase diagram.

The anti-symmetric case has three types of supercon-
ducting phases: intraband gapped SC, interband gapped
SC and interband gapless SC, as shown in Fig. 1a. Both
gapped superconducting phases (II and IVa) show simi-
lar excitation spectra and their typical bogoliubons that
preserves the ground state parity are shown in Fig. 5a.
As expected, there are no level crossings in the excita-
tion spectrum and the current is 2π periodic as we can
see in Fig. 5a for the case of region IVa. In phase I, even
though we have no gap in the bulk spectrum of an infinite
system, it is still possible to calculate the Josephson cur-
rent in a finite one. The junction itself opens up a small
gap in the spectrum if L is not too large and t′ is not too
strong. Of course, in the limit L→∞ the gap closes, but

if the tunneling t′ is too large (or the barrier too small)
the junction just couples both ends analogously to a pe-
riodic boundary condition (i.e., infinite system). Thus,
a typical excitation spectrum for very small energies in
the gap generated by the coupling accross the junction
(positive and negative excitation) is shown in Figs. 5b
and 5c.

Even though Figs. 5b and 5c show no level crossings
during the pumps, we may proceed with the derivative
of the ground state energy respective to the flux φ and
obtain the Josephson current. The results are shown in
Figs. 5e and 5f for two values of the chemical poten-
tial. Clearly, both figures exhibit 4π periodic Josephson
current, even without zero energy level crossings reveal-
ing in some sense the hidden topological nature of this
Weyl-phase.

The results for the symmetric case are shown in Fig. 6,
where the first row shows the fig. 6a for the trivial phase
IIa, whereas figs. 6b and 6c are for the topological phase
I for two values of the chemical potential. Second row of
Fig. 6 shows the current flowing through the junction.
We clearly see that the current has a periodicity of 2π
(one pump) in the trivial phase, Fig. 6d. On the other
hand, the periodicity of the Josephson currents in Figs.
6e and 6f are 4π (two pumps), characterizing the topolog-
ical superconducting phase and providing an alternative
evidence for the presence of Majorana states.

V. CONCLUSIONS

In this paper we have studied a model of a p-wave, one
dimensional, multiband superconductor. This represents
a generalization of the single band model for odd-parity
superconductivity that gives rise to a much richer phase
diagram with a variety of quantum phase transitions.
The odd-parity superconductivity is preserved in this ex-
tension, but inter-band superconductivity is now present
in addition to the intra-band ones. The presence of two-
bands in our model allows us to include hybridization,
increasing the space of parameters. We have considered
symmetric and anti-symmetric hybridizations. Both are
permitted, depending on the parities we choose for the
angular momenta of the two orbitals.

We have calculated the self-consistent solutions for the
inter- and intra-band superconducting order parameters
as functions of the chemical potential and the strength
of the symmetric or anti-symmetric hybridization. The
self-consistent calculation of the order parameters allow
to obtain the T = 0 phase diagram of the system. When
increasing anti-symmetric hybridization, both intra- and
inter-band superconductivity emerge in the phase dia-
gram, but they compete and exclude one another for dif-
ferent values of band-filling. On the other hand, when
increasing the symmetric hybridization, both types of su-
perconductivity are present and they coexist. An inter-
esting result is that inter-band superconductivity has the
highest value of order parameter, indicating that it has
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Figure 5. Results for anti-symmetric hybridization as we vary the tunneling phase φ: i) First row shows the excitation spectra
that preserve the parity of the superconductor. ii) Second row shows the Josephson current flowing through the Josephson
junction. Here we have used L = 250 and t′ = 0.1.

Figure 6. Results for the case of symmetric hybridization case as we vary the tunneling phase φ: i) First row shows the
excitation spectrum that preserves the parity of the superconductor. ii) Second row shows the Josephson current through the
Josephson junction. Here we have used L = 150 and t′ = 0.1.

the higher critical temperature and makes it responsible
for the superconductivity appearing in the system.

According to a general approach for obtaining the
winding number of a system described by 4 × 4 matri-
ces, a dominant inter-band coupling with symmetric hy-
bridization between bands induces a topological super-
conducting phase. In order to further clarify our results
concerning the nature of the topological phases and their
end states, we have analyzed the energy spectrum of a

finite system.

In order to provide further evidence for the presence
of edge Majorana states we have shown that in the topo-
logical phases one finds a 4π-periodic (fractional) Joseph-
son current as one changes the magnetic flux accross a
ring composed of the superconductor with an insulator
inserted between its ends. The result is consistent with
the results for the winding number and edge states for
the topological phase in the case of symmetric hybridiza-
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tion. In addition, we also found the same 4π-periodic
Josephson current in the hidden topological phase identi-
fied previously as Weyl-type in the case of anti-symmetric
hybridization.

As a final note, we highlight that symmetric hybridiza-
tion in addition to odd-parity inter-band superconduc-
tivity stabilizes a topological non-trivial phase, which
presents localized states at the ends of the chain.
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