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Raman spectroscopy was used to measure the frequencies of phonons in Si24 with an open clathrate
structure at temperatures from 80K to 400K, with simultaneous pressures of 0 to 8GPa. The
frequency shifts of the different phonons were substantially different under either temperature or
pressure. The quasiharmonic behavior was isolated by varying pressure at low temperature, and the
anharmonic behavior was isolated by varying temperature at low pressure. Phonon modes dominated
by bond bending were anomalous, showing stiffening with temperature and softening with pressure.
Both the quasiharmonic behavior and the anharmonic behavior changed markedly with simultaneous
changes in temperature, ∆T , and pressure, ∆P . With ∆T=320K and ∆P=8GPa, some frequency
shifts that scaled with the product ∆T ∆P were as large as the shifts from ∆T and ∆P alone. The
thermodynamic entropy of this material likely has a dependence on ∆T and ∆P that cannot be
obtained by adding effects from quasiharmonicity and phonon-phonon anharmonicity.

I. INTRODUCTION

I.1. Silicon

For any material there exists a causal relationship be-
tween structure and properties, whereby different modi-
fications of the same composition may exhibit strikingly
different attributes. For the case of silicon, the thermo-
dynamic ground state at ambient conditions is the di-
amond cubic (DC) phase. This structure possesses an
indirect band gap of 1.1 eV, and combined with a stable
native oxide layer and large elemental abundance, DC-Si
is arguably the most important semiconducting material
in modern technology. Long-standing questions for sili-
con remain relevant, however, particularly with regard to
overcoming intrinsic limitations of the fundamental indi-
rect band gap. The integration of optical and electronic
function on a single silicon wafer has been of enduring in-
terest to the semiconductor industry1–4, for example, and
many recent calculations suggest metastable, low-energy
forms of silicon with properties that could potentially ac-
commodate this possibility (see for example5–9).
Recently, a new allotropic modification of silicon was

produced using a high-pressure precursor method10. This
phase, called Si24, contains 24 silicon atoms distributed
over three crystallographically unique Wyckoff positions
in an orthorhombic Cmcm unit cell that is topologically
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FIG. 1. (Color online)Unit cell of Si24, with colors indicating
different crystallographic sites.

equivalent to the zeolite structure type CAS (see Fig. 1).
In addition to the unique structure with large channels
that propagate down the a-axis, the electronic structure
is of particular interest. While Si24 is formally an in-
direct band gap semiconductor (1.3 eV), the magnitude
of a dipole-allowed direct gap is only a few hundredths
of an eV greater than the indirect gap, suggesting po-
tential for future photovoltaic and other optoelectronics
applications.
The thermodynamic functions that determine the

structure and properties of a material depend on atomic
vibrations, quantized as phonons. Phonons are, in fact,
responsible for the majority of entropy in most materials
at moderate temperature and can give rise to anoma-
lous changes in thermal and mechanical properties. The
lattice dynamics of Si24 are much less well understood
than for DC-Si11–13. Total energy calculations based on
density functional theory at zero temperature indicate
that Si24 is metastable with respect to DC-Si by only
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0.09 eV/atom at atmospheric pressure, and calculations
of phonon dispersions indicate that Si24 should remain
mechanically stable up to 10GPa10.
Unlike DC-Si which exhibits only one Raman-active,

zone-center phonon (T2g), Si24 possesses a rich Raman
spectrum with 18 active modes (6Ag+3B1g+3B2g+6B3g)
formally allowed by the crystal structure. A study of
these modes under varying conditions of pressure and
temperature provides the opportunity to approach ther-
modynamic quantities such as entropy, and provides
insights into intrinsic mechanical and thermal proper-
ties. Related open-framework materials such as type-II
clathrate (Si136) have been observed to exhibit interest-
ing features such as negative mode Gruneisen parameters
and negative thermal expansion at low temperatures14.

I.2. Phonons at T and P

It is generally expected that atomic vibrational fre-
quencies increase with pressure. The Grüneisen param-
eter for the ith phonon mode is defined as fractional
change of the phonon frequency per fractional change in
volume

γi ≡ −

V

ωi

(

∂ωi

∂V

)

T

. (1)

Usually γ is expected to be a positive number, so fre-
quencies are expected to increase (stiffen) with reductions
in volume. When thermal phonon shifts are attributed
solely to thermal expansion, the “quasiharmonic approx-
imation” (QHA) is obtained15. The QHA assumes that
phonon modes are harmonic, non-interacting, and their
energies depend only on the volume of the crystal.
Another effect of temperature on vibrational frequen-

cies in non-harmonic interatomic potentials is “anhar-
monicity,” which occurs even in the absence of thermal
expansion. Effects of anharmonicity are found in molecu-
lar dynamics calculations at elevated temperatures, using
accurate shapes of interatomic potentials.
An analytical approach to anharmonicity using many-

body theory16–19 is also successful for modest anhar-
monicity. The magnitude and sign of these shifts origi-
nate with “three-phonon” processes where one phonon
transforms into two while conserving energy and mo-
mentum. Four-phonon processes can also be important.
These “phonon-phonon interactions” are proportional to
the strength of the cubic and quartic terms in the poten-
tial energy of the phonon mode. A key result from many-
body theory that we exploit below is that the anharmonic
shifts of phonon frequencies are linear with temperature,
parameterized for the ith mode by

Ai ≡
1

ωi

(

∂ωi

∂T

)

V

. (2)

A subtlety occurs in crystals with inversion symme-
try at all atom sites, so an odd cubic term in the dis-
placement potential is impossible. Nevertheless, the cu-
bic term contributes in second order, where it competes

with the quartic term. For Si24, however, there are many
vibrational modes having atom displacements without in-
version symmetry, so the cubic term can occur in first
order. This could give a large anharmonicity to Si24.
A separation of quasiharmonicity and anharmonicity is

possible by assuming each vibrational frequency ωi(V, T )
is a function of volume and temperature. For small
changes in V or T , we expect a change in frequency

∆ωi =

(

∂ωi

∂V

)

T

∆V +

(

∂ωi

∂T

)

V

∆T . (3)

The partial derivatives are identified with physical effects
from the Grüneisen parameter γi of Eq. 1 and from the
anharmonicity that causes frequency shifts with temper-
ature

∆ωi = −γiωi

∆V

V
+ Aiωi∆T . (4)

The ∆V in Eq. 4 originates with a change in ap-
plied pressure ∆P and with a change in temperature ∆T
through thermal expansion

∆V

V
= −

∆P

B
+ β∆T , (5)

where B is the bulk modulus and β the volume thermal
expansivity. These two terms give the “quasiharmonic
shifts” when substituted into Eq. 3. with quasiharmonic-
ity and anharmonicity

∆ωi = −γiωi

∆P

B
− γiβ∆Tωi +Aiωi∆T . (6)

Equation 6 seems to work well when ∆P and ∆T are
small. It has been much less explored when ∆P and
∆T are large, although the geophysics community has
approached this problem in a number of ways20,21.
We performed Raman spectroscopy on Si24 in a

diamond-anvil cell at pressures from 0 to 8GPa and si-
multaneously at temperatures between 80K and 400K.
Frequency shifts were readily obtained for seven phonon
modes, but the signs and magnitudes of these shifts were
distinctly different. Furthermore, the data showed that
the parameters γi and Ai in Eq. 6 could not be treated as
constants. The Grüneisen parameters γi depend strongly
on temperature, and the anharmonicity parameters Ai

depend strongly on volume. Finally, implications for
thermodynamic stability at high temperatures and pres-
sures are suggested.

II. METHODS

Samples of Si24 were prepared as described
previously10. In short, the polycrystalline Na4Si24
precursor was prepared at 8GPa and 1125K and recov-
ered to ambient conditions. Sodium was extracted under
high vacuum at 400K. After washing with ethanol and
water, small (50×50×10 µm3) pieces of phase-pure Si24
were selected from the bulk sample. The presence of



3

residual sodium within the structure was not detectable
by powder X-ray diffraction, Raman spectroscopy mea-
surements, or by X-ray spectroscopy methods employed
previously10. We estimate the residual sodium content
to be less than 0.1 at.% based on comparisons with
previous measurements utilizing energy-dispersive X-ray
spectroscopy10.

Raman spectroscopy measurements were performed in
a gasketed, symmetric diamond-anvil cell (DAC) with
helium used as the pressure-transmitting medium. Ex-
periments were also perfomed using argon as the pres-
sure medium (see supplemental information). A 532nm
diode laser was used as the excitation source and fo-
cused onto the sample using a 20× long-working-distance
objective lens. The power at the sample was approxi-
mately 10mW. Scattered light was collected in a 180◦

back-scatter geometry and focused onto a 50mm con-
focal pinhole, which served as a spatial filter. This
light was then passed through two narrow-band notch fil-
ters (Ondax, SureBlock), and focused onto the entrance
slit of a spectrograph (Princeton Instruments, SP2750)
in which light was dispersed by an 1800gr/mm grat-
ing and detected with a liquid-nitrogen-cooled charge-
coupled device (Princeton Instruments, Plyon). Pressure
was measured using the ruby fluorescence method (quasi-
hydrostatic scale)22. The DAC was placed in a liquid
nitrogen cryostat for cooling and heating. Samples were
measured at temperatures from 80K to 400K and pres-
sures from 0GPa to 8GPa.
The Raman-active modes were calculated by density

functional perturbation theory as described previously10.

A Brillouin zone sampling grid with 2π×0.04 Å
−1

inter-
vals was used with a plane basis set cutoff of 500 eV.
The Raman frequencies were calculated for zero tem-
perature in the harmonic approximation, and the results
were compared successfully to experimental frequencies
in Ref. 10. To obtain mode Grüneisen parameters γi,DFT

as defined in Eq. 1, Raman frequencies were calculated
at rescaled volumes of the unit cell, corresponding to a
pressure range of approximately 1GPa.

III. RESULTS

Six representative Raman spectra of Si24 are shown
in Fig. 2. The Raman spectrum at 80K under 0GPa
pressure appears to have 11 peaks, but the ninth peak

(with the A
(5)
g ) consists of two overlapping peaks. All

twelve Raman-active modes from B1g, B2g, B3g and Ag

in the spectra were used to qualitatively analyze the ef-
fect of temperature and pressure on line positions. At
elevated temperatures and pressures, several of the weak
modes either could not be resolved from the background,
or their positions could not be determined reliably. Seven
peaks from 1 B3g, 1 B1g and 5 Ag modes were sufficiently
distinct to allow quantitative measurements of their fre-
quencies, which were in a good agreement with prior ex-
perimental and theoretical results10. After background
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FIG. 2. (Color online) Raman spectra of Si24 at selected
temperatures and pressures.

subtraction, the spectral peaks were fitted to Lorentzian
functions to find their centroids, which are presented in
Table I.
The fractional shifts of frequency with pressure and

temperature are shown in Fig. 3. For all modes with
frequencies ω > 200 cm−1, the Raman frequencies stiffen
with increased pressure and soften with increased tem-

peratures, as is normally expected. The mode B
(1)
3g of

lowest energy shows the opposite trend, however, and the

mode B
(1)
1g shows this anomalous tendency, to a lesser de-

gree. In Fig. 3a the effects of temperature are shown with
arrows. Temperature causes a reduction of the pressure
shifts for all modes, but these changes are in opposite
directions for the low- and high-energy modes.
Figure 3b shows the temperature-dependence of the

Raman modes. At a pressure of 0GPa, all modes de-
crease with temperature in a conventional way, as indi-
cated by the solid (red) curve. At a pressure of 8GPa,
however, the temperature dependence of all modes be-

come different, with the B
(1)
3g and B

(1)
1g modes showing a

peculiar thermal stiffening.
For working with experimental data, the mode

Grüneisen parameter of Eq. 1 can be written as

γiT =
B

ωi

(

∂ωi

∂P

)

T

. (7)

These mode Grüneisen parameters are functions of vol-
ume alone, and are comparable to the calculated param-
eters γi,DFT listed in Table II. As shown in Fig. 3a, the
curvatures of Bg modes indicate a noteworthy pressure
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FIG. 3. (a) Fractional frequency shifts of Raman modes with
pressure. The Ag modes stiffen under higher pressure as gen-
erally expected, but the Bg modes soften. The arrows at the
ends of the curves show the change of ω(P )/ω(0GPa) between
80K and 400K. (b) Fractional frequency shifts of Raman modes
with temperature. The red curve is common for all four modes
at a pressure of 0GPa. The black curves are for 8GPa. Note

the anomalous thermal stiffening of the B
(1)
3g and B

(1)
1g modes at

8GPa.

dependence of Grüneisen parameters, These are shown
in Fig. 4 for several modes. The results summarized in
Fig. 5 and Table II show the different pressure-dependent
anharmonicites of Raman active modes.

IV. DISCUSSION

The mode Grüneisen parameter γi (Eq. 7) accounts
for frequency shifts with volume at constant temper-
ature. A complementary phenomenon from phonon-
phonon anharmonicity is the frequency shift with tem-

TABLE I. Frequencies of Raman modes labeled in Fig. 2.

Mode 80K 300K 400K

0GPa 8GPa 0GPa 8GPa 0GPa 8GPa

B
(1)
3g 127.1 96.9 125.8 111.4 125.8 115.4

A
(1)
g 164.7 166.9 163.4 163.7 163.1 163.2

B
(1)
1g 173.9 168.8 172.3 172.8 172.2 173.3

A
(2)
g 374.5 396.5 371.2 397.5 370.7 394.0

A
(3)
g 405.8 445.5 402.4 440.4 401.9 434.8

A
(5)
g 483.4 533.1 479.3 523.1 478.4 516.3

A
(6)
g 535.8 605.4 531.1 588.1 530.4 578.6

perature at constant volume16,18,19,23. At low pressures,
these mode anharmonicites Ai can be isolated from the
effects of thermal expansion when the Grüneisen param-
eter is known21. Such an analysis with independent
terms linear in ∆T and ∆P proved too restrictive for
the present data set because the parameters changed as
shown in Figs. 4 and 5. We were forced to use a more
general analysis of the phonon frequencies.
We allowed higher-order P−T dependences for the Ra-

man modes. Starting with Eq. 6, the frequency variation
with P and T can be written as

∆ωi

ωi

= −γi
∆P

B
− γiβ∆T + Ai∆T . (8)

Using definitions of γi and Ai in Eq. 1 and Eq. 2, and
the additional definitions

gT ≡ V

(

∂γ

∂V

)

T

= −B

(

∂γ

∂P

)

T

aT ≡ V

(

∂A

∂V

)

T

= −B

(

∂A

∂P

)

T
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modes are denoted with the solid markers and open markers
respectively.
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the mode frequency ωi is a second order function of pres-
sure and temperature, as shown in the Supplemental
material24

∆ωi

ωi

=
[γi0
B

∆P
]

1
+ [(Ai0 − γi0β)∆T ]2 −

[aiT
B

∆T∆P
]

3

−

[ giT
2B2

(∆P )2
]

4
(9)

The first two terms in square braces, linear in ∆P and
∆T , are essentially the same as Eq. 4. The bulk modu-
lus B was set to 90GPa for the open framework clathrate
silicon25 and we used the volume thermal expansion co-
efficient β = 1.2× 10−5K−1 reported by Kurakevych, et
al.26.
The two parameters of Eq. 9 for selected modes were

asssessed by fitting to all experimental data from a Ra-
man mode, and results are given in Table II. Using these
parameters, the four terms in square braces in Eq. 9,
labeled as [1], [2], [3], [4], (with numbers corresponding
to subscripts on the square brackets in Eq. 9) were cal-
culated, and Fig. 6 gives their contributions for ∆ω/ω
for the range of ∆P = 8GPa and ∆T = 320K.
As expected, the pure pressure dependence of term

[1] gives the dominant contribution to ∆ω/ω. What is
surprising is that the term [3], proportional to ∆P∆T is
also a main contributor to ∆ωi/ωi for the Bg modes.
Energetic considerations are perhaps appropriate. In

a temperature interval of ∆T = 320K, the change in
characteristic thermal energy is kB∆T = 27meV/atom,
and a change in pressure of 8GPa corresponds to an en-
ergy P∆V = 100meV/atom. For both modes Bg and
Ag, the shifts from ∆P are larger than that from ∆T .
Nevertheless, thermal phonon-phonon anharmonicity is
surprisingly large in Si24 at these low temperatures, per-
haps owing to the low symmetry of the clathrate crystal
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FIG. 5. Fitted anharmonicity parameters Ai for selected
seven modes as a function of pressure at 0K, where Bg and Ag

modes are denoted with the solid markers and open markers
respectively.

TABLE II. Grüneisen parameters, anharmonicity parameters
and their first order derivatives defined in Eq. 9. All values
are evaluated at the initial condition (T0 = 0K, P0 = 0GPa).

γi Ai −giT /B −aiT /B γi,DFT

K−1 GPa−1 (KGPa)−1 at 1GPa

B
(1)
3g –2.087 –5.913 ×10−5 –0.348 7.313 ×10−5 –1.80

A
(1)
g 0.376 –2.677 ×10−5 –0.040 –0.594 ×10−5 0.10

B
(1)
1g –0.123 –3.477 ×10−5 –0.075 1.505 ×10−5 –0.71

A
(2)
g 0.788 –2.333 ×10−5 –0.035 0.227 ×10−5 0.66

A
(3)
g 1.232 –1.658 ×10−5 –0.026 –0.563 ×10−5 1.08

A
(5)
g 1.237 –1.866 ×10−5 -0.012 –0.850 ×10−5 1.15

A
(6)
g 1.527 –1.483 ×10−5 -0.006 –1.387 ×10−5 1.42
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FIG. 6. Contributions to frequency shifts from five terms in
Eq. 9 with ∆P = 8GPa, ∆T = 320K.

structure. More surprising, however, is the large effect
of term [3], proportional to ∆P∆T , on the phonon fre-

quency shift of the B
(1)
3g mode.

Phonon shifts proportional to ∆P∆T could, con-
ceptually, arise from a temperature dependence of the
Grüneisen parameter, or a pressure dependence of the
anharmonicity from phonon-phonon interactions. Both
are proportional to (V/ω0) ∂

2ω/(∂T ∂V ), so we interpret
both cross-terms with aiT as follows. Phonon-phonon an-
harmonicity originates from processes where a phonon is
created or annihilated as it absorbs, or emits, two or more
other phonons. These elementary processes must satisfy
kinematical conditions that conserve energy and momen-
tum, and these kinematical conditions depend on details
of the phonon dispersions in the material. Because the
phonons in different dispersions have different Grüneisen
parameters, the separations in energy and momentum
of the phonons will change with ∆P , contributing to
aiT . The vertex interactions that give the strengths of
phonon-phonon interactions may also change with ∆P .
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FIG. 7. Vibrational motions of (a) B
(1)
3g and (b) A

(6)
g .

The atom displacements in the B
(1)
3g and A

(6)
g modes,

obtained from the DFT calculations, are shown in Fig.

7. The interlayer B
(1)
3g vibrational mode involves more

bending of interatomic bonds, whereas bond stretching

dominates most other modes such as A
(6)
g . It is typi-

cal for bond stretching in solid crystals to be associated
with positive Grüneisen parameters and positive thermal
expansion27. When the displacements between a neigh-
boring pair of atoms lie along the direction of their sep-
aration as in Fig. 7b, the atoms spend more time in
the softer part of their interatomic potential, which is at
larger separations. Thermal expansion is expected, and

the frequencies soften with temperature as does the A
(6)
g

mode, for example.

Compared to the Ag modes, the B
(1)
3g and B

(1)
1g modes

involve more bending of bonds than stretching of bonds.
Sometimes these bending modes are associated with
anomalous Grüneisen parameters and even with negative
thermal expansion28–30, but proper interpretations would
require full molecular dynamics simulations. Neverthe-
less, it seems possible that the bond bending dynamics

of the B
(1)
3g mode could be responsible for its negative

Grüneisen parameter31. It is surprising, however, that

the B
(1)
3g mode softens so strongly with compression, and

this occurs at low temperatures where the phonon oc-
cupancy is small (See Supplemental material24 Fig. 1).
At higher temperatures, and larger atom displacements

in the B
(1)
3g mode, this anomalous behavior is reduced in

magnitude.

Atom vibrations are the largest contributor to the ther-

modynamic entropy of Si24, as they are for diamond cu-
bic Si. A comparison is interesting. Diamond cubic Si
has a large pure anharmonicity at ambient pressure, sev-
eral times larger than quasiharmonic effects from thermal
expansion13. At ambient pressure, the average thermal
shift of the phonon modes of Si24 (red line in Fig. 3b)
is nearly the same as for the phonons in diamond cubic
Si, measured by inelastic neutron scattering. At ambient

temperature, the pressure shift of the A
(6)
g mode of Si24

is approximately the same as the pressure shift of the sin-
gle Raman mode of diamond cubic Si12 , although these
authors also report some negative Grüneisen parameters
for two-phonon Raman features.
The clathrate structure of Si24 transforms to the β-

Sn structure above 12GPa and 300K, which is not far
outside our range of measurements. The transformation
depends on properties of the β-Sn structure, but it is
plausible that it is more stable than the clathrate struc-
ture at all temperatures and pressures. The transfor-
mation could be facilitated by the larger amplitudes of
low-energy phonon modes in the clathrate structure that
occur with increased pressure.
The vibrational entropy depends on all phonon modes

in a material, and we have measured only seven of them.
Nevertheless, the present results indicate that under si-
multaneous T and P , the thermodynamic entropy of Si24,
and likely other materials, cannot be reliably obtained by
adding contributions from effects of T and P alone.

V. CONCLUSION

The different Raman-active phonon modes in Si24 have
markedly different shifts in frequency with volume and
with temperature. The low-energy bending modes have
frequency shifts of opposite sign with P and T as the
higher-energy stretching modes. Over a range of T of
320K and a range of P of 8GPa, the effects of tem-
perature and pressure caused comparable shifts of Ra-

man modes. However, for the B
(1)
3g and B

(1)
1g modes the

Grüneisen parameters γi depended strongly on temper-
ature, and the anharmonicity parameters Ai depended
strongly on volume. Consequently, the frequency shifts
proportional to ∆P∆T were comparable to the effects of
∆P and ∆T alone. The thermodynamic entropy of Si24
likely depends significantly on the product ∆T ∆P , and
not just on ∆T and ∆P alone.
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