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Abstract

We present the results of exact numerical calculations of the dielectric properties of

tetrathiafulvalene-p-chloranil (TTF-CA) using the extended Hubbard model. The electronic po-

larization P̄el of the ionic ground state is obtained by directly calculating the adiabatic flow of

current. The direction of P̄el is opposite to polarization P̄ion owing to ionic displacement, and |P̄el|

is much larger than |P̄ion|, showing that in the ionic phase, TTF-CA is an electric ferroelectric.

Furthermore, we numerically calculate the dynamics induced by THz pulse excitation. In the

ionic phase, there exists an almost exact linear relationship between ∆ρ(t) and E(t), and between

∆Pel(t) and E(t) in the realistic range of the excitation magnitude, where ∆ρ(t) (∆Pel(t)) is the

charge transfer (electric polarization) variation induced by the THz pulse, and E(t) is the electric

field of the pulse at time t. The absolute value of ∆ρ(t) is much smaller in the neutral phase than

that in the ionic phase. These results are consistent with those of experiments, and originate from

the adiabatic nature of the THz pulse excited state.

PACS numbers: 77.80.-e, 82.53.Xa, 73.20.Mf, 78.30.Jw
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I. INTRODUCTION

Ferroelectric materials are widely used in various devices such as a random access mem-

ory, capacitors, sensors, piezoelectric actuators, and optical devices.1–3 In conventional ferro-

electrics, electric polarization is governed by the rotation of polar molecules (order-disorder-

type) or displacement of ions (displacive-type). Recently, ferroelectricity that arises from

electron transfer has been observed in some materials. This new type of ferroelectricity is

termed electronic ferroelectricity.4,5 Multiferroicity,6–12 where the ferroelectricity is driven

by spin ordering, and charge-order-driven ferroelectricity,13–19 where electric polarization is

caused by an electronic charge order without inversion symmetry, are representative exam-

ples of electronic ferroelectricity. If their ferroelectric polarization could be controlled in

the picosecond time domain, ferroelectric materials could be used for advanced switching

devices. The typical time constants of polarization change for conventional ferroelectric

materials vary from microseconds to milliseconds, but much faster polarization switching is

expected for electronic ferroelectricity.

TTF-CA is an organic charge-transfer compound composed of an alternately stacked

donor (D), tetrathiafulvalene (TTF), and acceptor (A), p-chloranil (CA).20 TTF-CA exhibits

a neutral to ionic phase transition at Tc ≃ 81 K.20–26 The electronic structure of these two

phases is schematically shown in Fig. 1. In the ionic phase, an electron is transferred from

D to A, and the phase is stable when the electrostatic energy gain overcomes the energy

cost of molecular ionization. Because of orbital hybridization between D and A, the charge

transfer ρ̄ from A to D is not 1 (0), and ρ̄ ∼ 0.6 (ρ̄ ∼ 0.3) in the ionic (neutral) phase.27,28

Dimerization occurs in the ionic phase.29–31 Pairs of D and A connected by shorter bonds

are indicated by the oval in Fig. 1.

Previously, TTF-CA in the ionic phase had been regarded as a displacive-type ferro-

electric, the polarization of which results from the displacement of static point charges of

ions.32,33 However, recent experimental P − E measurements34 and theoretical studies35–38

have revealed that the direction of the net polarization is opposite to the ionic displacement,

and the absolute value of net polarization is much larger than that due to the ionic displace-

ment. This shows that ionic phase TTF-CA is an electronic ferroelectric, the polarization

of which mainly originates from charge transfer between D and A.

Recently, Miyamoto et al. carried out THz-pump optical-probe and SHG-probe measure-
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FIG. 1: Schematic representation of the electronic structures of the (a) neutral and (b) ionic phases

of TTF-CA. The horizontal lines show the highest occupied molecular orbital of D and the lowest

unoccupied molecular orbital of A, and the arrows represent the electron spins. Neutral (ionic) D

and A are denoted by D0 and A0 (D+ and A−), respectively.

ments on TTF-CA, and showed a linear relationship between ∆ρ(t) and E(t) and between

∆Pel(t) and E(t), where ∆ρ(t) (∆Pel(t)) is the charge transfer (electronic polarization) vari-

ation induced by the THz pulse, and E(t) is the electric field waveform of the THz pulse

at time t.39 This result indicates that the polarization amplitude can be modulated on the

picosecond time scale with a THz pulse. This opens up the possibility of the application of

this material to optical switching.

However, the origin of the instantaneous response has not been clarified yet. Therefore,

in this work, we theoretically investigate the dynamics induced by THz pulse excitation from

numerical calculations in the extended-Hubbard model for TTF-CA. There have been several

works on the THz pulse induced dynamics in the Hubbard-like model for one-dimensional

Mott insulators.40,41 The THz pulse induced dynamics is essentially different from that in-

duced by a light pulse, and interesting results such as doublon-hole pair production, and

switching of Coulomb interaction from repulsive to attractive, have been obtained. It is

found in the present work that the experimental results are reproduced well by the numer-

ical calculations, and the adiabatic response is the origin of the instantaneous charge and

dielectric response of TTF-CA to a THz pulse.
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II. MODEL

We adopt the extended Hubbard Hamiltonian for TTF-CA coupled with the electric field

of a THz pulse. We consider a half-filled periodic 1D chain with system size N =14. We

first introduce the following set of binary electron operators:

ρ̂σn,m = c†m,σcn,σ (1)

where c†n,σ (cn,σ) creates (annihilates) an electron of spin σ at site n. Using this notation,

the Hamiltonian is given by

H(t) =
N∑

n=1,σ

α′(−1)nρ̂σn,n +
N∑

n=1,σ

(β̄ + (−1)nβ ′)(ρ̂σn+1,ne
iĀ(t) + ρ̂σn,n+1e

−iĀ(t))

+ U
∑
n

ρ̂↑n,nρ̂
↓
n,n + V

∑
n,σ,σ′

ρ̂σn,nρ̂
σ′

n+1,n+1, (2)

where D (A) is placed at the odd–numbered (even–numbered) sites. We adopt standard

notation for the Coulomb integral and the transfer integral in quantum chemistry.42 The

first term describes the site energy, where 2α′ shows the difference in orbital energy between

the highest occupied molecular orbital of D and the lowest unoccupied molecular orbital of

A. The second term describes the transfer of electrons, and the electron–light coupling is

introduced as the Peierls phase into the transfer integrals, where β̄−β ′ (β̄+β ′) is the transfer

integrals for a shorter (longer) bond when Ā(t), the dimensionless vector potential at time

t, is 0. A shorter (longer) bond is placed at the odd–numbered (even–numbered) bond,

and |β ′| shows the magnitude of bond length alternation. The third and the fourth terms

describe the on-site Coulomb interaction and the Coulomb interaction between neighboring

sites, respectively, where U is the on-site Coulomb interaction energy and V is the Coulomb

interaction energy between neighboring sites. The electric Hamiltonian He is given by H(t)

for Ā(t) = 0, and the ground state of He is denoted by |φ0〉. We numerically calculate |φ0〉

using the Lanczos method.

We consider the dimensionless vector potential Ā(t) of a half-cycle pulse given by

Ā(t) =
Ā

2
{1 + tanh(

t

D
)}, (3)

where Ā is the amplitude, and D is the duration time. The vector potential A(t) is given

by A(t) = Ā(t)/(ea), where e is the elementary charge, and a = 3.6 Å29 is the average lat-

tice spacing along the one-dimensional direction. We numerically solve the time-dependent
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Schrödinger equation subject to the pulse with the initial condition |ψ(−∞)〉 = |φ0〉, where

|ψ(t)〉 is the solution at time t.

The elements of the single density matrix for |ψ(t)〉 are denoted by ρσn,m(t) =

〈ψ(t)|ρ̂σn,m|ψ(t)〉, while those for |φ0〉 are denoted by ρ̄σn,m = 〈φ0|ρ̂
σ
n,m|φ0〉. The expecta-

tion values of the considered physical quantities are given by these.

Because all the even-numbered (odd-numbered) sites are equivalent, the charge distribu-

tion of |ψ(t)〉 (|φ0〉) can be described by the charge transfer ρ(t) (ρ̄) from D to A, where

ρ(t) =
∑

σ ρ
σ
2,2(t) and ρ̄ =

∑
σ ρ̄

σ
2,2. In the ionic (neutral) phase, ρ̄ is nearly equal to one

(zero). The charge transfer ρ(t) can be decomposed into two parts as

ρ(t) = ρ̄+∆ρ(t), (4)

where ∆ρ(t) is the charge transfer variation induced by the THz pulse.

III. RESULTS

We first determine the parameters for the neutral phase and the ionic phase. Because

bond length alternation does not occur, β ′ = 0 holds in the neutral phase. It has been shown

that the light absorption spectrum of the neutral phase can be reproduced well with the

following parameters: β̄ = −0.17, α′ = 0.15, U = 2.41, and V = 1.07.43 Here and hereafter,

we use eV as the unit of energy. The above values of β̄, U and V are adopted for both the

neutral and ionic phases. To determine α′ and β ′, we calculate the dependence of the light

absorption spectrum α(ω), ρ̄, and ∆ρ(t) on them.

The α′ dependence of ρ̄ for β ′ = 0 and 0.02 is shown in Fig. 2. In the small (large) α′

region, ρ̄ ≃ 1 (ρ̄ ≃ 0.1) holds, and the ground state is an ionic (a neutral) state. In the

phase boundary region between these two regions, ρ̄ decreases rapidly with increasing α′.

The values of α′ that reproduce the experimentally observed values ρ̄ = 0.3 and ρ̄ = 0.6

for the neutral and ionic phases, respectively,27,28 are both in the phase boundary region.

However, because |∆ρ(t)| is much larger than the experimentally estimated value in the

phase boundary region as will be shown later, we adopt α′ outside this region.

In the ionic phase, we adopt the parameters α′ = 0.13 and β ′ = 0.02. These values

reproduce α(ω) and ∆ρ(t) reasonably, but give ρ̄ = 0.93, which is significantly larger than

that experimentally observed. Furthermore, the ratio |β ′/β̄| = 0.14 is consistent with the

5



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.05  0.1  0.15  0.2  0.25
ρ-

α′

β′=0.02
β′=0

FIG. 2: (Color online) The α′ dependence of ρ̄ for β′ = 0 and β′ = 0.02.

difference between the length of the longer and shorter bonds.29 Amuch larger ratio (|β ′/β̄| ≃

0.5) is proposed from numerical calculations of the electron-lattice couple system.44 However,

such large |β ′| results in α(ω) being greatly different from that observed experimentally.

In the neutral phase, we adopt α′ = 0.158 and β ′ = 0, which reproduce α(ω) well. These

values give ρ̄ = 0.11, which is significantly smaller than the experimentally observed value.

These parameters are consistent with previous theoretical works.26,35,45–49

A. electric polarization of the ionic phase ground state

In this section, we calculate the electronic polarization per unit cell P̄el of the ionic ground

state. It should be emphasized that P̄el cannot be determined from the charge distribution

in the unit cell, but it can be determined from the adiabatic flow of current.50–53 The current

can be calculated from the Berry phase in models based on density functional theory,50,54

and other methods have been proposed.55,56 In this paper, it is directly calculated from

the current for the many-body wave function to fully take the strong correlation effect into

account. The current operator în for bond n, which connects sites n and n + 1, is given by

în(t) = −ie
∑
σ

(β̄ + β ′(−1)n)(ρ̂σn+1,ne
iĀ(t) − ρ̂σn,n+1e

−iĀ(t)). (5)

The expectation values in(t) = 〈ψ(t)|̂in(t)|ψ(t)〉 satisfy the equation of charge conservation

∂

∂t
{e

∑
σ

ρσn,n(t)} = in(t)− in−1(t). (6)
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We introduce an adiabatic parameter λ that scales the electronic parameters leading

from the neutral ground state (λ = 0) to the ionic ground state (λ = 1). We consider the

electronic Hamiltonian He(λ) with the scaled parameters, where α′ = 0.158(1− λ) + 0.13λ

and β ′ = 0.02λ. The ground state of He(λ) is denoted by |Φ0(λ)〉. Namely, |Φ0(1)〉 (|Φ0(0)〉)

is the ground state of the ionic (neutral) phase. We adiabatically change λ(t) from zero to 1

with large time interval T by assuming the relation λ(t) = t/T , and solve the time-dependent

Schrödinger equation

i
∂

∂t
|Ψ(t)〉 = He(λ(t))|Ψ(t)〉, (7)

with the initial condition |Ψ(0)〉 = |Φ0(0)〉. Because He(0) has inversion symmetry, the

electronic polarization is zero for the neutral ground state |Φ0(0)〉. Therefore, the electronic

polarization P̄el of the ionic ground state |Φ0(1)〉 is given by the time integration of adiabatic

current flow as

P̄el =

∫ T

0

dta〈Ψ(t)|(̂i2n−1 + î2n)|Ψ(t)〉, (8)

where în is în(t) when Ā(t) = 0. In Eq. (8), we assume that the bond length of all bonds

is equal to a for simplicity. The difference in length between odd–numbered and even–

numbered bonds is a few percent of a, so this simplification will affect the present result

only slightly.

As T is increased up to 8000 eV−1, P̄el/(ea) converges to −0.802 within an error of 1%.

The polarization direction and |P̄el| are consistent with the experimental results (−0.6)34 and

previous theoretical results based on density functional theory. Furthermore, |P̄el| ≫ |P̄ion|

holds, where P̄ion is the polarization per unit cell arising from the ionic displacement. The

present result also shows that electronic polarization is dominant in TTF-CA in the ionic

phase.

B. THz pulse induced dynamics in the ionic phase

In this section we show the time variation of ∆ρ(t) and ∆Pel(t) induced in the ionic phase

of TTF-CA by a THz pulse. The electric field of the pulse is given by

E(t) = −
1

2eaD
Ā cosh−2(

t

D
). (9)

7



We adopt the duration time D = 300 eV−1 (201 fs), which is about the same as that used

in the experiments, and 1/(2eaD) = 46 kV/cm. The dependence of the results on D will be

discussed later.

We first show how an artifact caused by the finite-size effect can be removed from the

numerical results. As will be shown later, the adiabatic approximation holds well for the

solution |ψ(t)〉 of the time-dependent Schrödinger equation in the realistic range of Ā. Then,

as shown in Appendix, |ψ(t)〉 can be written as

|ψ(t)〉 = exp[−i

∫ t

0

dτE0(τ)]|φ0(t)〉+ |δψ(t)〉. (10)

Here, |φ0(t)〉 and E0(t) are the ground state and the ground state energy ofH(t), respectively,

and |δψ(t)〉 is the first order term of the small parameter ǫ of the adiabatic approximation,

which is explicitly given in Appendix.

The electronic polarization variation induced by the THz pulse ∆Pel(t) is given by the

time integration of current flow as

∆Pel(t) = a

∫ t

−∞

dτ{i1(τ) + i2(τ)}. (11)

The charge transfer variation ∆ρ(t) and ∆Pel(t) are given from expectation values ρσn,n(t) =

〈ψ(t)|ρ̂σn,n|ψ(t)〉 and in(t) = 〈ψ(t)|̂in(t)|ψ(t)〉, respectively. The expectation value, for ex-

ample, 〈ψ(t)|ρ̂σn,n|ψ(t)〉 is decomposed into the zeroth order term 〈φ0(t)|ρ̂
σ
n,n|φ0(t)〉 and the

terms more than or equal to the first order of ǫ. As shown in Appendix, 〈φ0(t)|ρ̂
σ
n,n|φ0(t)〉

and also the zeroth order term 〈φ0(t)|̂in(t)|φ0(t)〉 of in(t) do not depend on Ā(t) in the infi-

nite system. However, they change with Ā(t) in the finite system, and time variation of the

zeroth order term in ∆ρ(t) and ∆Pel(t) are artifacts caused by the finite-size effect. Because

∆ρ(t) and ∆Pel(t) are quantities more than or equal to the first order of the small param-

eter ǫ within the thermodynamic limit, they are seriously affected by this finite-size effect

in the zeroth order term. The artifacts can be removed using Eqs. (37) and (39) shown in

Appendix, and we consider the charge transfer variation ∆ρ(t) and electronic polarization

variation ∆Pel(t) from which the zeroth order term is removed in the following. We have

numerically confirmed these equations by comparing the quantities calculated with r = 2

and 3. The difference in ∆Pel(t) is less than 1% for −5 ≤ Ā ≤ 4, while that in ∆ρ(t) is less

than 1% for −3 ≤ Ā ≤ 3, and only a few percent for Ā = −5, -4, and 4.

We show the time variation of ∆ρ(t) and ∆Pel(t) for −4 ≤ Ā ≤ 5 in Fig. 3 (a) and (b),

respectively. When Ā > 0 (Ā < 0) holds and the electric field is in the same (opposite)
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direction as the electronic polarization of the ground state, |Pel(t)| > |P̄el| (|Pel(t)| < |P̄el|)

and ρ(t) > ρ̄ (ρ(t) < ρ̄) hold, which is consistent with experiments.39
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FIG. 3: (Color online) (a) ∆ρ(t) and (b) ∆Pel(t) for Ā=-4, -3, -2, -1, 1, 2, 3, 4, and 5 in the ionic

phase (for α′ = 0.13 and β′ = 0.02), shown with thick lines. The fitting curves ∆ρ̃(E(t)) and

∆P̃el(E(t)) are shown with thin lines.

We have numerically found that ∆ρ(t) and ∆Pel(t) are given by the power series of E(t)

up to the fifth order almost exactly, neglecting the small oscillating components. We consider

the power series of E given by the following equations:

∆ρ̃(E) =

5∑
n=1

ρ(n)En, (12)

∆P̃el(E) =
5∑

n=1

P
(n)
el E

n, (13)

and calculate the five coefficients ρ(n) (P
(n)
el ) that best fit ∆ρ(t) (∆Pel(t)) in the time region

shown in this figure. The thin lines in Fig. 3 are the fitting curves ∆ρ̃(E(t)) and ∆P̃el(E(t)),

which reproduce the numerical results very well throughout the time region and for all Ā
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except for the small oscillating components. The quantities ∆ρ(t) and ∆Pel(t) at a certain

time are determined only by the electric field E(t) at that time, showing that they respond

to the electric field instantaneously.

Figure 4 shows ∆ρ̃(E) and ∆P̃el(E). Both quantities are almost proportional to E for

|E| . 50 kV/cm. If the peak magnitude of the electric field is less than 50 kV/cm (for Ā . 1),

a linear relationship between ∆ρ(t) and E(t), and between ∆Pel(t) and E(t) exists. The

present results reproduce the important experimental results well. It has been experimentally

estimated that ∆ρ̃(E) = 2.5 × 10−3 and ∆P̃el(E)/P̄el = 7.5 × 10−3 for E = −38 kV/cm.39

These values are also shown in the figure, and are about two times larger than the numerical

results. As shown later, the magnitudes of these quantities strongly depend on α′. This

point will be discussed later.

For |E| & 50 kV/cm, nonlinearity becomes prominent, and ∆ρ̃(E) and ∆P̃el(E) are

convex downward. Even in the nonlinear region, ∆ρ(t) and ∆Pel(t) respond to E(t) with no

delay.
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FIG. 4: (Color online) ∆ρ̃(E) and ∆P̃el(E) for α′ = 0.13. The experimentally estimated values for

E = −38 kV/cm are also shown.

As shown in Appendix, a linear relationship exists between ∆ρ(t) and Ē(t) if the fol-

lowing two conditions are satisfied: (i) the adiabatic approximation holds well (ǫ ≪ 1) and

(ii) the THz pulse excitation is off-resonant (∆ED ≫ 1), where ∆E is the optical gap.

With the present parameters, these conditions hold except for very large |Ā| as discussed

below. Consequently, the characteristic instantaneous response of TTF-CA to a THz pulse

originates from these two properties.
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C. THz pulse induced dynamics in the neutral phase

In this section we show the time variation of ∆ρ(t) and ∆Pel(t) induced in the neutral

phase of TTF-CA by a THz pulse. We calculate ∆ρ(t) and ∆Pel(t) using Eqs. (38) and

(39), respectively, and those for 1 ≤ Ā ≤ 4 are shown in Fig. 5. Because ∆ρ(t) (∆Pel(t)) is

an even (odd) function of Ā, we show the results for Ā ≥ 0. The difference in ∆ρ(t) between

the cases of r = 2 and 3 is a few percent for Ā = ±4. Those for |Ā| ≤ 3, and the difference

in ∆Pel(t) for |Ā| ≤ 5, are less than 1%.
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FIG. 5: (Color online) (a) ∆ρ(t) and (b) ∆Pel(t) for Ā = 1, 2, 3, and 4 in the neutral phase (for

α′ = 0.158 and β′ = 0).

As seen from Fig. 5, in spite of the fact that |∆Pel(t)| are comparable between the neutral

and ionic phases, |∆ρ(t)| is much smaller in the neutral phase than in the ionic phase at the

same value of Ā. The important experimental observations39 are reproduced well by this

result.

To consider the origin of the small ∆ρ(t) in the neutral phase, we investigate the β ′

dependence of the dynamics, where β ′ represents the magnitude of bond length alternation.

We fix all the parameters except for β ′, and calculate the dynamics induced by THz pulse
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excitation in the range 0 ≤ β ′ ≤ 0.02 for α′ = 0.13 and 0.158. The charge transfer ρ̄ for the

ground state weakly depends on β ′, and ρ̄ ≃ 1 (ρ̄ ≃ 0.1) holds. Therefore, the ground state

stays in the ionic (neutral) state all through the range of β ′ for α′ = 0.13 (α′ = 0.158).
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FIG. 6: (Color online) The β′ dependence of ∆ρ(0) for Ā = 0.1 in the ionic (α′ = 0.13) and neutral

(α′ = 0.158) states of TTF-CA.

We show the β ′ dependence of the peak value of the charge transfer variation ∆ρ(0) in

the ionic (α′ = 0.13) and neutral (α′ = 0.158) states in Fig. 6. As seen from this figure,

∆ρ(0) ≃ 0 holds for β ′ = 0 both in the ionic and neutral states. This result is analytically

shown in Appendix. Namely, ∆ρ(t) = 0 holds up to the first order of the adiabatic parameter

ǫ if β ′ = 0 holds. The peak value ∆ρ(0) increases with β ′ both in the two states, and |∆ρ(t)|

in the neutral state is comparable to that in the ionic phase at the same value of β ′. The

much smaller |∆ρ(t)| for the neutral phase can be attributed to its inversion symmetry

without lattice dimerization.

This can be understood from the balance of the currents between the odd–numbered and

the even–numbered bonds. As shown in Eq. (11), ∆Pel(t) is given by the sum of the time

integrations of the current at the odd–numbered and even–numbered bonds. Conversely,

from the equation of charge conservation (6), ∆ρ(t) is given by the difference between them

as

∆ρ(t) =
1

e

∫ t

−∞

dτ{i2(τ)− i1(τ)}. (14)

Because |∆Pel(t)| for the neutral phase is comparable to that for the ionic phase, the mag-

nitudes of the time integrations of current at each bond are also comparable for the two
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phases. In the case of uniform lattice (β ′ = 0), i2n−1(τ) ≃ i2n(τ) holds and the current at

the odd–numbered bonds nearly cancels out that at the even–numbered bonds. This is the

reason for the very small ∆ρ(t) in the neutral phase.

D. Phase boundary region

In this section we show the dynamics induced by a THz pulse in the phase boundary

region. We adopt the parameters α′ = 0.1445 and β ′ = 0.02 (α′ = 0.142 and β ′ = 0 ), which

reproduce the experimentally obtained charge transfer 0.6 (0.3)27,28 for the ionic (neutral)

phase. With these parameters, ρ̄ = 0.62 (ρ̄ = 0.32) holds in the ionic (neutral) phase, and

α′ = 0.1445 and α′ = 0.142 are in the phase boundary region, where ρ̄ decreases rapidly as

α′ increases as seen in Fig. 2.

We first discuss the results for the ionic phase. The differences between the values of

∆ρ(t) and ∆Pel(t) calculated with r = 2 and 3 are both less than 1% for −1 ≤ Ā ≤ 1. Thus,

the time variation of ∆ρ(t) and ∆Pel(t) for −1 ≤ Ā ≤ 1 are shown in Fig. 7 (a) and (b),

respectively.

Also in the phase boundary region, ∆ρ(t) and ∆Pel(t) are approximated well by the

power series of E(t) up to the fifth order. The fitting curves ∆ρ̃(E(t)) and ∆P̃el(E(t)) are

also shown in Fig. 7 (a) and (b), respectively. The fitting curves agree well with ∆ρ(t)

and ∆Pel(t), and the linear relationship between ∆ρ(t) and E(t), and between ∆Pel(t) and

E(t) hold well for |Ā(t)| . 0.2 (|E(t)| . 10 kV/cm). The deviations from the fitting curves

become prominent for |Ā(t)| & 0.2. However, the overall time profiles of ∆ρ(t) and ∆Pel(t)

are reproduced well by ∆ρ̃(E(t)) and ∆P̃el(E(t)), respectively, and nearly instantaneous

response also occurs in the phase boundary region.

Figure 4 also shows ∆ρ̃(E) and ∆P̃el(E) for the ionic phase in the phase boundary

region. As seen, ∆ρ̃(E) and ∆P̃el(E) for α
′ = 0.1445 are about 50 times larger than those

for α′ = 0.13. The charge and polarization respond to the electric field much more sensitively

inside the phase boundary region than outside the region. Furthermore, the magnitude of

the charge transfer |∆ρ(t)| is much smaller in the neutral phase than in the ionic phase.
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FIG. 7: (Color online) (a) ∆ρ(t) and (b) ∆Pel(t) for Ā=-1, -0.8, -0.6, -0.4, -0.2, 0.2, 0.4, 0.8, and

1 in the ionic phase in the phase boundary region (for α′ = 0.1445 and β′ = 0.02), shown by the

thick lines. The fitting curves ∆ρ̃(E(t)) and ∆P̃el(E(t)) are represented by the thin lines.

IV. DISCUSSION

It has been experimentally shown that there is an approximate linear relationship be-

tween ∆ρ(t) and E(t), and |∆ρ(t)| is much larger in the ionic phase than in the neutral

phase.39 These results are reproduced well by our numerical calculations. As shown in the

previous section, this characteristic charge dynamics occurs if the following two conditions

are satisfied: (i) the adiabatic approximation holds well (ǫ = max(|Jn,0|/(ωn)
2)Ā/D ≪ 1)

and (ii) the THz pulse excitation is off-resonant (∆ED ≫ 1). For α′ = 0.13 and β ′ = 0.02,

max(|Jn,0|/ω
2
n) ≃ 0.6 and ∆E ≃ 0.5 hold. Therefore, these characteristic instantaneous

charge dynamics induced by the THz pulse excitation occur even at five times smaller D for

the realistic magnitude Ā . 1. We have confirmed this with numerical calculations. It is

therefore expected that the polarization amplitude in ionic phase TTF-CA can be modulated

on a 0.1 picosecond time scale by a THz pulse.

Large optical gap is an indispensable property for materials in which this characteristic

14



instantaneous response occurs. However, charge susceptibility is very small and |∆ρ(t)| and

|∆Pel(t)| are considered to be very small in conventional insulators. Significant and instan-

taneous changes in charge and polarization with E(t) are characteristic of materials with

large optical gap and large charge susceptibility. In the case of TTF-CA, its characteristic

large valence fluctuation enables their coexistence.

Because the adiabatic approximation holds well, heat production is negligible for realistic

magnitudes of the THz pulse field. This is a big merit for optical devices. However, neither

polarization reversal in the ionic phase nor THz pulse induced transition between the neutral

and ionic phases occurs within the adiabatic picture. They have not been observed also

experimentally.39 As seen from Eq. (30), the induced charge arises from the off-diagonal

element between the adiabatic ground state and virtual excited states. This is in contrast to

the case of photoexcitation, where real excitation plays an important role and photoinduced

phase transition between the neutral and ionic phases occurs.43,44,57–65 However, by using a

stronger THz pulse to the TTF-CA very close to the phase boundary, polarization reversal

or the phase transition may be induced by a THz pulse. To address this problem, the

following points are to be considered. It is difficult to remove artifacts caused by the finite-

size effect in the intense excitation case. We need to extend the present method to describe

the dynamics in the case. Furthermore, the screening of Coulomb interaction is enhanced

near the phase boundary by the diverging dielectric constant,32,49 which may seriously affect

the phase transition or polarization reversal. However, the electronic parameters are fixed,

and this screening effect cannot be described in the present extended Hubbard model. We

consider that electron-lattice coupling may play a crucial role to realize these phenomena.

By introducing electron-lattice coupling in the transfer integral, THz pulse excitation may

induce the lattice motion that reverses the phase of bond length alternation, which will

induced the electronic polarization reversal. These points will be discussed in a forthcoming

paper.

V. CONCLUSION

We have investigated the dielectric properties of TTF-CA using exact numerical calcu-

lations of an extended Hubbard model. The electronic polarization P̄el of the ionic ground

state is obtained by directly calculating the adiabatic flow of current. The direction of P̄el
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is opposite to that of the polarization P̄ion owing to ionic displacement, and |P̄el| is much

larger than |P̄ion|, showing that in the ionic phase, TTF-CA is an electric ferroelectric.

These results are consistent with experiments and previous theoretical results based on den-

sity functional theory. Furthermore, we numerically calculated the dynamics induced by

THz pulse excitation. The major experimental results are reproduced well by our numerical

results. For the ionic phase, there exists almost exact linear relationship between the charge

transfer variation induced by the THz pulse ∆ρ(t) and the electric field E(t) of the pulse,

and between the electric polarization variation induced by the THz pulse ∆Pel(t) and E(t)

in the realistic range of excitation magnitude. The absolute value of ∆ρ(t) for the neutral

phase is much smaller than that for the ionic phase. These properties are found to originate

from the adiabatic nature of the THz pulse excited state.
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VII. APPENDIX

In this appendix, we derive the condition under which the characteristic instantaneous

charge dynamics occurs, and how artifacts caused by the finite-size effect are romoved.

Up to the first order of the small parameter ǫ of the adiabatic approximation, which will

be described later, the solution |ψ(t)〉 of the time-dependent Schrödinger equation can be

written as

|ψ(t)〉 = exp[−i

∫ t

0

dτE0(τ)]|φ0(t)〉+ |δψ(t)〉, (15)

|δψ(t)〉 =

n 6=0∑
n

cn(t) exp[−i

∫ t

0

dτEn(τ)]|φn(t)〉, (16)

where |φn(t)〉 is the energy eigenstate of H(t) with an energy eigen value En(t), and |φ0(t)〉

and E0(t) are the ground state and the ground state energy, respectively. Note that the

magnitude of the coefficient for |φ0(t)〉 is equal to 1 up to the first order. The first order

term |δψ(t)〉 is given by the linear combination of |φn(t)〉 with the coefficient cn(t).
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To derive differential equation for cn(t), we consider the terms up to the first order of

infinitesimal time change ∆t in the following. We divide the Hamiltonian H(t + ∆t) into

the unperturbed part H0 = H(t) and perturbed part H1 = H(t + ∆t) − H(t). Up to the

first order of ∆t, H1 can be written as

H1 = Ĵ(t)Ē(t)∆t, (17)

where Ĵ(t) is given by

Ĵ(t) =
1

e

N∑
n=1

în, (18)

and Ē(t) is given by

Ē(t) = −
d

dt
Ā(t) = eaE(t). (19)

From the stationary perturbation theory, |φk(t +∆t)〉 is given by

|φk(t +∆t)〉 = |φk(t)〉 − Ē(t)∆t

n 6=k∑
n

Jn,k(t)

En(t)−Ek(t)
|φn(t)〉, (20)

where Jn,k(t) is the transition dipole moment given by

Jn,k(t) = 〈φn(t)|Ĵ(t)|φk(t)〉. (21)

The arbitrary phase of |φk(t+∆t)〉 is determined from this equation.

From the time-dependent perturbation theory, |ψ(t + ∆t)〉 is obtained up to the first

order of Ā as,

|ψ(t+∆t)〉 = U (0)(t+∆t, t) exp[−i

∫ t

0

dτE0(τ)]|φ0(t)〉

+ U (1)(t+∆t, t) exp[−i

∫ t

0

dτE0(τ)]|φ0(t)〉+ U (0)(t +∆t, t)|δψ(t)〉, (22)

where U (i)(t+∆t, t) is the ith order time evolution operator given by

U (0)(t+∆t, t) = exp[−iH(t)∆t], (23)

U (1)(t+∆t, t) = −i

∫ ∆t

0

dτU (0)(t+∆t, t + τ)Ĵ(t)Ē(t)τU (0)(t + τ, t). (24)

Substituting Eqs. (23) and (24) into Eq. (22), we obtain

|δψ(t+∆t)〉 =

n 6=0∑
n

{cn(t) exp[−i

∫ t

0

dτEn(τ)]

+ iĒ(t) exp[−i

∫ t

0

dτE0(τ)](
1

En(t)−E0(t)
)2Jn,0(t)}

× {exp(−iEn(t)∆t)− exp(−iE0(t)∆t)}|φn(t)〉, (25)
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From Eq. (25), it can be easily shown that cn(t) satisfies the following differential equa-

tion:

d

dt
cn(t) = exp[i

∫ t

0

dτωn(τ)]Ē(t)
Jn,0(t)

ωn(t)
, (26)

where ωn(t) = En(t)−E0(t) is the excitation energy from the ground state to the optically

allowed energy eigenstate |φn(t)〉, where Jn,0(t) 6= 0 holds. As shown later, in the thermo-

dynamic limit, Jn,0(t) and ωn(t) are constant with time, and Jn,0(t) = Jn,0 and ωn(t) = ωn

hold, where Jn,0 and ωn are the transition dipole moment and the excitation energy, respec-

tively, from |φ0〉 to |φn〉 in the electronic Hamiltonian He = H(−∞). Then, we can solve

the differential equation (26), and cn(t) is given by

cn(t) = −i
Jn,0
ω2
n

exp[iωnt]Ē(t) = −i
Jn,0Ā

2ω2
nD

exp[iωnt]sech
2(
t

D
), (27)

where the terms of second order or more in 1/(ωnD) are neglected. In the case of THz

pulse excitation, 1/(∆ED) ≪ 1 holds, and this approximation holds well for almost all the

insulators. Therefore, the small parameter ǫ for the adiabatic approximation is given by

ǫ = max(
|Jn,0|

ω2
n

)
|Ā|

D
, (28)

and the adiabatic approximation is good if ǫ≪ 1 holds.

We expand ρ(t) = 〈ψ(t)|
∑

σ ρ̂
σ
2,2|ψ(t)〉 up to the first order of ǫ as ρ(t) = ρ(0)(t) + ρ(1)(t),

where ρ(i)(t) is the ith order term. From Eq. (15), it can be easily shown that

ρ(0)(t) = 〈φ0(t)|
∑
σ

ρ̂σ2,2|φ0(t)〉, (29)

ρ(1)(t) = 2Re[exp[i

∫ t

0

dτE0(τ)]〈φ0(t)|
∑
σ

ρ̂σ2,2|δψ(t)〉]. (30)

The zeroth order term does not depend on time and ρ(0)(t) = ρ̄ holds in the thermody-

namic limit as shown below. Using the unitary transformation

c̃n,σ = cn,σ exp[inĀ(t)], (31)

where c̃†n,σc̃n,σ = c†n,σcn,σ holds, the transfer term of H(t) can be written as

N−1∑
n=1,σ

(β̄ + β ′(−1)n)(c̃†n,σc̃n+1,σ + c̃†n+1,σc̃n,σ)

+ (β̄ + β ′(−1)N)(c̃†N,σc̃1,σ exp[iNĀ(t)] + c̃†1,σ c̃N,σ exp[−iNĀ(t)]). (32)
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The vector potential gives a twist in the boundary condition, but does not change H(t)

except for this. This holds also for Ĵ(t). Therefore, 〈φn(t)|
∑

σ ρ̂
σ
2,2|φm(t)〉−〈φn|

∑
σ ρ̂

σ
2,2|φm〉,

Jn,0(t)− Jn,0, and ωn(t)− ωn are of the order of 1/N at most.

Substituting Eq. (27) into Eq. (30), and neglecting the finite-size effect of the order of

1/N , we obtain ∆ρ(t) as

∆ρ(t) = GĒ(t), (33)

G = 2Im[

n 6=0∑
n

Jn,0
ω2
n

〈φ0|
∑
σ

ρ̂σ2,2|φn〉] = 2Im[〈φ0|
∑
σ

ρ̂σ2,2
1

{He −E0}2
Ĵ |φ0〉], (34)

up to the first order of ǫ, where Ĵ = Ĵ(−∞). The quantity G is constant with time in the

thermodynamic limit.

Up to the first order of ǫ, |ψ(t)〉 is given by the linear combination of |φ0(t)〉 and |φn(t)〉

where Jn,0 6= 0 holds, as seen from Eqs. (15), (16) and (27). As a result, ∆ρ(t) is given from

off-diagonal elements 〈φ0|
∑

σ ρ̂
σ
2,2|φn〉 as shown in Eq. (34). In the uniform lattice (β ′ = 0),

He and
∑

σ ρ̂
σ
2,2 are symmetric, and Ĵ is antisymmetric with respect to site 2. Because of

the symmetry, the ground state |φ0〉 is symmetric, and |φn〉 are all antisymmetric, which

results in 〈φ0|
∑

σ ρ̂
σ
2,2|φn〉 = 0. Therefore, G = 0 holds for the uniform lattice.

If we consider the higher order terms, namely, excitation from the weakly excited state,

the elements between symmetric states and those between antisymmetric states contribute

to ∆ρ(t), and ∆ρ(t) becomes nonzero even for β ′ = 0. We have confirmed this from the

numerical calculation. There is no linear relation between ∆ρ(t) and Ē(t) in the case of

β ′ = 0.

The time variations of the zeroth order terms 〈φ0(t)|ρ̂
σ
n,n|φ0(t)〉 of ρ

σ
n,n and 〈φ0(t)|̂in|φ0(t)〉

of în are artifacts caused by the finite-size effect as shown before. These artifacts can be

removed by considering the dynamics induced by a pulse with renormalized duration rD

given by

Ā(r)(t) =
Ā

2
{1 + tanh(

t

rD
)}. (35)

Because H(r)(rt) = H(t) holds, where H(r)(t) is the Hamiltonian with the pulse described

by Ā(r)(t), the time-dependent solution |ψ(r)(t)〉 of H(r)(t) can be written as

|ψ(r)(rt)〉 = exp[−ir

∫ t

0

dτE0(τ)]|φ0(t)〉+ |δψ(r)(rt)〉, (36)
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where |δψ(r)(t)〉 is the first order term of ǫ/r. The zeroth order term can be removed using

Eqs. (15) and (36), and ∆ρ(t) in the ionic phase is given by

∆ρ(t) =
r

r − 1
{〈ψ(t)|ρ̂2,2|ψ(t)〉 − 〈ψ(r)(rt)|ρ̂2,2|ψ

(r)(rt)〉}, (37)

∆ρ(t) in the neutral phase is given by

∆ρ(t) =
r2

r2 − 1
{〈ψ(t)|ρ̂2,2|ψ(t)〉 − 〈ψ(r)(rt)|ρ̂2,2|ψ

(r)(rt)〉}, (38)

and ∆Pel(t) in both the two phases is given by

∆Pel(t) =
ar2

r2 − 1

∫ t

−∞

dτ{〈ψ(τ)|(̂i1(τ) + î2(τ))|ψ(τ)〉 − 〈ψ(r)(rτ)|(̂i1(τ) + î2(τ))|ψ
(r)(rτ)〉},(39)

where we use the fact that the leading term of 〈ψ(r)(rt)|ρ̂2n,2n|ψ
(r)(rt)〉−〈φ0(t)|ρ̂2n,2n|φ0(t)〉 is

the first (second) order of ǫ/r in the ionic (neutral) phase, and that of 〈ψ(r)(rτ)|̂in|ψ
(r)(rτ)〉−

〈φ0(t)|̂in|φ0(t)〉 is the second order of ǫ/r in both the two phases.
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