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Generalized stacking fault energies of non-dilute binary alloys in the Ag-Au-Pd system are calcu-
lated using density functional theory and special quasirandom structures. Supercells containing 90
and 135 atoms are compared for direct calculations of the generalized stacking fault energy, and the
axial interaction model is used to estimate the intrinsic stacking fault energy. The axial interaction
model approximates the directly calculated energy to within 10% in most cases, but is sensitive
to the particular structures used. Increasing the number of atoms used for direct calculations de-
creases the uncertainty of the calculated stacking fault energies in most cases, and we show that this
uncertainty is related to certain correlations between pairs of adjacent layers within the supercell.

I. INTRODUCTION

Ductility is a key consideration for materials in many
engineering applications and their respective processing
routes. Bulk or macroscopic ductility in metallic ma-
terials is a direct result of which deformation modes or
mechanisms are accessible for a particular crystalline lat-
tice. For face-centered cubic (fcc) metals (such as Al, Cu,
Ni, Ag, Au and their alloys) where dislocation glide is the
dominant means of accommodating strain, primary dis-
locations are essentially split into two (Shockley) partial
dislocations as a means of lowering the structural energy
of the crystal lattice with respect to the existence of a
dynamic dislocation1. The existence of these partial dis-
locations creates a fault in the stacking sequence of the
fcc lattice, changing the crystal structure locally. When
the path of these two partial dislocations is hindered, e.g.
by a crystal flaw or grain boundary, these two partial dis-
locations must recombine in order to cross slip around the
hindrance. The ease by which these partial dislocations
can be recombined to enable cross slip and continue to
accommodate strain is directly related to the energy asso-
ciated with the stacking fault created by the two partial
dislocations i.e. the stacking fault energy (SFE). SFE af-
fects many physical phenomena on the micro- and macro-
scales, controlling the mode of deformation at both low
and high deformation temperature and how a plastically
deformed material recrystallizes.

In high SFE fcc alloys, the stacking fault is very nar-
row, and can be recombined with relative ease, hence
climb and cross slip of dislocations are the basic modes
of deformation2. However, as the SFE decreases, there is
an increase in the width of separation of the partial dis-
locations that reduces the propensity for cross slip and
climb, thereby decreasing ductility. Further, deformation
twinning can occur more readily in some low SFE alloys
as an alternative means of accommodating stress (e.g. in

Cu-Zn brasses, where Zn is found to significantly lower
the stacking fault energy of Cu)3,4. While there are many
other relevant factors such as grain size, SFE has been
shown to be a useful metric for predicting and under-
standing plastic deformation behavior in fcc alloys at low
homologous deformation temperatures5,6. With respect
to their engineering performance, engineering safety fac-
tors and the industrial processability of alloys, the ability
to predict and compare ductility by fundamental calcu-
lations of SFE is a powerful engineering and processing
tool for alloy design and development.

Considerable effort has been spent on calculating SFE
from first principles in order to predict and confirm ex-
perimental results as well as understand the fundamen-
tals of deformation from the atomic level. Furthermore,
measurements of SFE are difficult and often inaccurate.
Accurate methods for calculating SFE in binary alloys
can be extended to aid the development of more com-
plex multicomponent alloys, such as high entropy al-
loys, which contain five or more elements in close to
equiatomic proportions7. In addition, the SFE of binary
and ternary alloys may provide insights into more com-
plex alloys based on them. Many studies of SFE concern
dilute alloys, investigating the effect of individual solute
atoms within or near the fault plane4,8,9. Ideal methods
would work for non-dilute and dilute alloys alike in order
to examine the full composition space of alloy systems.
While effective medium theories have been used to cal-
culate SFE in non-dilute alloys, an optimal method for
calculating SFE by modelling the atomic species explic-
itly in such systems remains unclear.

The concept of stacking fault energy has been extended
to the generalized stacking fault energy (GSFE) curve,
which is the energy per unit area of stacking fault for-
mation along a particular direction10,11. The curve has
two stable energy minima, γisf and γesf, which are the in-
trinsic (one layer removed) SFE and extrinsic (one layer
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added) SFE, respectively. It also contains the unstable
SFE γusf and the unstable twin fault energy γutf as local
maxima, representing the energy barriers to creating an
intrinsic stacking fault and an extrinsic stacking fault,
respectively. These unstable energies, while experimen-
tally inaccessible, are thought to be important in deter-
mining an alloy’s tendency toward slip or twinning6,12.
The GSFE curve can be extended to include an arbi-
trary number of consecutive faults in order to examine
twin growth13.

One commonly used technique to calculate SFE is the
axial interaction model (AIM), or the axial next-nearest-
neighbor Ising model. The energy of an arbitrary stack-
ing sequence can be expanded based on how it differs
from the nominal fcc sequence up to some number of
nearest neighbors14. This allows one to approximate the
SFE as a function of the energies of different stacking
sequences. The first-order AIM is simply the difference
in energy between hexagonal close-packed (hcp) and fcc,
which highlights the idea that a stacking fault is a re-
gion of local hcp stacking15. Higher-order approxima-
tions can be obtained by including more stacking se-
quences. The third-order AIM includes the double hexag-
onal close-packed (dhcp) energy in addition to the hcp
and fcc energies. Many have found the AIM estimate
to be sufficient16–19 and it is computationally inexpen-
sive, since it does not require modeling stacking faults
directly using large supercells. The major disadvantage
of this approach is that it can only provide estimates of
stable energies γisf and γesf, so it does not provide any
additional information from the GSFE curve.

Obtaining the full GSFE curve requires calculating the
energy of a single supercell as half of it is displaced rel-
ative to the other. This is straightforward for pure el-
ements, but it presents a challenge for modeling disor-
dered alloys. Two main methods have been employed
in the literature to account for disorder in solid solution
alloys. The first is the coherent potential approxima-
tion (CPA), which approximates the random alloy as a
small periodic lattice of a single “effective potential” that
is representative of the average electronic characteristics
of the alloy stoichiometry20,21. This technique has been
used to determine GSFE in various binary and more com-
plex systems3,4,22–25. The main drawback of CPA is that
because chemically identical atoms are treated the same
regardless of their local environment, it cannot account
for local lattice distortions, which can be important in
many non-dilute systems such as high entropy alloys26,27.

The other technique of modeling disordered alloys is
the use of special quasirandom structures (SQSs). An
SQS is a finite-size arrangement of atoms that approxi-
mates the target random structure as closely as desired28.
This is achieved by considering symmetrically equivalent
groups of lattice sites (pairs, triplets, etc) and match-
ing —in a finite periodic cell up to a certain interac-
tion distance— the average interactions up to those ex-
pected in a perfectly random alloy29. Because the dif-
ferent species are modeled explicitly, this accounts for

local lattice effects. However a major disadvantage of
SQSs compared to CPA is that the number of atoms,
and therefore the supercell geometry, is constrained by
the composition. SQSs also must be sufficiently large in
order to accurately model the disordered state, increasing
computational cost.

While some have shown good agreement between SQS
and CPA approaches to calculating bulk properties such
as elastic constants and mixing enthalpy30,31, there has
not been significant comparison of CPA and SQS for cal-
culating GSFE. Since introducing a stacking fault in an
SQS breaks the symmetry of the structure and changes
the correlations, some kind of averaging is required to en-
sure that the calculated SFE actually reflects the average
of the true alloy. Noting this, Chandran et al. calculated
SFE in non-dilute Ni-Co alloys using randomly assigned
atomic positions rather than SQSs and averaging over
multiple structures18. de Jong et al. calculated unsta-
ble stacking fault, twin boundary, and surface energies
in non-dilute hcp Ti-Al alloys by SQSs by averaging over
the choice of fault plane within the supercell32. They also
used a benchmarking technique to show that the SQSs
provided a more accurate result on average than simply
assigning positions randomly. This method of planar av-
eraging has not been done for fcc alloys.

In the present study, we use a planar averaging ap-
proach to directly calculate GSFE for non-dilute fcc bi-
nary alloys in the Ag-Au-Pd system. This system was
chosen because it is a model fcc solid solution system
with no ordering, and it is known that Ag has one of the
lowest SFEs. We investigate how the number of atoms
used in the SQS affects the accuracy of SFE predictions
and we propose a novel method to evaluate the quality
of an SQS for future SFE calculations. We also com-
pare our results to available CPA results and to first-
and third-order AIM approximations of γisf.

II. METHODOLOGY

A. SQS generation

All density functional calculations were performed on
special quasirandom structures generated using mcsqs, a
Monte Carlo-based algorithm that is part of the Alloy-
Theoretic Automated toolkit (ATAT)33,34. Pair clusters
up to 1.8 times the nearest neighbor distance and nearest
neighbor triplets were included in the objective function
to evaluate the SQSs. This resulted in three pairs, one
triplet for fcc; six pairs, three triplets for hcp; and nine
pairs, five triplets for dhcp. The objective function used
in the mcsqs algorithm was the average absolute value of
correlation mismatches for the chosen clusters relative to
an ideal random solution. Ten independent instances of
mcsqs were run concurrently, and the resulting SQSs were
considered optimized when all ten instances stabilized to
the same value of the objective function. Since SQSs
are independent of atomic species, we only needed to
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generate SQSs for each distinct stoichiometry and size of
cell.

B. Total energy calculations

Total energy calculations were performed using the Vi-
enna Ab initio Simulation Package implementation of
density functional theory35,36. The lattice parameter for
each composition was the ground state lattice parame-
ter determined by fitting the Birch-Murnaghan equation
of state37 to a series of 11 fixed volumes of a 30 atom
SQS. The ionic positions were allowed to relax fully. A
verification with larger SQSs gave the same ground state
lattice parameter to within 0.001 Å. The ground state
lattice parameter for each composition was consistently
used for all subsequent calculations of larger cells.

A plane wave energy cutoff of 450 eV was used for
all calculations. Smearing was performed with the
first-order method of Methfessel-Paxton with a smear-
ing parameter of 0.238. Gamma-centered Monkhorst-
Pack meshes with about 20,000 k-points per recipro-
cal atom were used to sample the Brillouin zone for all
structures39. These settings were found to be sufficient
for convergence of total energy to within 1E-4 eV per
atom, corresponding to around 1 mJ/m2 for fault ener-
gies.

Projector augmented wave (PAW) potentials were used
with the Perdew-Burke-Ernzerhof generalized gradient
(PBE-GGA) exchange correlation approximation40,41. A
quasi-Newton algorithm and automatic real-space pro-
jections were used for ionic relaxations, and forces were
converged to within 0.02 eV/Å. To obtain accurate final
energies, all relaxations were followed by a final static
calculation with the linear tetrahedron method on and
real-space projections off. A mixture of Blocked David-
son and RMM-DIIS algorithms for electronic minimiza-
tion was used (ALGO = Fast).

C. Direct supercell method

Direct calculations of GSFE used SQS supercells with
nine (111) layers in perfect fcc stacking. The layers were
periodic along [011] and [101]. Nine layers were sufficient
to isolate faults from their periodic images (calculations
with twelve layers did not give significantly different SFE
for any pure element in the system). This is consistent
with the findings of others25,42. Calculations were per-
formed on cells of 90 atoms (10 per layer) and 135 atoms
(15 per layer). Figure 1 shows an example of a 90-atom
supercell looking along the [011] direction.

Stacking faults were created using the method of Kibey
et al.13, in which the top five layers shift along [112] in
two steps to form one intrinsic stacking fault, then the
top four layers shift in two steps to form one extrinsic
stacking fault. Each shift is accompanied by a small ad-
justment of the long lattice vector (originally [111]) in

FIG. 1. Isolated set of adjacent layers in a 90-atom A-80%
B SQS with examples of the three possible interactions for
the interlayer pair cluster shown. Visualization created using
VESTA43.

order to preserve fcc stacking between periodic cells. The
ionic positions of the defect-free cell were fully relaxed.
For each shift, the positions of all ions were relaxed only
along the long direction. As noted by de Jong et al.32,
since the choice of layer at which to shear is arbitrary,
calculations were performed for each of the nine possible
fault planes to produce an average and standard devia-
tion for each fault energy.

D. Axial interaction model

We calculated the first-order axial interaction model
approximation (AIM1), by

γisf ≈ 2 (Ehcp − Efcc) /A111 (1)

and the third-order approximation (AIM3), by

γisf ≈ (Ehcp + 2Edhcp − 3Efcc) /A111 (2)

where γisf is intrinsic stacking fault energy, E is the total
energy of each respective stacking sequence, and A111

is the (111) area per atom14. As noted by Li et al.14,
the energies for hcp and dhcp are not the theoretical
ground state energies for those structures since they are
calculated at the fcc ground state volume per atom with
the ideal c/a ratio. Other AIM variants exist to include
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FIG. 2. Generalized stacking fault energy curves for pure
elements studied.

relaxation of the interlayer distance as well as interfacial
energies between phases, but those are not the focus of
this study.

For SFE calculations using the AIM, SQSs of 60 and
80 atoms were used for hcp and dhcp structures, respec-
tively. The ionic positions were allowed to relax fully.
The AIM3 calculation is particularly sensitive to the fcc
total energy since it enters with a factor of three. We
compare using the energy of the 90-atom and 135-atom
fcc SQSs from the direct supercell calculations as well as
the energy of the 30-atom fcc SQS from the equation of
state calculations to estimate the effect of SQS size on
the AIM calculation of SFE.

III. RESULTS AND DISCUSSION

A. Pure elements

GSFE curves for pure Ag, Au and Pd are summarized
in Table I and shown in Figure 2. The calculated val-
ues for each are in agreement with the available first-
principles literature.

As others have found, γusf occurs near 0.5 for Ag and
Au, and somewhere in between a fractional displacement
of 0.5 and 0.66 for Pd46,47. In order to reduce computa-
tional expense, γusf for alloys was taken to be at 0.5 for all
alloys even though this likely slightly underestimates the
energy for the Pd alloys. It appears that γutf occurs at
around 1.5 for all three elements. In this study, energies
for the alloys are calculated at fractional displacements of
0.5, 1.0, 1.5 and 2.0. One could easily calculate more in-
termediate points on the GSFE curve, albeit at increased
computational cost since each data point involves aver-
aging over nine layers.

B. Direct supercell method

Figure 3 shows the calculated stacking fault energies
using 135-atom SQSs versus composition for Pd-Ag, Pd-
Au, and Ag-Au. Since the pure elements are each fcc,
within a mean-field approximation we would expect to
see a linear average of the elemental energies for each
intermediate composition. Deviations from this average
indicate that one element has a stronger influence on the
SFE when alloyed. It appears that Ag has a stronger
effect than Pd on SFE when alloyed, whereas Au has a
weaker effect than Pd, as indicated by the curvature of
the energies in Figure 3 ab and cd, respectively.

For Pd-Ag, shown in Figure 3 ab and Pd-Au, shown in
Figure 3 cd, there is good agreement between the present
study and the EMTO-CPA results from Li et al.4 for
the stable SFE. For the unstable energies, they obtained
a higher γusf and γutf, though the qualitative behavior
versus the concentration is similar. The unstable energies
are about 20 to 50 mJ/m2 higher for Pd-Ag and about
50 to 60 mJ/m2 higher for Pd-Au. However for γusf in
Pd-Ag, the difference is gets smaller with increasing Ag
content. Because this discrepancy exists for the pure
elements as well as alloys, it is likely not due to differences
in the CPA and SQS approaches for modelling alloys.

A possible cause of this discrepancy is that Li et al. re-
laxed the supercells differently by relaxing the interlayer
distance of the first neighbors nearest to the fault plane.
We attempted this for pure Ag, Au and Pd but found
that it did not yield significantly different SFE values,
and in fact resulted in unstable SFE values that were
several mJ/m2 lower than obtained previously. However,
without knowing what algorithms were used, it is diffi-
cult to compare directly. As shown in Table I, there tends
to be much more variation in the literature for unstable
SFE than stable SFE, as they are very sensitive to slight
differences in methods.

For Ag-Au, for which there is no available literature
data, it appears the stable stacking fault energies are
close to an average of the pure elements, whereas Ag in-
fluences the unstable SFE slightly more than Au. How-
ever, the uncertainty is large compared to the differences
between adjacent points. Since the different composi-
tions are very close in SFE, this system is near the limit
of this method’s effectiveness.

Table II lists the stacking fault energies and standard
deviations for each binary composition calculated from
both 90- and 135-atom SQSs. Presumably using more
atoms per layer will always give a more accurate result for
SFE since it will be closer to the actual random arrange-
ment. However, there is a tradeoff between accuracy and
computational cost. We found that the correlations of a
180-atom SQS were only slightly better than those of a
135-atom SQS and that it would require a 225 atom SQS
to perfectly match all of the chosen pair correlations. For
these reasons we did not calculate SFE using more than
135 atoms.

In almost all cases, using 135 atoms produces an energy
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FIG. 3. γusf and γisf, γutf and γesf versus Ag content for Pd-Ag (a, b), versus Au content for Pd-Au (c, d), versus Au content
for Ag-Au (e, f). Error bars indicate ± one standard deviation. Results are compared to available data from Li et al.4
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TABLE I. Stable and unstable stacking fault energies for pure elements studied compared to literature values (in parentheses).
Lattice parameters afcc are in Å and all energies are in mJ/m2.

afcc γusf γisf γutf γesf

Ag 4.147 103 (91a, 111b, 120c, 133d) 18 (16a, 17b,c, 18d) 111 (100a, 137c, 143d) 18 (12a, 18c,d)

Au 4.156 78 (68a, 94b, 123c, 134d) 31 (25a, 27b, 31c, 33d) 97 ( 79a, 148d, 150c) 33 (27a, 31d, 32c)

Pd 3.940 212 (202a, 215b, 260c, 287d) 142 (122b, 134a, 143c, 168d) 279 (261a, 361d) 140 (129a, 172d)

a 44

b 45

c 4

d 13

TABLE II. Stable and unstable stacking fault energies for Pd-Ag, Pd-Au, and Ag-Au alloys using 90 and 135 atoms ± one
standard deviation. Italicized energies indicate that using more atoms gave a significantly different energy (one 90-atom standard
deviation or more), bolded energies indicate that using more atoms increased the standard deviation. Lattice parameters afcc
are in Å and all energies are in mJ/m2.

γusf γisf γutf γesf

afcc 90 135 90 135 90 135 90 135

Pd-20% Ag 3.979 189 ± 14 192 ± 8 106 ± 17 110 ± 10 245 ± 20 248 ± 12 108 ± 12 111 ± 10

Pd-40% Ag 4.017 163 ± 11 164 ± 8 70 ± 14 70 ± 8 200 ± 18 202 ± 11 72 ± 14 72 ± 7

Pd-60% Ag 4.056 146 ± 13 145 ± 12 55 ± 11 54 ± 10 177 ± 15 175 ± 17 60 ± 10 59 ± 12

Pd-80% Ag 4.100 124 ± 15 121 ± 7 39 ± 11 33 ± 4 149 ± 18 139 ± 7 48 ± 9 33 ± 3

Pd-20% Au 3.985 198 ± 17 200 ± 10 138 ± 16 143 ± 7 270 ± 20 273 ± 12 139 ± 13 142 ± 8

Pd-40% Au 4.028 178 ± 18 178 ± 17 120 ± 18 119 ± 17 243 ± 22 241 ± 25 126 ± 16 123 ± 22

Pd-60% Au 4.069 153 ± 18 149 ± 13 98 ± 16 91 ± 12 210 ± 24 198 ± 19 109 ± 13 97 ± 16

Pd-80% Au 4.111 118 ± 25 117 ± 11 70 ± 19 67 ± 7 159 ± 31 151 ± 11 77 ± 15 69 ± 5

Ag-20% Au 4.147 103 ± 2 100 ± 2 23 ± 3 20 ± 2 112 ± 2 113 ± 2 24 ± 3 20 ± 3

Ag-40% Au 4.148 103 ± 4 100 ± 4 29 ± 5 22 ± 5 117 ± 6 113 ± 8 33 ± 6 22 ± 9

Ag-60% Au 4.149 98 ± 5 98 ± 3 31 ± 5 26 ± 6 113 ± 7 111 ± 7 34 ± 5 25 ± 10

Ag-80% Au 4.153 89 ± 7 90 ± 3 29 ± 4 29 ± 2 102 ± 8 105 ± 5 29 ± 4 29 ± 3

that is within one standard deviation of the energy found
using 90 atoms. The uncertainty also tends to decrease
or remain constant when increasing to 135, with several
exceptions where the error actually increased. Since the
same SQSs were used for each stoichiometry, it is inter-
esting that the different binary systems do not display
quite the same trends in going from 90 to 135 atoms.
For instance there is a large jump of 15 mJ/m2 for γesf
of Pd-80% Ag, but a smaller jump of 8 mJ/m2 for γesf of
Pd-80% Ag, which itself is larger. Significant jumps from
90 to 135 atoms occur most for γesf. This could be due to
the fact that it is the result of two shifts of consecutive
layers, so the variation in the structures of both sets of
layers is more pronounced in the final energy. Although
it is not certain the SFE values stabilize at 135 atoms,
we are reassured that 135-atom results agree well with Li
et al.

Examining the SQSs more closely reveals why the un-
certainty may increase in some cases between a 90- to
135-atom cell size. Since we used the same SQSs for each
binary system, we only needed to analyze the generic A-
80% B and A-60% B SQSs for 90 and 135 atoms. ATAT

was used to isolate pairs of adjacent layers within each
defect-free SQS and extract only the point and nearest
neighbor pair correlations between the selected layers.
The point correlation average B is simply the concentra-
tion of B atoms within the chosen layers. For the near-
est neighbor pair correlations, we extracted the inter-
layer correlation averages—denoted AA, BB, and AB—
from the intralayer correlations. In the perfectly random
structure, these would average to the square of the con-
centration of A, the square of the concentration of B,
and the product of the concentrations of A and B, re-
spectively. Figure 1 illustrates the method of isolating
adjacent layers.

For each SQS, the interlayer correlations were calcu-
lated for each pair of adjacent layers and averaged, sim-
ilar to how the SFE calculations are averaged over each
layer. The results are shown in Table III. In each case,
the average concentration B is equal to the overall con-
centration of B in the SQS, which will always be true.
But the variation shows that each layer does not have
the exact same composition. For A-80% B, increasing the
number of atoms does not change any of the average pair
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TABLE III. Interlayer correlations averaged over each set of
adjacent layers within each SQS (± one standard deviation).

% B at. Bavg AAavg BBavg ABavg

80 90 0.80 ± 0.11 0.04 ± 0.05 0.64 ± 0.19 0.16 ± 0.08

80 135 0.80 ± 0.06 0.04 ± 0.04 0.64 ± 0.09 0.16 ± 0.03

60 90 0.60 ± 0.11 0.17 ± 0.11 0.37 ± 0.11 0.23 ± 0.03

60 135 0.60 ± 0.07 0.15 ± 0.07 0.35 ± 0.10 0.25 ± 0.05

correlations, but their standard deviations all decrease,
as we would expect with more atoms interacting between
each layer. For A-60% B, however, increasing the num-
ber of atoms gives slightly different average correlations
for AA, BB, and AB. In addition, the standard deviation
of the AB average actually increases. This may explain
why in Table II, the only increase in uncertainty in using
the 135-atom cell was for the 40/60 and 60/40 composi-
tions. Presumably the A-B interactions are energetically
important in the SFE calculation, so an increase in the
AB uncertainty is reflected in the average SFE. We also
found that the uncertainty in all intralayer correlations
decreased from 90 to 135 atoms.

These results indicate that a more tailored method of
SQS generation may be required for improved average
SFE calculations. For instance a novel objective function
that takes into account the overall correlations as well as
the correlations between sets of layers could help pre-
screen SQSs for improved SFE calculations.

C. AIM method

Table IV lists the results of the first- and third-order
AIM estimates for γisf in the pure elements. While both
AIM1 and AIM3 show good agreement for Ag and Au,
AIM3 overestimates γisf by almost 10% for Pd, indicating
this expansion may not be sufficient for Pd. The discrep-
ancy for Pd could be due to fixing the interlayer distance
of the dhcp and hcp phases, since allowing them to re-
lax would likely yield a lower energy. Using higher-order
AIM expansions with more stacking sequences could also
provide a better approximation. Others have also ob-
served the stacking fault energy contains an hcp-fcc in-
terfacial energy which the AIM method does not account
for, adding another layer of discrepancy between the AIM
method and direct supercell methods14. This may ac-
count for AIM underestimating the SFE in some cases.

Table V contains the results of AIM estimates for the
three binary alloy systems studied. Applied to these sys-
tems, AIM3 (using 135 atom SQSs for fcc) estimates γisf
as calculated directly using 135 atoms to within 10% in
all but one case. However using 30- and 90-atom cells
for the fcc energy introduces significant variation which
is not always monotonic. There are several compositions
for which the AIM3 values for 30 and 135 atoms are close

TABLE IV. First- and third-order AIM results for pure ele-
ments compared to γisf as calculated directly. All energies are
in mJ/m2.

AIM1 AIM3 γisf

Ag 17 17 18

Au 32 31 31

Pd 170 155 142

TABLE V. First- and third-order AIM results using 30, 90 and
135 atoms for fcc compared to direct supercell calculations
using 135 atoms. All energies are in mJ/m2.

AIM1 AIM3

30 90 135 30 90 135 γisf

Pd-20% Ag 107 118 106 108 125 106 110

Pd-40% Ag 69 76 74 65 75 72 70

Pd-60% Ag 49 47 51 43 40 46 54

Pd-80% Ag 30 31 31 33 34 35 33

Pd-20% Au 148 149 149 145 145 146 143

Pd-40% Au 109 118 122 103 116 121 119

Pd-60% Au 84 86 92 72 75 84 91

Pd-80% Au 65 58 67 65 55 69 67

Ag-20% Au 22 20 23 22 23 21 20

Ag-40% Au 16 22 24 26 24 19 22

Ag-60% Au 26 29 28 25 28 26 26

Ag-80% Au 31 31 31 29 29 30 29

but the 90-atom value is significantly different. From this
we conclude that the AIM method is quite sensitive to the
specific structure used. We did not use different hcp and
dhcp structures, which would likely introduce additional
uncertainty. However, averaging over multiple SQSs with
similar correlations can provide a better estimate while
still limiting computational cost, as others have shown18.

D. Universal scaling law

Jin et al. proposed a “universal scaling law” for the
ratio of γisf to γusf and of γutf to γusf

γutf
γusf

≈ 1 +
γisf

2γusf
. (3)

They showed this relationship to hold for when the
interaction of the consecutive stacking faults is negligible,
which they found to be true of many fcc elements, with Pt
as an exception44. This is a useful result because common
measures of propensity for twinning during deformation
rely on the ratio γutf/γusf, so taking advantage of this
scaling law could reduce computational expense12.

As shown in Figure 4, we find that the law holds well
for all alloys considered. The shift between our results
and those from Li et al. is due to the discrepancy in
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FIG. 4. γutf/γusf versus γisf/γusf for all pure elements and
binary compositions studied and those from Li et al.4.

the unstable SFE that was noted previously. Our results
follow the scaling law more closely, particularly for Ag
and Pd-Ag.

IV. CONCLUSIONS

In this study, we have examined a direct method for
calculating SFE in non-dilute Pd-Ag, Pd-Au, and Ag-Au
alloys by averaging over all possible fault planes within

a single SQS. Our results are in good agreement with
available CPA literature for stable SFE, however there is
a discrepancy in the unstable SFE which could be due to
slight differences in methods. We found that using 135
atoms versus 90 atoms tends to reduce the uncertainty of
the calculated energy, except for some cases which we at-
tribute to an increase in the variation of certain interlayer
interactions. This result in particular suggests that a
new strategy of pre-screening SQSs based on not just the
overall correlations but correlations between layers may
provide a way to improve these kinds of SFE calculations.
We also found that the AIM method estimates the direct
supercell method within 10% in almost all cases, but can
be quite sensitive to the particular structure. We expect
these results will be useful in choosing the best methods
to calculate SFE of novel alloys.
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