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We consider in detail a simple model supporting a single floppy mode that is often used to heuris-
tically describe instances of negative thermal expansion (NTE). A key result is the translational
kinetic energy of the dilating bond network scales extensively with system size and results in dy-
namical properties which differ qualitatively from considerations built upon harmonic models. We
develop an analogy between the dynamics of this model and a modified mechanical pendulum to
elucidate the connection between the new results and the familiar harmonic limit. We then propose
an appropriate Schrödinger equation for this system and study numerically the quantum mechanical
solutions. Marked differences from conventional phonon dynamics and thermodynamics are seen in
both classical and quantum limits, in particular a strong two-fold enhancement of the (negative)
coefficient of thermal expansion. We contextualize the results against real materials parameters and
discuss related empirical observations.

Negative thermal expansion (NTE) has been identified
from the early 20th century as a maverick phenomenon[1]
and two routes to realizing this effect have been identi-
fied: (i) broadened phase transitions and (ii) intrinsic
structural origins. Investigations into the first class of
NTE phenomena have revealed contentious issues regard-
ing the interplay of magnetism, disorder, charge dispro-
portionation, and their volume coupling and continue to
intrigue physicists[2–8]. The second class of behavior,
which we term structural NTE (SNTE), is observed in
both metallic and insulating materials without compet-
ing order[9–14]. SNTE arises instead from the low-energy
fluctuations of the bond network which draw in the lat-
tice when thermally activated and represents a particu-
larly interesting limit of lattice dynamics.

A central question in the study of SNTE is whether ba-
sic structural mechanics principles and intuition can be
applied to guide discovery of new materials that display
this anomalous effect. For example, metallic ReO3 and
insulating ScF3 with open perovskite structure display
SNTE over a wide range of temperatures[15, 16], but why
do other open perovskites most commonly exhibit pos-
itive thermal expansion (PTE)? Why is SNTE so rare
and inevitably yields to PTE in response to disorder[16–
18] and application of pressure? In pursuit of conceptual
control of the phenomenon, innovative approaches have
been offered which link thermally-activated transverse vi-
bration of structural units to a tendency to draw in lattice
dimensions. “Rigid unit” approaches view polyhedral
molecular units (i.e. metal-anion tetrahedra and octahe-
dra) rather than ions as the fundamental building blocks
of a material and attempt to link the states built from
rotational zero modes of the free molecules to the low
energy modes of the crystal. In this view, intramolecular
degrees of freedom are effectively integrated out and the
nature of their coordinated motion as a function of lattice
topology and connectivity[19–23] is the central feature of
SNTE. New discoveries of robust SNTE have reinvigo-
rated the field and raised the question of whether strict
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FIG. 1: The two-dimensional constrained lattice model (2D
CLM) with staggered angle (a) θ and (b) θ 6= 0. In the rigid
limit, the lattice dimensions contract uniformly by a factor
cos θ.

molecular rigidity is an appropriate starting point[24–26],
or if instead it is more appropriate to consider only rigid-
ity of the stiffest bonds in a view of the materials as a
framework of struts. In an effort to advance the rela-
tive importance of molecular or bond stiffness in SNTE
systems, the present manuscript regards analytical and
numerical descriptions of a simple model supporting a
single collective mode capable of producing SNTE.

A two-dimensional constrained lattice model (2D
CLM) is shown in Figure 1. The finite crystal consists
of corner-linked diamonds with coordinate origin at the
center of mass (COM). The diamonds could represent
metal-anion octahedra in a perovskite lattice structure
such as strong SNTE systems ScF3 or ReO3, but has
been used to describe more complex lattices[27–31]. The
N�=NxNy diamonds are attached by hinged joints, so
that their motional degrees of freedom are constrained.
The 2D CLM is an interesting case in that it is isostatic,
or marginally constrained, in the sense that even in the
thermodynamic limit, there is exactly one internal degree
of freedom: a staggered rotation of each diamond by an



2

(d)

t

T ✓

✓0

✓̇

!p✓0(a) (c)(b)

t

T

✓

✓0

✓

✓0

✓̇

!p✓0

P (✓)

t

⌧

t

⌧

k✓0 = 0

k✓0 = 101

k✓0 = 1
k✓0 = 10

1
2

k✓0 = 10
3
2

k✓0 = 10
5
2

-1

0

1

10.510.5

-1

0

1

-1

0

1 1

1

-1

-1

FIG. 2: Panels (a)-(d) show classical solutions for θ(t) which follow from Equation (3). These are plotted for different values
of kθ0, which uniquely quantifies the anharmonic behavior. The time axes in (a) and (c) are scaled by the FM period.

angle θ. When θ=0, the lattice has the maximum area
A0=N�a20, but changing θ from zero in either direction
contracts the lattice to an area A0 cos2 θ, and thermal
activation of this collective mode is often attributed as
the origin of NTE[27–32].

In addition to computational approaches built around
phonons, efforts to develop this model into a field theory
which respect the high energy constraints of bond stretch
and bond bend degrees of freedom include mimicking
polyhedral pliancy through a split-atom approach[33], by
lowering the degree of constraint[34, 35], or permitting
some diamonds to be replaced by springs[36], and un-
usual properties like NTE are found in each case. Be-
low, we fully enforce the constraints and show that exact
analytical results link phonon dynamics continuously to
the floppy mode (FM) of the 2D CLM. We will see that
this strictly rigid limit is inconsistent with the thermo-
dynamic limit and focus our attention to finite lattices.
A comparison of emergent properties derived from the
2D CLM Hamiltonian and their crossover from textbook
harmonic dynamics is the subject of this manuscript. We
reassess the possible role of molecular rigidity in section
V.

I. CLASSICAL MECHANICS OF THE 2D CLM

Consider first the kinetic energy of the 2D CLM.
When θ=0, a diamond center can be located at po-
sition ~r(θ=0)=(nx, ny)a0. When θ 6=0, the distance
between neighboring diamond centers is reduced by
a multiplicative factor cos θ and each position vector
is scaled similarly ~r(θ)=(nx, ny)a0 cos θ with velocity

~̇r(θ) = −(nx, ny)a0θ̇ sin θ. The velocity vectors and po-
sition vectors of each diamond always point directly to-
ward or away from the center of mass (COM). Summing
the translational energy m�ṙ2/2 over all diamonds in the
crystal, the total translational kinetic energy is:

Ktrans
� =

1

2
Icθ̇

2 sin2 θ

where Ic =
∑
nxny

m�((nxa0)2 + (nya0)2) is the moment

of inertia of a similar crystal where diamonds are replaced

by points, each of mass m�. The appearance of the mo-
ment of inertia in the kinetic energy reflects a deep con-
nection between the staggered rotation of the 2D CLM
and the uniform rotation of a rigid body, where dynam-
ical motion is also characterized by a single angle, with
velocity increasing linearly with distance from the COM,
but wherein material displacements are purely tangen-
tial.

Including the rotational kinetic energy of each diamond
and summing, the total kinetic energy of the 2D CLM is

K =
1

2
N�I�θ̇

2 +
1

2
Icθ̇

2 sin2 θ =
1

2
N�I�θ̇

2(1 + k2 sin2 θ)

(1)

where k=
√

Ic
N�I�

=
√
γN� and γ=Ic/N

2
� I� depends on

the aspect ratio of the crystal and mass distribution for
the diamonds (' 1.79 for a square crystallite of ScF3)[49].
Significantly, the kinetic energy of the FM has a rota-
tional part (the first term) which scales with system size
in an intensive way (∝ N�), while the translational ki-
netic energy scales extensively (Ic ∝ N2

� ). In the present
work, we study the dynamics of this floppy mode in finite
systems.

We introduce a bond-bend potential V (θ) at each
molecular junction to stabilize the equilibrium structure
and study dynamical fluctuations about the ground state
where θ=0. The lowest Fourier component of this poten-
tial can be written κ(1-cos θ)' κθ2/2 in the small-angle
limit. The energy of the 2D CLM is therefore:

E =
1

2
N�I�(1 + k2 sin2 θ)θ̇2 +Nbκ(1− cos θ) (2)

where Nb ' 2N� is the total number of intermolecular
linkages. In the small θ limit , this reduces to

E =
1

2
N�I�(1 + (kθ)2)θ̇2 +

1

2
Nbκθ

2. (3)

Figure 2a shows solutions to the equations of motion
which can be determined from the inverse of the func-
tion:

t(θ) =
1

ωp

∫ θ

0

√
1 + k2θ′2

θ20 − θ′2
dθ′
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FIG. 3: n=25 excited state wavefunctions of the quantum 2D CLM in (a) and unfolded and (b) a Archimedean spiral represen-
tation for a span of ν values. (c) Ground state wavefunctions ψ0(φ). (d) Energy spectrum of the quantum 2D CLM, showing
convergence to the harmonic limit as ν→0. (e) variance in φ versus scaled energy for the 2D CLM (solid) and for the harmonic
approximation (dashed) at the same ν, showing the enhancement of angular fluctuations arising from the translational kinetic
energy.

=
1

ωp
E

(
arcsin

(
θ

θ0

)
,−k2θ20

)
(4)

valid for −θ0 < θ < θ0, where E(φ,m) is the incomplete

elliptic integral of the second kind and ωp=
√
Nbκ/N�I�.

The k=0 limit returns sinusoidal motion with amplitude
θ0 and frequency ωp as expected. Of particular interest
is however the limit of large k, which corresponds to the
thermodynamic limit of the 2D CLM. Equation (4) then
permits an exact solution

(t− t0)2

(kθ0/ωp)2
+
θ2

θ20
= 1.

The time dependent staggered angle can be described
by waves constructed from semicircular arcs in the θ-t
plane, in contrast to the familiar sinusoidal behavior of
the harmonic limit.

Several aspects of the thermodynamic FM are distinct
from the harmonic case: (i) the period τ = 4kθ0

ωp
=

4θ0

√
Ic
Nbκ

is proportional to both the amplitude of os-

cillation and the system size, (ii) the system spends van-
ishingly small time in the average position, and (iii)
P (θ) shows enhanced variance (Fig. 2b), spending far
more time near the extrema. These three counterin-
tuitive features are described in a different context in
Appendix A, which identifies the dual problem of the
Archimedean spherical pendulum (ASP): a particle con-
fined to an Archimedean spherical helix moving under
the influence of local gravity.

II. QUANTUM MECHANICS OF THE 2D CLM

In this section, we quantize the 2D CLM in the
small angle limit. The classical Lagrangian of the 2D
CLM/ASP is

L =
1

2
N�I�(1 + k2 sin2 θ)θ̇2 −Nbκ(1− cos θ).

The variable θ has a conjugate momentum

Lθ =
∂L
∂θ̇

= N�I�(1 + k2 sin2 θ)θ̇.

Together, θ and Lθ span phase space, with classical
Hamiltonian

H = Lθ θ̇ − L

=
L2
θ

2N�I�(1 + k2 sin2 θ)
+Nbκ(1− cos θ).

Expanding for small θ <1, then substituting φ=kθ and
Lφ=Lθ/k, we get

H =
k2L2

φ

2N�I�(1 + φ2)
+

1

2

Nbκ

k2
φ2.

φ corresponds to the azimuthal angle of the ASP, is not
necessarily small, and is the natural variable for quanti-
zation.

In anticipation of quantizing L → i~∂, we consider
the operator ordering possibilities relevant to the kinetic
energy in the last expression. The kinetic energy contains
the two usual factors of the conjugate momentum and
an additional Lorentzian factor f= 1

1+φ2 . These three

operators can be arranged in the following inequivalent
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combinations: L2
φf , LφfLφ and fL2

φ. Requirement that
the Hamiltonian be self-adjoint restricts our attention to
LφfLφ and the symmetric combination (L2

φf + fL2
φ)/2.

To distinguish between these possibilities, we turn to the
correspondence principle for guidance and compare the
numerical solutions in each case to the classical time-
averaged probability distribution Pt(φ)[50]:

Pt(φ) =
1

2E(−φ20)

√
1 + φ2

φ20 − φ2

where E(x) is the complete elliptic integral of the
second kind and the classical turning points are
φ0=±k

√
2E/Nbκ. In a side-by-side comparison, we find

that the operator choice (L2
φf + fL2

φ)/2 produces wave-
functions that resemble this classical time-averaged prob-
ability distributions of Figure 2b and explicit comparison
is shown for the 25th excited state in Figure 3a. The
time-independent Schrödinger equation is therefore(
− ~2k2

4N�I�

( 1

1 + φ2
∂2φ + ∂2φ

1

1 + φ2

)
+
Nbκ

2k2
φ2
)
ψ = Eψ

Defining scaled energy ε = E/~ωp, the dimension-free
Schrödinger equation for the 2D CLM is:

−ν
4

( 1

1 + φ2
∂2φ + ∂2φ

1

1 + φ2

)
ψ +

1

2ν
φ2ψ = εψ. (5)

where ν=k2~/N�I�ωp. For small φ�1, Equation (5) re-
duces to

−ν
2
∂2φψ +

1

2ν
φ2ψ = εψ

which describes the harmonic limit with ground state un-
certainty in the angle ∆φ=

√
ν/2=0.707

√
ν. We there-

fore expect the harmonic limit to be realized near the

condition of ν small, with new anharmonic features for
highly excited states and/or ν large. The crossover in
behavior is controlled by the dimensionless parameter ν,
proportional to ~:

ν =
k2

N�

~
I�ωp

=
Ic

N2� I�

~
I�ωp

= γ
~

I�ωp

The factor γ, introduced above, is a number which is of
order unity (see Table II) and independent of system size
for large systems. The remaining factor ~/I�ωp compares
the quantum of angular momentum ~ to the angular
momentum of a single diamond rotating at angular fre-
quency ωp. With a ~ωp=1 meV oscillation corresponding
to the zone edge optical phonon of ScF3 and many per-
ovskite systems, and using the lattice parameter a '4Å,
we get ~/I�ωp=0.0273 and an overall νScF3

= 0.0491.

Considering νScF3 , ∆φ=
√
νScF3/2 ' 0.157rad = 8.975◦.

∆φ is already appreciable in the ground state, implying
that the wave functions are significantly altered from the
Hermite polynomial type expected in the pure harmonic
limit. Appendix C evaluates γ, ν, and ∆φ for some in-
teresting materials.

The effects of non-zero ν on the ground state wave-
function are shown in Figure 3c, where a general broad-
ening of the probability distribution precedes formation
of a two-hump structure for ν>1, indicating approach to
an instability at zero temperature. One may speculate
that this is a signature that dilational dynamics resul-
tant from local rigidity may influence structural phase
stability. We stress that θ=φ/k=φ/

√
γN� is the physi-

cal angle so the quantum fluctuations φ are suppressed
by the system size: ∆θ→0 in the strict thermodynamic
limit.



5

0
2

4
6

8
10

0.1 1 10 100

0

2

4

6

8

10

0.1 1 10 100

Einstein

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

kBTν/ℏωp

ϵ=
<E

>/
4δ

kBT⌫/~!p

h"
i⌫

=
hE

i⌫
/~
!

p

Equipartitio
n

Translational Kinetic

Pote
nti

al

Rotational Kinetic

To
tal

 E
ne

rg
y

0.05 0.10 0.50 1
0

20

40

60

80

100

120

Log(kBT/ℏωp)

C
*T

-3
/ℏ
ω
p

ln(kBT/~!p)

C
/k

B
(~
!

p
/k

B
T

)3 0.01
0.05
0.10
0.25
0.50
1.00
2.00

⌫
(a) (b)Classical 2D CLM Quantum 2D CLM

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

kBT/ℏωp

c=
C
/ℏ
ω
p

2

Einstein

2D CLM (Classical)

2D CLM (Quantum)

⌫ = 2(d)

kBT/~!p

D-P

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

kBT/ℏωp

c=
C
/ℏ
ω
p

0.05

Einstein
2D CLM (Classical)

2D
 C

LM
 (Q

ua
nt

um
)

⌫ = 0.05(c)

kBT/~!p

D-P

C
/k

B

C
/
k

B

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

kBTν/ℏωp

ϵ=
<E

>/
4δ

kBT⌫/~!p

Equipartit
ion

Tra
nslational Kinetic

Po
ten

tia
l

Rotational 

Kinetic

To
ta

l E
ne

rg
y

(a) Classical  
2D CLM

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

kBT/ℏωp

c=
C
/ℏ
ω
p

0.05

0.05 0.10 0.50 1
0

20

40

60

80

100

120

Log(kBT/ℏωp)

C
*
T
-
3
/ℏ
ω
p

Einstein
2D CLM (Classical)

2D
 C

LM
 (Q

ua
nt

um
)

⌫ = 0.05(c)

kBT/~!p

D-P

C
/
k

B

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

kBT/ℏωp

c=
C
/ℏ
ω
p

2

Einstein

2D CLM (Classical)

2D
 C

LM
 (Q

ua
nt

um
)

kBT/~!p

D-P

C
/
k

B

⌫ = 2

kBT/~!p

0.05 0.10 0.50 1
0

20

40

60

80

100

120

Log(kBT/ℏωp)

C
*T

-3
/ℏ
ω
p

C
/k

B
(~
!

p
/k

B
T

)3

10-1 1

0.01
0.05
0.10
0.25
0.50
1.00
2.00

⌫
Quantum  
2D CLM

(b) (d)
h"
i T
⌫

=
hE

i T
⌫
/
~!

p

FIG. 5: (a) Classical thermal energy of the model with translational kinetic, rotational kinetic, and potential energy contribu-
tions shown explicitly. Dashes line shows the equipartition/Dulong-Petit limit. (b) ν dependence of C/T 3 versus T on a log
scale which presents and image of the phonon density of states in a phonon interpretation[37]. (c,d) show the heat capacity for
the usual Einstein and Dulong-Petit limits along with the classical analytic results and quantum computational results for (c)
ν=0.05 and (d) ν=2.

III. THERMODYNAMICS OF THE 2D CLM

The quantized energy spectrum shows sub-linear de-
pendence on quantum number (Fig 3d), but the harmonic
limit is recovered for ν → 0 as expected. The variance
〈n|φ2|n〉 is shown versus energy in Figure 3e versus the
scaled energy ε=E/~ωp (solid lines) along with the same
result for an Einstein harmonic oscillator (dashes) with
the same ground state uncertainty ∆φ. We see that NTE
is enhanced in the 2D CLM for two reasons: (i) the en-
hancement of angular fluctuations is larger within each
energy window but also (ii) the low-temperature density
of states is larger as a result of the strain interactions.

The combined effect of these influences is manifest
in the thermally-averaged unit-cell dimension, which is
directly related to the thermally-averaged moments of
θ: a(T )=〈a0 cos θ〉'a0(1− 〈θ2〉T /2)=a0(1− 〈φ2〉T /2k2),
where the expectation value 〈〉T is over the statistical
distribution. The classical limit permits the analytical
result:

〈φ2〉T,cl =
1

Zcl

∫
φ2e−βHdφdLφ

=
kBTk

2

1
2N�I�ω

2
p

{ 1

1 + K0(δ)
K1(δ)

}
.

with β=1/kBT and δ=Nbκ/4k
2kBT=~ωp/4νkBT . The

temperature-dependent lattice parameter according to
the classical 2D CLM is

acl(T ) = a0

(
1− kBT

N�I�ω2
p

{ 1

1 + K0(δ)
K1(δ)

})
. (6)

Welche et al [32] have presented an expression for the
2D CLM excluding the translational kinetic energy and

find a T -linear lattice parameter and T -independent neg-
ative coefficient of thermal expansion (CTE). The fac-
tor in brackets of (6) is new, and approaches 1/2 in
the low T limit and 1 in the high-T limit, suggesting
the translational kinetic energy enhances SNTE signifi-
cantly. This relative change in lattice parameter is shown
as ∆a/a0=(a(T ) − a0)/a0 in Figure 4b for this classical
result along with corresponding calculation for the quan-
tum model and various values of ν, showing a general
enhancement of slope with increasing ν.

The CTE αL=da/dT can be calculated straightfor-
wardly from this expression and we find the αL is a uni-
versal function of kBTν/~ωp=1/4δ, shown as a thick line
in Figure 4c:

αL(T ) = − a0kB
N�I�ω2

p

{ 1

1 + K0(δ)
K1(δ)

− δ d
dδ

1

1 + K0(δ)
K1(δ)

}
(7)

In the absence of translational kinetic energy, the term
in brackets is constant and equal to 1/2[32], shown as a
dashed line. The new feature resultant from considering
the translational kinetic energy is a doubling of the SNTE
effect above a crossover temperature kBT ' ~ωp/2ν.
Quantum effects are also apparent in Figure 4c and tend
to suppress the CTE at low temperature.

Expressions for the classical thermal energy are given
in the Appendix B and describe the unequal partition-
ing among the rotational, translational, and potential en-
ergy contributions to the thermal energy of the 2D CLM.
We present these results as a universal plot in Figure 5a
with different contributions shown separately. When k or
ν→0, the Hamiltonian is equivalent to a harmonic oscil-
lator, the preconditions of the equipartition theorem are
valid, and the heat capacity is C=kB as expected for the
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two degrees of freedom (rotational kinetic and potential).
When ν 6=0, the additional inclusion of the translational
kinetic energy and quartic terms render the equipartition
theorem invalid, and even the classical heat capacity de-
pends on temperature. Interestingly, the sum of potential
and rotational terms equals kB independently of ν, but
the thermal energy is equally partitioned among these
two terms only when ν→0. In the large ν limit, the total
energy is 3kBT/2 distributed as kBT potential, kBT/2
translational, and negligible rotational energy.

Figure 5b shows the heat capacity of the 2D CLM using
quantum numerics as a plot of C/T 3 versus lnT , which
represents an approximate profile of the vibrational den-
sity of states in a phonon interpretation[37–41]. The ef-
fect of ν is to increase the low-T heat capacity and dis-
tort the lineshape significantly from the usual Einstein
form. Figures 5c,d compare the classical and quantum
heat capacity for moderate (0.05) and large (2.0) values
of ν. For small ν, the quantum solution appears Einstein-
like, with a rapid approach to the classical (Dulong-Petit)
limit around kBT=~ωp as expected. For larger ν, distor-
tions from the Einstein form become apparent. In both
cases, the quantum and classical limits converge well be-
fore the high temperature limit of 3kB/2 is reached, in
contrast to the classical Dulong-Petit/Einstein results,
which converge to each other and the high temperature
limit simultaneously.

IV. DISCUSSION

The developments presented here are enabled by as-
suming a strictly rigid limit is taken in a two dimensional
system, bringing the number of degrees of freedom from
a thermodynamic number to a single mode. This resid-
ual soft degree of freedom results from integrating out
the intermolecular degrees of freedom in an approxima-
tion of the strain interactions as having infinite range.
While this conceptual convenience has been tradition-
ally invoked to heuristically describe SNTE, whether the
strict limit has a place in describing real materials is a
rather contentious issue that has been revisited lately.

In the original SNTE material ZrW2O8, the role of
rigidity has been discussed at length in semi-classical
terms[19, 22, 23, 25, 42], with a common premise of
molecular rigidity but disagreement on the sense of mo-
tion required to generate SNTE. ZrW2O8 is a complex-
structured material with 44 atoms/unit cell and consists
of a network of ZrO6 octahedra and WO4 tetrahedra with
large, open voids, inspiring a rich discussion and propos-
als that the system is mechanically underconstrained and
frustrated[35, 39]. More recently, the premise of molec-
ular rigidity has been questioned and a view of metal-
anion bond rigidity[25] has been proposed based on MD
simulations.

Recently strong NTE was discovered in ScF3, an open
perovskite only four atoms/unit cell that remains cubic
at all temperatures T < 1800 K. This model system has

the capacity to shed light on the issue of molecular versus
bond rigidity due to its simple structure[24, 26, 41, 43–
46]. We review some features of the 2D CLM presented
above in the context of experiments on ScF3.

2D nanoscale correlations Recent inelastic X-ray scat-
tering work [18, 47] has shown that ScF3 features an in-
cipient soft mode instability via its excitation spectrum.
Specifically, the ‘central peak’ phenomenon and a dis-
persionless branch of modes circumscribing the edges of
the simple cubic Brillouin zone softens to zero tempera-
ture according to classical scaling and a putative transi-
tion temperature T=-39 K. The dispersionless nature of
modes in one dimension of reciprocal space and observed
diffuse X-ray scattering rods suggest a dimensional low-
ering in this system, permitting application of the 2D
CLM[47]. We note the appearance of the system size in
the expression for the lattice parameter (Eqn. 6), imply-
ing that the CTE vanishes in the thermodynamic limit.
Comparison of the observed CTE and optic mode energy
with literal application of the 2D CLM result presented
in detail here implies a length scale ∼5-6 unit cells, in rea-
sonable agreement with the correlation lengths observed
in diffuse X-ray scattering data.

We note that the onset of CTE enhancement occurs
at high temperatures kBT>~ωp/ν, where normal PTE
may be activated by intramolecular distortions above
the bond-bend threshold. This influence may contribute
to the protracted temperature range where SNTE is
observed[15, 44].

Thermodynamics and finite-size effects Anomalous
thermodynamic behavior has been observed in SNTE
materials ZrW2O8[39] and ScF3[40, 41] which display
unusually strong low-temperature heat capacity. Com-
plications using Einstein-Debye fits of low-temperature
heat capacity have been noted[40], suggesting there are
interesting physics of SNTE materials manifest in their
thermodynamical properties.

Recent studies of ScF3 nanoparticles showing that both
the CTE and low-temperature specific heat are enhanced
in bulk-like crystallites (∼1µm) relative to nanoparticle
samples (∼80nm) with the same morphology, suggesting
extensive scaling of thermal properties[41]. The peak in
Cp/T

3 indicates and effective oscillator energy, which un-
dergoes a sizable shift from 0.8meV in bulk[40] samples
to 4meV for 80nm nanoparticles[41]. In the language of
the present model, variation of crystallite size is quanti-
fied by Nx=

√
N�=k/

√
γ. We have considered the size-

dependent influences of the present model (e.g. Nx∼200
for 80nm nanoparticles) and find through calculation that
ν for these system sizes is only weakly dependent on Nx,
too small of an effect to alone explain the magnitude of
the observed trend in effective oscillator energy. Consis-
tent with prior work, we attribute the size dependence
to stiffening at small particle size[41]: in the language of
our model ωp increases and ν decreases as the particles
are reduced in size. Figures 4c and 5b show that a corre-
sponding lowering of the CTE and stiffening of the Cp/T

3

peak are then expected to occur together in accord with
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experiments.
Long period vibrations Multiple MD simulations aimed

at understanding the SNTE modes in the specific
case of ScF3 have been performed and dispersion data
extracted[24, 26, 40, 43–46, 46]. In all but one tour-de-
force study[44], these efforts produce mode energies at
the M and R points of the simple cubic Brillouin zone
in the range 5-10meV, consistently higher than exper-
iments 0.5-4meV[18], suggesting that possibly the slow
oscillations realized in the large k limit of our model
are not captured in some finite-size simulations (low k
in our model). The origin of the lengthened oscillation
period in the 2D CLM is the large translational motion of
molecules throughout the crystal and may be important
to address in quantitative comparisons of computational
results with experiments.

Angular distribution We present the thermally-
averaged probability distribution PT (φ) for the angle
φ=kθ in the Appendix B and in Figure 4a, showing that
the low temperature Gaussian distribution expected for
the harmonic oscillator evolves into a two-peaked func-
tion at high temperatures. Recent MD simulations of
ScF3 at high temperature have revealed this surpris-
ing aspect of the probability distribution is highly non-
Gaussian and that the system spends essentially zero
time in the average structure with straight bonds[45, 46].
This aspect is recovered in section I of this manuscript
(Fig. 2b), is explained using the pendulum analogy in
Appendix A, and is resultant from the strong local con-
straints of the 2D CLM. We note that in contrast to our
approach, MD simulations are at their heart semiclassi-
cal calculations and may be limited in capturing quantum
mechanical aspects of the SNTE problem.

In conclusion, we have carried forth new analysis of a
model of SNTE that dates 20 years. We identified an im-
portant influence, the translational kinetic energy asso-
ciated with the dilating lattice, and developed solutions
for classical, quantum mechanical, and thermodynami-
cal properties. We have presented exact analytical and
numerical solutions, including expressions demonstrating
strong enhanced of the CTE and thermodynamics. We
contextualize the results and identify limited qualitative
agreement with existing data. Further experimental work
is required to characterize the quantum mechanical con-
sequences of rigidity in SNTE materials.

V. APPENDIX

A. Archimedean spherical helix pendulum

Harmonic motion is intuitive, appears widely in
physics, and sits at the heart of most approaches to lat-
tice dynamics. The stark departure of features above can
likewise be understood with basic mechanical intuition in
a generalization of a planar pendulum, whose energy is
given by (2) in the limit k=0. The more general k 6= 0
case can be extended by recalling the kinetic energy of a

particle moving in three dimensions expressed in spheri-
cal polar coordinates:

1

2
mp(ṙ

2 + r2θ̇2 + r2 sin2 θφ̇2) (8)

Constraining the particle position ṙ=0, (r=R constant)
to a spherical surface, constraining the azimuthal and
polar angles to each other φ=kθ, and identifying the pa-
rameter mapping spelled out in Table I establishes that
the dynamics of the staggered rotation θ in the 2D CLM
is equivalent to the dynamics of the polar angle of a par-
ticle constrained to move on an Archimedean spherical
helix under local gravitation. Figure 6 shows two 2D
CLMs of different size and their dynamically equivalent
Archimedean spiral pendula (ASPs), plotted for illus-
tration using the inertial parameters m�a20/I� = 10.74
appropriate for ScF3 and other oxide and fluoride per-
ovskites. Importantly, the angular pitch of the helix is

λ=2π/k=2π
√

N�I�
Ic

, which tends to zero in the thermo-

dynamic limit. In this context, we now develop an intu-
itive basis for the anharmonic features (i)-(iii) described
in section I.

(i) Period is proportional to amplitude: As gravity does
work on a plane pendulum, it increases the linear speed
of the mass mp during a quarter cycle along an arc length
s = Rθ0 and for small amplitudes, the period τ is inde-
pendent of amplitude θ0 as is well known: τ ∝ (θ0)0.
However for the spiral case, the arc length threads many
points on the conical cap of the sphere and the distance
covered grows as the solid angle Ω subtended by a cone
of apex half angle θ0: s = ΩR2/Rλ = 2πR(1−cos θ)/λ '
Rθ20k/2, and leads to an additional power of amplitude
τ ∝ (θ0)1 because of the higher-dimensional manifold
of points visited within a cycle. Interestingly, this di-
mensional crossover in the zero-pitch limit of the ASP is
also realized in the thermodynamic limit of the 2D CLM
and may be a broadly important element of the dynam-
ics of SNTE systems. The period is also proportional to
the system size k and results from the vanishingly small
component of gravitational force along the spiral path as
k →∞.

(ii) Vanishing probability density in average structure:
The linear speed of the mass mp is largest in the polar re-
gion where the arc length within a narrow window ∆θ is
smallest and the resultant vanishing dwell time near the
poles manifests as a node in the probability density P (θ)
at θ=0. This peculiar property has been recovered in re-
cent ab-initio molecular dynamics simulations of ScF3 at
high temperature[45] in the computed probability den-
sity for the Sc-F-Sc bond. A three-dimensional extension
of the present model is appropriate for direct comparison
to these computational results.

(iii) Moments of P (θ): The larger variance of the clas-
sical probability distribution implies the system spends
longer time near the extrema of motion compared to the
harmonic case. This feature is also intuitive in the ASP
analog: the arc length in a small window of θ is larger
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FIG. 6: Top row: example of small and large crystallites
whose dynamics is governed by equation 2. Bottom row: the
corresponding Archimedean spherical helix pendulum with
the same dynamics as the crystallite above it.

near the equator than near the poles and the pendu-
lum moves slowest near the turning points. This fea-
ture has direct implications for NTE: the time-averaged
area 〈A〉t = A0〈cos2 θ(t)〉t = A0(1 − ηθ20). For the sinu-
soidal k = 0 case, η=1/2 while η=2/3 for the thermody-
namic limit k →∞, showing that the strain dynamics of
CLMs enhances NTE over their harmonic counterparts.
We will see this strong enhancement of dimensional and
orientational fluctuations is also realized when quantum
and thermal effects are accounted for as discussed further
below.

The quantum mechanical treatment uses the variable
φ=kθ, corresponding to the azimuthal angle of the ASP.
We note that the solutions discussed here are also rel-
evant to the quantum ASP and their analysis comple-
ments recent solutions of the quantum particle on a
loxodrome[48]. The loxodrome (aka rumb line) is another
common spherical spiral which transforms to straight
lines on a Mercator projection of a sphere and is best
known for use in early naval navigation.

B. Expressions for contribution to thermal energy

In this appendix, we develop expressions for the ther-
mally averaged angular variance and average energies of
the 2D CLM. The partition function for the classical

TABLE I: The 2D CLM, characterized by parameters N�I�,
Ic, and Nbκ is dynamically equivalent to the Archimedean
Spherical Pendulum with mass mp, spherical radius R, an-
gular pitch λ, in local gravity g according to the following
mapping:

2D CLM Archimedean Spherical Pendulum

Nbκ mpgR
N�I� mpR

2

ω2
p = Nbκ/N�I� g/R

2π/k=2π
√
Ic/N�I� λ

model, in the limit of small angle is:

Zcl =

∫ ∞
−∞

e−βHdθdLθ

= eδ
√

2π
kBT

ωp
(K0(δ) +K1(δ))

where β=1/kBT , δ = Nbκ
4k2kBT

, and Kn(δ) is the order n
modified Bessel function of the second kind. The corre-
sponding expression for the quantum model is

Zqu =

∞∑
n=0

e−βEn

The thermally-averaged second moment of θ is:

〈θ2〉T,cl =
1

Zcl

∫
θ2e−βHdθdLθ (9)

Evaluating this expression leads to equation (6). The
corresponding expression for the quantum model is

〈θ2〉T,qu =
1

Zqu

∑
〈n|θ2|n〉e−βEn .

The thermally-averaged probability distribution for
the angle θ can be determined from

PT (θ) =
1

Zcl

∫ ∞
−∞

e−βHdLθ

= 2e−δ(1+2k2θ2) k
√

1 + k2θ2

(K0(δ) +K1(δ))

= kPT (φ).

The thermally-averaged energy is

〈E〉T,cl =
1

Zcl

∫ ∞
−∞

He−βHdθdLθ

= kBT
(

1 +
1

2

K1(δ)−K0(δ)

K1(δ) +K0(δ)

)
and

〈E〉T,qu =
1

Zqu

∑
Ene

−βEn
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The thermally-averaged rotational kinetic energy is

〈Krot〉T,cl =
1

Zcl

∫ ∞
−∞

L2
θ

2N�I�(1 + k2θ2)2
e−βHdθdLθ

= kBT
K0(δ)

K1(δ) +K0(δ)

The thermally-averaged potential energy is

〈V 〉T,cl =
1

Zcl

∫ ∞
−∞

Nbκ

2
θ2e−βHdθdLθ

=
Nbκ

2
〈θ2〉T,cl

= kBT
K1(δ)

K1(δ) +K0(δ)

The component not traditionally present in the har-
monic oscillator is the thermally-averaged potential en-
ergy:

〈Ktrans〉T,cl =
1

Zcl

∫ ∞
−∞

L2
θk

2θ2

2N�I�(1 + k2θ2)2
e−βHdθdLθ

=
kBT

2

(K1(δ)−K0(δ)

K1(δ) +K0(δ)

)
.

C. Assessment against other materials systems

Table II shows rough estimates of γ, ν, and ∆φ for
common interesting perovskite materials with formula
ABX3. The A site contribution was ignored for sim-
plicity (exact for open perovskites with formula BX3),
and ~ωp=1meV was assumed for the purposes of side-
by-side comparison. The factor γ is calculated using the
inertial parameters of the octahedra and assumes ideal
cubic symmetry of the octahedra. This exercise reveals a
trend suggesting heavier B-site elements tend to possess
larger values of γ, ν and ∆φ and heavy perovskites ex-
hibit larger deviation from harmonic behavior than their
lighter counterparts. While experimental observation of
quantized NTE modes awaits further experimental work
and is beyond the scope of the present work, we suggest
that a significant variation in ν could be accessed among
known material systems and the results may be signif-
icant for a broad class of perovskite-structured materi-
als. We speculate that near a structural phase transition
where the effective soft optic mode describing octahedral
rotation softens completely, that the effective ωp may be-
come very small with a corresponding increase in ν could
exacerbate some of the features described here.
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TABLE II: Quantum parameters of the 2D CLM evaluated for representative perovskite-structured materials. Mean lattice
parameters were evaluated in the cases where the symmetry is lowered by distortion and the A site contribution, when present
in the structure, was not addressed in the calculation. The trend shows that larger B site mass have larger γ, and larger ν,
and ∆φ. Calculations of ν and ∆φ assume ~ωp=1 meV.

Perovskite 〈a〉(300 K) γ ν(ωp=1meV) ∆φ (~ωp=1meV) (◦)

ScF3 4.014 1.79 0.0491 8.975
SrTiO3 3.905 2.01 0.0689 10.62
SrTcO3 3.95 3.07 0.1030 13.00
SrRuO3 3.92 3.12 0.1061 13.20
ReO3 3.742 4.90 0.1829 17.33
SrIrO3 3.96 5.026 0.1676 16.58
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