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Anharmonic effect in thermoelectrics has been a central topic for decades in both condensed matter
physics and material science. However, despite the long believed strong and complex anharmonicity
in the Bi2Te3−xSex series, experimental verification of anharmonicity and its evolution with doping
remains elusive. We fill this important gap with high resolution, temperature dependent Raman
spectroscopy in high quality single crystals of Bi2Te3, Bi2Te2Se and Bi2Se3 over the temperature
range from 4 K to 293 K. The Klemens’s model was employed to explain the renormalization of
their phonon linewidths. The phonon energy of Bi2Se3 and Bi2Te3 are analyzed in detail from
three aspects, lattice expansion, cubic and quartic anharmonicity. For the first time, we explain
the evolution of the anharmonicity in various phonon modes and across the series. In particular we
find the interplay between cubic and quartic anharmonicity is governed by their distinct dependence
on the phonon density of states, providing insights into anomalous anharmonicity designing of new
thermoelectrics.

I. INTRODUCTION

The Bi2Te3−xSex family of materials have been stud-
ied for decades as good thermoelectrics, however the
physical origin of their low thermal conductivity reminds
not fully understood1. Recently neutron scattering es-
tablished anomalous anharmonicity as the origin of low
thermal conductivity in another popular thermoelectric
family (Pb1−xSnxTe). Specifically the anharmonicity in-
duced softening of the transverse optic (TO) modes opens
an important decay channel for one of the major heat
carriers-transverse acoustic (LA) modes and thus is key
to their low thermal transport2. First-principle studies
suggest the resonant bonding mechanism is responsible
for this large anharmonicity. Furthermore these studies
suggest the same mechanism, although weaker, is rele-
vant to the group V2-VI3 materials3,4. Since these ma-
terials also hold great promise for nanoelectronics due to
their topological properties, understanding the evolution
of anharmonicity across the Bi2Te3−xSex series is crucial.
This giant anharmonicity can also lead to new properties
such as ferroelectricity5,6, structural phase transitions7,
and reduced thermal conductivity2. In recent years, there
has been a focus on neutron scattering as a means to ex-
plore anharmonicity, due to the emergence of new sources
and excellent results in PbTe2. Nonethless such studies
typically require large crystals and provide large momen-
tum but limited temperature resolution.

High resolution and small sample requirements are pro-
vided by temperature dependent Raman spectroscopy,
which is well established for measuring the evolution
of the lattice structure8, phonon dynamics and anhar-
monicity in a wide range of materials9–13. While there
have been some studies of Bi2Te3−xSex using Raman
spectroscopy14,15, these either were limited to fewer
phonon modes or samples were measured just at room
temperature. A high temperature and spectral resolu-
tion study across the series is still lacking. Specifically, if
one considers the small temperature dependent changes
of phonons (typically 2-5 cm−1 from room temperature
to 4 K) the experimental data sets obtained with differ-
ent setups can be misleading. We filled this gap with the
temperature dependent measurement across the whole
series, performed with a single setup. In this paper, we
present a Raman study of Bi2Se3, Bi2Te2Se and Bi2Te3
over the temperature range from 4 K to 293 K using
the same Raman microscope with high spectral resolu-
tion. The anharmonicity of Bi2Te3−xSex is discussed
from two aspects. Firstly, the temperature dependence
of the phonon linewidths are well explained by the Kle-
mens’s model through three-phonon interaction driven by
cubic anharmonicity. Secondly, the temperature renor-
malization of phonon energies of Bi2Te3 and Bi2Se3 are
discussed in great detail. As in most materials we find
contributions to the lifetime and phonon shift from quasi-
harmonic and three-phonon decay. However, in Bi2Te3
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FIG. 1: a: The temperature dependent Raman spectra of Bi2Te3−xSex. From the top to the bottom are Bi2Te3,
Bi2Te2Se, and Bi2Se3. b: The phonon linewidth of A1

g mode of Bi2Te3−xSex. The red lines are the anharmonic
prediction. The temperature dependent renormalization of phonon linewith is relatively simple, originating from

cubic anharmonicity and free of quartic anharmonicity to the lowest order.

we also find the lowest energy mode observed requires
including four-phonon scattering processes that typically
only emerge in materials with anomalous anharmonicity
(ie. phonon modes soften as the temperature decreases,
“waterfall” effect in phonon dispersion). This term usu-
ally is negligible in most materials, however has been
found large and plays an important role in the strong
scattering seen in IV-VI (PbTe, SnTe) materials16 and
onset ferroelectric behavior5,6. Furthermore we find the
evolution of the strength of the anharmonic terms is eas-
ily explained in a model that accounts for the phonon

density of states and joint density of states. Thus our
results offer a guide for further experiments measuring
and tuning the anharmonicity in materials.

II. EXPERIMENTS

The single crystals of Bi2Se3 and Bi2Te3 were grown
by using a floating zone method which the melting zone
was Se-rich or Te rich side. The materials of high purity
99.9999% Bi, Te and Se was pre-melted and loaded into a
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10mm diameter quartz tube. The crystal growth velocity
in the quartz tube was 0.5mm per hour. The Bi2Te2Se
single crystal was grown by the Bridgeman method using
special techniques to suppress carrier-concentration and
the Fermi level was set inside the bulk band gap; detailed
growth procedure are described in previously published
work17. In preparation for the measurements, all sin-
gle crystal samples were freshly cleaved (001 plane) and
quickly placed inside a sample chamber. Exposure to air
was approximately 5 minutes. The temperature depen-
dence was achieved by an automated close-cycle cryosta-
tion designed and manufactured by Montana Instrument,
Inc. The Raman spectra were taken in a backscatter-
ing configuration with a home-built Raman microscope.
A linear polarized 532nm solid state laser was used as
the excitation source. Signals were recorded by a cooled
Andor iDus charge-coupled device (CCD). Two Ondax
Ultra-narrow-band diffractive Notch Filters were used to
reject Rayleigh scattering. This also allows us to observe
both Stokes and anti-Stokes Raman shifts. The laser
spot size was 1 micron in diameter. The laser power was
kept as low as 40 µW to avoid laser-induced heating.
This was checked at 4 K by monitoring the anti-Stokes
signal as the laser power was reduced. Once the anti-
Stokes signal disappeared, the power was cut an addi-
tional 50%. Detailed information of the instruments can
be found elsewhere18–21.

III. RESULTS AND DISCUSSION

A. Temperature Dependent Studies

For all three Bi2Te3−xSex materials, Raman spectra
were taken in the temperature range from 4 K to 293
K with 15 K steps. At each temperature, 3 acquisitions
taken for 5 minutes were averaged and the spectra were
corrected for the thermal factor (nB(ω) + 1, nB is the
Bose factor). The resulting temperature dependent Ra-
man spectra are normalized to the highest phonon peak
for clarity and shown in FIG. 1a. The room temperature
results are consistent with previous studies14. Details
of the group theory analysis and effects of disorder are
discussed in the supplemental material. In short, three
modes were observed in Bi2Se3 and Bi2Te3, we name
these mode A1

g, Eg and A2
g based on their symmetry. For

Bi2Te2Se, we observed one extra mode. It turns out that
the third mode (we name it V1 mode) was ascribed to
the anti-site induced local mode11. In all three materials,
we see all phonons soften and broaden as the tempera-
ture is raised. At first glance this is not surprising since
the temperature induced softening and hardening have
been observed in many other materials22,23. However de-
tailed analysis described in Sec. III A 2 will demonstrate
qualitative differences between Bi2Te3 and Bi2Se3.

To gain more quantitative insights, we fit the Raman
spectra of all three Bi2Te3−xSex materials with the Voigt

TABLE I: Phonon frequency of Bi2Te3−xSex at 4 K.
The unit is cm−1.

Material A1

g Eg V1 A2

g

Bi2Te3 62.7 104.9 – 137.6
Bi2Te2Se 65.1 109.1 145.1 154.7

Bi2Se3 73.9 134.6 – 177.7

profile function,

V (x, σ,Ω,Γ) =

∫ +∞

−∞

G(x′, σ)L(x− x′, ω,Γ)dx′ (1)

which is the convolution of a Gaussian and a Lorentzian.
The Gaussian is employed to properly account for the
instrumental resolution and the Lorentzian represents a
phonon mode. The half width σ of the Gaussian was
determined by the instrumental resolution, which is 1.8
cm−1 in our system. Three Voigt functions could be used
to fit the spectra of Bi2Te3 and Bi2Se3, but four were
needed for Bi2Te2Se. The extracted temperature depen-
dent phonon energies ω and linewidths Γ can be used
for the analysis of their anharmonicity. We also list the
phonon frequencies of all modes at 4 K in Table I for a
quick reference.

1. Temperature dependence of phonon linewidths

We begin by focusing on the phonon lifetime with tem-
perature, as this typically only includes contributions
from cubic terms in the anharmonicity that lead opti-
cal phonons to decay into two lower energy modes. As
discussed later the phonon frequency with temperature
includes this contribution as well as changes due to the
lattice expansion and higher order terms in the anhar-
monicity. In FIG. 1b we plot the temperature depen-
dence of the phonon scattering rate for the highest en-
ergy mode, though similar temperature dependence is
seen for all modes. In all three cases the the scattering
rate is well described by the Klemens’s model22 where
an optical phonon is assumed to decay into two phonons
with opposite momentum at half the energy of the orig-
inal mode. This leads to a scattering rate described by:
Γ(ω, T ) = Γ0 + A(2nB(ω/2) + 1), where Γ0 results from
disorder scattering, ω is the mode energy, and A is the
three-phonon coupling coefficient obtained by multiply-
ing the joint density of states by the transition matrix
element. The “coalescence” process where two phonons
fuse into a third is neglected, because it requires thermal
populations of the second phonon which are very small
at low temperatures24. As found in many low anhar-
monicity materials, the model works well for describing
the lifetime15. In the supplemental material a detailed
analysis of the lifetime of all phonons modes is provided,
where we generally find an increase in A as the energy
of the mode is increased. As discussed later, this is as
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expected since higher energy modes typically have access
to a larger phase space for decay.

2. Temperature dependence of phonon energy

As mentioned previously, the temperate dependence
of the phonon energy reveals additional anharmonic ef-
fects. Typically, in a non-magnetic insulating material,
the temperature dependence of a phonon energy comes
from two primary sources15,

∆ω(T ) =∆ω(T )lattice +∆ω(T )anhar (2)

∆ωlattice is the anharmonic correction solely due to lat-
tice expansion, while ∆ωanhar results from the anhar-
monic phonon-phonon coupling. Specifically, ∆ωlattice

originates from the crystal thermal expansion induced
changes in the harmonic force constants and is described
by the following equation for a hexagonal lattice15,

∆ω(T )lattice =ω(0)(e−γ
∫

T

0
(αc(T

′)+2αa(T
′))dT ′

− 1) (3)

where γ is the mode Grüneisen parameter, and αa and
αc are the coefficients of linear thermal expansion along
the a and c axes. The Grüneisen parameters describe the
effect that the volume change of a crystal lattice has on
its vibrational properties and its value varies for differ-
ent phonon modes. In most analysis, the mode-averaged
Grüneisen parameter is typically used to characterize the
volume change induced phonon frequency shifts since it
is relatively easy to obtain by comparing the specific heat
to the lattice expansion15. However, to truly understand
the anharmonicity in these materials it is crucial to eval-
uate each mode separately. Indeed, the relationship of
each mode to the lattice expansion can be quite distinct,
especially in thermoelectric materials3. Thus, in the fol-
lowing discussion we use mode Grüneisen parameter to
capture the phonon frequency shifts induced by thermal
expansion. To the best of our knowledge, the relevant
data to calculate ∆ωlattice is absent for Bi2Te2Se. Thus,
Bi2Te2Se is omitted for the discussion here.
On the other hand, ∆ωanhar arises from the cou-

pling of phonon modes through the cubic and quartic
anharmonicity25,

∆ω(T )anhar =
12

h̄

∑

~q,j1

V

(

0 0 ~q −~q
j j j1 j1

)

(2nB(~q, j) + 1)

−
18

h̄

∑

~q,j1,j2

|V

(

0 ~q −~q
j j1 j2

)

|2R(ω)

(4)

R(ω) =
nB(~q, j1) + nB(−~q, j2) + 1

ω − ω(~q, j1)− ω(−~q, j2)
(5)

where V are the coefficients derived from the lattice po-
tential energy of deformation at constant volume, and q

and j are momentum and band index respectively. We
can see that equation 4 has two parts: the quartic an-
harmonicity (the first term of equation 4) to first order
in the perturbation theory and cubic anharmonicity (the
second term of equation 4) to second order. As described
above, the cubic anharmonicity term contributes to the
phonon linewidth as well. The quartic anharmonicity to
first order only contributes to the phonon frequency, thus
showing the importance of analyzing both the lifetime
and frequency of the modes versus temperature. In most
cases, the cubic anharmonicity dominates and results in
softening and broadening the phonon as the temperature
rises12. However, for materials with high anharmonic
potentials (e.g. ferroelectrics), the quartic term plays a
significant role6,26. Therefore, it is worthy to disentan-
gle the relative contributions from the cubic and quartic
anharmonicity in Bi2Se3 and Bi2Te3. To achieve this,
one has to first remove the effect of ∆ωlattice. To do this
we first determined the mode Grüneisen parameters from
previous measurements of the pressure dependence (see
the supplemental material) as well as established ther-
mal expansion coefficients27,28. Our main conclusion is
not strongly affected by a change of 20 % change of these
parameters. Next we used equation 3 to calculate the
∆ωlattice for Bi2Se3 and Bi2Te3.
Before proceed further, we notice from equation 4 that

both the cubic and quartic anharmonic terms also con-
tribute to the phonon frequency at zero temperature.
However, it is difficult to unambiguously distinguish
whether the resulted phonon frequency shifts are from
harmonic or anharmonic components without a detailed
first-principle calculation which is beyond the scope of
this paper. Thus, we decide to focus on the tempera-
ture dependent shifts of the phonon mode frequencies in
the following discussion. In FIG. 2 we plot ∆ω(T ) =
ω(T )− ω(4 K). In addition we also show the calculated
lattice contribution ∆ωlattice, and the anharmonic com-
ponent obtained by subtracting the lattice contribution
from the measured data (∆ωanhar

′= ∆ω(T )−∆ωlattice).
Here ∆ωanhar

′ is just ∆ωanhar with the temperature in-
dependent constant removed which is expressed by the
following formula:

∆ω(T )anhar′ =
12

h̄

∑

~q,j1

V

(

0 0 ~q −~q
j j j1 j1

)

2nB(~q, j)

−
18

h̄

∑

~q,j1,j2

|V

(

0 ~q −~q
j j1 j2

)

|2R(ω)′

(6)

R(ω)′ =
nB(~q, j1) + nB(−~q, j2)

ω − ω(~q, j1)− ω(−~q, j2)
(7)

Focusing first on Bi2Te3 in FIG. 2a-c, we see the
∆ωanhar

′ for the A1
g mode (FIG. 2a) almost stays at zero

between 4 K to 175 K and slowly hardens at the higher
temperature. For the Eg (FIG. 2b) and A2

g (FIG. 2c)
modes the ∆ωanhar

′ is monotonically decreasing through-
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FIG. 2: Temperature dependence of phonon frequency of Bi2Te3 (a-c) and Bi2Se3 (d-f). All data points are offset by
the phonon frequency at lowest temperature. The dash line indicates zero offset. We notice that the anharmoncity
induced phonon energy shifts are dramatically different between the A1

g mode of Bi2Te3 (hardening) and that of
Bi2Se3 (softening). This is explained by the anomalous quartic anharmonicity in Bi2Te3 which is absent in Bi2Se3.
Besides, as the phonon energy increases in Bi2Te3, the trend switches sign from hardening to softening due to the

relative contributions from phonon joint density of states and density of states. Detailed discussion can been seen in
the texts.

out the entire temperature range and increases in magni-
tude as the phonon frequency increases. For example at
300 K, ∆ωanhar

′=1.2 cm−1 for Eg, while ∆ωanhar
′=2.5

cm−1 for the A2
g mode. To understand this strikingly

different behavior of the modes, let us re-examine the
different contributions to the anharmonicity. According
to equation 6, the anharmonicity interaction contributes
two terms: the cubic and quartic anharmonicity with dif-
ferent signs. These two terms can cause a phonon mode
to soften or harden as the temperature increases depend-
ing on their relative magnitudes. Moreover, the strength
of the two terms increases at different rates as the phonon
frequency increases. Apparently, the cubic term is domi-
nant in the Eg and A2

g modes, leading to ∆ωanhar
′ soften-

ing the mode as the temperature is increased. However,

the case for the A1
g mode is complicated. To explain the

behavior of this mode, let us delve into equation 6 again.
According to equation 6, both cubic and quartic anhar-
monic terms are functions of the Bose factor nB(h̄ω/kT ).
This is a nonlinear function and increases very slowly at
the low temperatures. In the ideal scenario, we expect to
observe a curve that starts from zero with a flat slope at
the lowest temperatures and becomes larger at high tem-
peratures. However, given the small amplitude of the
difference in the anharmonic contributions from quartic
and cubic anharmonicity and the spectral resolution of
our Raman microscope, the data we obtained is almost
zero in the temperature range between 4 K to 175 K. Nev-
ertheless, in the temperature range from 200 K to 290 K
where the Bose factor becomes more significant we can
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clearly see the hardening trend. Thus, we conclude that
the quartic term is slightly larger for this mode.

To understand how the ∆ωlattice
′ evolves with the

phonon frequency and the difference between the cubic
and quartic anharmonicity, let us revisit the two anhar-
monic terms in equation 6. The sum (one band index
j1) in the quartic term of equation 6 is proportional the
one phonon density of states (D(ω)) and that in the cu-
bic term (two band indexes j1, j2) is proportional to the
joint two-phonon density of states (JD(ω)). For simplifi-
cation, one can approximate JD(ω) as D(ω−ω1)×D(ω1)
where ω − ω1 and ω are the energy of the two phonon
modes respectively. For a qualitative understanding
JD(ω) can be further simplified using Klemens’s approx-
imation where ω1 = ω/2. Thus, eventually JD(ω) takes
the form D(ω/2)2. As a result, the quartic (cubic) term
is proportional to D(ω) (D(ω/2)2). In a simple pic-
ture where optical mode interacts with an acoustic mode,
D(ω) increases monotonically with ω. If the phonon fre-
quency ω is small, it is possible that D(ω) is equal to
or larger than JD(ω). In the meanwhile, if the quartic

anharmonic coefficient (V

(

0 0 ~q −~q
j j j1 j1

)

) is reasonably

large, it can be expected that the quartic term wins and
results in a hardening of phonon energy as the tempera-
ture increases, which is the case for the A1

g mode. As the
phonon frequency increases, JD(ω) increases much faster
than D(ω). Therefore, in the Eg and A2

g modes negative
∆ωanhar

′ is observed and becomes larger in magnitude
from the Eg mode to the A2

g mode. At this point, it

may be worthy to compare the behavior of the A1
g mode

with the standard ferroelectrics, as we mentioned previ-
ously that the quartic anharmonicity there plays a key in
the tuning the phonon frequency shifts6. Compared to
the soft modes in standard ferroelectrics such as SrTiO3

and BaTiO3, the magnitude that the A1
g mode hardens

as the temperature is raised is small and in order to see
the hardening, ∆ωlattice has to be subtracted. However,
the temperature dependent behaviors are similar where
the phonon frequencies harden and linewidths broaden as
the temperature increases29,30. The small magnitude we
observed may be due to the energy of the A1

g mode be-
ing comparatively high and the quartic anharmonic term
balanced to a large extent by the cubic anharmonic term.
The statements above are also evidenced by the fact that
the IR-active Eu mode, whose energy is lower than all
three Raman-active modes, seems hardens from 48 cm−1

to 50 cm−1 from 15 K to 300 K even without the sub-
traction of ∆ωlattice

14.

To further explore the role of phonon frequency in the
strength of the anharmonicity, we now turn to Bi2Se3,
where the modes are at higher frequencies. Specifically,
for Bi2Se3 a similar analysis was performed and the re-
sults are shown in FIG. 2d-f. We find that the ther-
mal expansion contribution term ∆ωlattice accounts for
63%, 57% and 34% of the total phonon frequency shift
at room temperature for each mode, respectively. In the
case of Bi2Se3, the resulting ∆ωanhar

′ are all negative.

The magnitude of ∆ωanhar
′ increases monotonically from

0.7 cm−1 (A1
g, FIG. 2d), 1.2 cm−1 (Eg, FIG. 2e) to 2.5

cm−1 (A2
g, FIG. 2f) at 295 K. This suggests the quartic

term is smaller and the cubic terms are dominating in all
three modes.
At this point one may wonder whether it is simply the

change in the density of states with phonon energy that
results in the dramatic difference in the temperature de-
pendence of the lowest energy phonon in Bi2Te3−xSex.
In fact we have so far ignored contributions from the
strength of the potential and resulting changes in the
matrix elements. This is likely to play a large role as the
lowest energy Raman mode in Bi2Se3 that we observe is
only 11 cm−1 higher than the equivalent mode in Bi2Te3.
One explanation for the dramatic difference may be the
resonant bonding theory, where the long-ranged interac-
tion from the neighbors to the atomic potential lead to
anomalous anharmonicity3,31–33. Indeed this mechanism
has been suggested to be responsible for the low thermal
conductivity of Bi2Te3

3. As described in the supplemen-
tal material a simple calculation suggests the resonant
bonding should be stronger in Bi2Te3 than Bi2Se3. The
reason for the difference can be understood as the p-
electron in Te atoms are more delocalized than those in
Se atoms. Nonetheless the detailed first principle calcu-
lations of Bi2Se3 required to confirm this suggestion are
beyond the scope of this paper.
As we mentioned earlier, the decay channel LA+TO →

TO plays a significant role in the lowering the thermal
conductivity in thermoelectric materials . Interestingly,
a very similar phonon decay channel TA + TO → TO
was found in perovskite ferroelectrics which also been at-
tribute to lowering the thermal conductivity34,35. The
common feature in these two types of materials is that
the TO mode significantly softens as the temperature
is lowered. We have shown that the anharmonicity in
Bi2Te3 similarly softens the A1

g mode. However, its en-
ergy is much higher than the TO modes in the perovskite
ferroelectrics34 and PbTe2, so the contribution to the
scattering of LA in Bi2Te3 is probably small. As we
pointed out in the supplemental material, the first Eg

mode of Bi2Te3−xSex is near 30 cm−14,36,37 which is very
close in energy to the soft TO modes in other highly an-
harmonic materials. Thus it will be extremely helpful
in future studies to carefully examine the temperature
dependence of this mode.

IV. CONCLUSIONS

In summary, we have performed high resolution, tem-
perature dependent Raman scattering measurements on
Bi2Te3,Bi2Te2Se and Bi2Se3. These Raman results of the
Bi2Te3−xSex provide experimental insights into the long
standing problem: the origin of the complex anharmonic-
ity as the chalcogenide and/or the energy of the mode is
changed.
Through the analysis of temperature dependent
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phonon energy, we found the quartic anharmonicity is
the key to explain the temperature dependent phonon
frequency shifts of A1

g mode for Bi2Te3 which is less sig-
nificant in Bi2Se3. Besides, the complex temperature and
phonon energy dependent phonon frequency shifts can be
primarily explained by the competition between quartic
and cubic anharmonic terms. These two terms are depen-
dent on the one and two-phonon density of states respec-
tively, which grow at different rates. As such, our obser-
vations that a positive ∆ωanhar

′ for A1
g mode in Bi2Te3, a

sign switch and a growth in amplitude of ∆ωanhar
′ are all

consistent with this picture. However, it may be that the
change in density of states of the phonons is not enough
to explain the difference, and thus our results may pro-
vide evidence for the resonant bonding in Bi2Te3 and its
weaker role in Bi2Se3.

While these results clearly show the role of the chalco-

genide in enhancing resonant bonding and tuning the an-
harmonicity in Bi2Te3−xSex, further experimental and
theoretical efforts are required to fully understand how
the anharmonicity, crucial to their thermal and lattice
properties, is tuned.
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