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The proposal of sliding phases (SP) is revisited from the perspective of duality. A generic argument
is formulated as essentially a no go theorem for SP in translationally invariant non-frustrated systems
with short range interactions – classical or quantum. Its validity is demonstrated on an asymmetric
bilayer and its multilayer variation models where the duality allows obtaining asymptotically exact
analytical solution. This solution is in drastic contrast with the perturbative renormalization group
prediction and is strongly supported by Monte Carlo simulations. An alternative path toward finding
SP is suggested. Its key ingredient is a long range gauge-type interactions suppressing the inter-layer
Josephson coupling.
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I. INTRODUCTION

The idea of the sliding phases SP has been emerging
in several different contexts – liquid crystals, supercon-
ductors, 1D quantum systems, correlated disorder and
spin liquids – within a general theme of a possible di-
mensional decoupling (reduction) when a D-dimensional
system breaks into a stack of systems of essentially lower
dimensionality. It can be traced back to the suggestion of
vanishing shear modulus in layered liquid crystals where
each layer is a quasi-solid positionally decoupled from its
neighbors1. This mechanism has been further explored
in Refs.2,3. In layered superconductors magnetic field
parallel to the layers has been proposed to suppress the
inter-layer Josephson coupling4. However, the frustra-
tion due to magnetic field turned out to be insufficient to
fully suppress the coupling as shown in Ref.5.

In the context of quantum 1D chains the possibility
of the decoupling between chains has been explored as a
pathway toward non-Fermi liquid in high Tc materials6,7.
The main argument for such a decoupling is based on us-
ing the scaling dimensions of the Josephson coupling de-
termined with respect to the Luttinger liquid parameter
in each chain: if it is larger than 2, the coupling should
become irrelevant7. These proposals have been criticized
in Refs.8,9 where it was shown that the inter-chain tun-
neling is always relevant. In Refs.10 it has been shown
that the dimensional reduction is not possible due to pair
tunneling in quantum wires. This analysis is based on RG
developed for bosonized models with non-zero conformal
spin (see in Ref.11).

The results1–3 refer to non-compact variables – trans-
lation of one layer against its neighbors. That SP can
occur in the case of compact XY-variables has been pro-
posed in Ref.12 where the inter-layer gradient couplings
between classical XY variables in each layer have been
considered as a ”knob” controlling scaling dimensions
of the Josephson coupling and of the vortex fugacity in
each layer. The SP would occur if the first one is irrele-
vant above some temperature Td, while vortices in each

layer are still bound into neutral pairs. This approach
was also developed for the case of quantum 1D Luttinger
liquids coupled by both the Josephson and the gradient
terms13–16 (which are the analog of the Andreev-Bashkin
drag effect17 in neutral superfluids or Biot-Savart interac-
tions in superconductors18). More recently, the dimen-
sional reduction was considered in the context of lay-
ered disorder19,20 and non-Fermi liquids in the spin-liquid
regime21.

It is important to note that the proposal of SP is based
on applying the Renormalization Group (RG) logic to
compact variables characterized by global U(1) symme-
try. While these early suggestions were more of a purely
academic interest, expanding capabilities of ultra-cold-
atoms techniques in recent years emphasize the impor-
tance of these suggestions especially in the context of pos-
sible new phases in composite lattices22 and in the pres-
ence of disorder19,20. In more general terms, the question
is if it is possible to realize a phase transition, rather than
a crossover, from a low- to higher- dimensional behavior.

Here we propose an alternative approach to the prob-
lem of SP. It is based on the dual formulation of a
field model of compact variables in terms of positive de-
fined statistics of random closed loops of integer cur-
rents obeying Kirchhoff’s conservation law23. In this
language spontaneous symmetry breaking is equivalent
to the formation of a ”soup” of fully disordered macro-
scopic loops. Accordingly, the SP implies that, while
proliferating along the layers, such loops do not prolifer-
ate perpendicular to them. This immediately leads to the
generic requirement for the SP to exist: The energy cost
E⊥ for a loop element to invade a neighboring layer must
be macroscopically large with respect to the layer size L
because otherwise the entropy for such an invasion will
dominate and will cause simultaneous proliferation of the
loops along and perpendicular to the layers.

In order to illustrate the above general statement, we
will consider a classical XY layered system characterized
by gradient inter-layer interactions and the Josephson
coupling u. The gradient terms are chosen in such a way
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that the SP is supposed to exist in some range in accor-
dance with the RG prediction for zero conformal spin.
We will present results of the large scale Monte Carlo
simulations of this system in its dual representation – in
terms of the closed loops. The main finding is that, in
accordance with the generic argument, no SP state exists
in such a system. As a comparison, the standard asym-
metric XY layered model where no SP are expected to
occur will be analyzed too. As will be seen, both models
demonstrate essentially the same behavior. Furthermore,
using dual representation, it becomes possible to find ex-
act analytical solution for the renormalized Josephson
coupling ur in the asymptotic limit u→ 0. The validity
of this solution will be demonstrated numerically for both
models. Thus, the main conclusion is that, rather than
following the RG prediction, the model of SP demon-
strates 3D behavior.

Our paper is organized as follows. In Sec.II we intro-
duce the bilayer model and provide the RG solution for
SP. Then, we construct the dual representation in Sec.
II B. The asymptotic analytical solution for the renor-
malized Josephson coupling ur as well as the numerical
results will be discussed in Sec. II C. Then, in Sec.III the
stack of bilayers will be discussed. Finally, in Sec. IV we
discuss the implications of our analytical and numerical
results and also provide an alternative model for the SP.

II. BILAYER MODEL OF SP

The purpose of the following analysis is to introduce a
simplest model which admits the RG solution predicting
sliding phases. This result will then be tested numerically
and analytically in the asymptotic limit of vanishingly
small Josephson coupling.

Consider two classical asymmetric parallel layers, each
being a square lattice of linear size L (in terms of the
inter-site shortest distance). These layers host two U(1)
fields ψ1 = exp(iφ1) and ψ2 = exp(iφ2) on the layers
z = 1, 2, respectively. The continuous (low energy) action

Hφ =

∫
d2x[

1

2
Kzz′

~∇φz ~∇φz′ − u cos(φ2 − φ1)], (1)

features the gradient interaction represented by the (Lut-
tinger parameter) matrix Kz,z′ as well as by the inter-

layer Josephson term ∼ u. Here ~∇φz refers to the x, y
derivatives along the planar directions. The summation
over the repeated indexes is used here and hereafter. Sta-
bility of the system is guaranteed if det(Kzz′) > 0, that
is,

K11K22 −K2
12 > 0. (2)

In the partition function

Z =

∫
Dφ1Dφ2 exp(−Hφ) (3)

the measure of the functional integration must account
for the compactness of the phases φz. This can be
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FIG. 1: (Color online) Two options for phases in the bilayer
model: (a) with the SP according to RG; (b) Without SP.

achieved by using the discrete lattice formulation de-
scribed in the Appendix A and further discussed in
Sec.II B. Let’s first, however, discuss the RG approach
to the system.

A. Scaling dimensional analysis for the bilayer

Here we will present the analysis to the system (1,3)
based on RG in line with the approach suggested in
Refs.12. It is important that in this analysis the com-
pact nature of the ”angles” φ1,2 is ignored.

Derivation of the RG equations and their solutions for
the bilayer are presented in the Appendix B along the
line as described in Refs.24,25. Despite the asymmetric
nature of the system, the resulting RG flow equations
(B11,B12) for the Josephson coupling and (B17,B18) for
the vortex fugacity turn out to be identical to the stan-
dard RG equations for the Sine-Gordon model (see in
Ref.24,25). Thus, in order to identify the critical points
(see in Fig.1) Td of the SP and T(q1,q2) of the Berezinskii-
Kosterlitz-Thouless (BKT) transition, it is enough to
evaluate the scaling dimensions (see in Ref.26) of the
inter-layer Josephson and vortex fugacity, and find the
range Td < T < T(q1,q2) of parameters were both are irrel-
evant. We begin with the first critical point T = Td of the
transition from the phase where the interlayer Josephson
coupling is relevant ( called ”Josephson” in Fig.1) to the
SP.

If the vortex fugacity is irrelevant, the compact nature
of the phases is usually ignored. Then, introducing the
variables φ+ = φ1+φ2 and φ− = φ2−φ1 in Eqs.(1,3) and,
then, integrating out φ+, the resulting partition function
becomes

Z− =

∫
Dφ−e−H− ,

H− =

∫
d2x

[
K

2
(~∇φ−)2 − u cosφ−

]
, (4)
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where the notation

K =
K11K22 −K2

12

K11 +K22 + 2K12
(5)

is introduced. Eqs. (4,5) represent the standard Sine-
Gordon model in 2D. The scaling dimension of the oper-
ator ∼ u is ∆u = 1/(4πK). Thus, the Josephson term
becomes irrelevant if ∆u > 2, that is, at K < Kd =
1/(8π), so that the renormalized u should flow to zero
as ur ∼ uLb → 0, b = 2(1 − Kd/K) < 0. Such a be-
havior is supposed to occur together with the persistence
of the algebraic order along the planes. Without loss of
generality let’s assume K11 < K22 and introduce the no-
tations: T = 1/K11 as a measure of temperature, and
Y = K22/K11 > 1, X = K12/K11. Then, the condition
K < 1/(8π) for SP becomes

T > Td =
8π(Y −X2)

1 + Y + 2X
. (6)

In order to guarantee the algebraic order in each layer
no BKT transition should occur in the layers. In other
words, all backscattering harmonics Vq1,q2 in the action
(B1) must be irrelevant below some temperature T(q1,q2)
exceeding Td in Eq.(6). In order to determine possible
types of vortices responsible for the transition, we exam-
ine the form (1) in the limit u = 0 using the Kosterlitz-
Thouless argument for the BKT transition. Specifically,
a composite vortex (q1, q2) induced by the drag term
∼ K12

12,27,28 with circulations q1, q2 in the layers 1 and
2, respectively, is introduced at the same position x, y
along the layers. The free energy of such a composite
vortex is

Fv =
[
π[(q1 +Xq2)2 + (Y −X2)q22 ]− 2T

]
lnL. (7)

Then, the stability against the BKT transition is guar-
anteed by the positivity of Fv or

T < T(q1,q2) =
π

2
[(q1 +Xq2)2 + (Y −X2)q22 ], (8)

where the minimization with respect to q1, q2 must be
performed. This condition corresponds to the require-
ment that the scaling dimension ∆q1,q2 = π

∑
a,bKabqaqb

of the most dangerous backscattering amplitude Vq1,q2 in
Eq.(B13) is above 2.

Proliferation of simple vortices q1 = ±1, q2 = 0 or
q1 = 0, q2 = ±1 corresponds to T(1,0) = π/2 and T(0,1) =
πY/2 > T(1,0), respectively. The minimal solution with
composite vortex can exist only as long as X 6= 0, that
is, when K12 6= 0.

Solutions for Eqs.(6,8) exist for integer values of X ≥
3. Introducing δ = Y − X2 > 0 (due to the stability
requirement (2)), one should distinguish cases δ > 1 and
δ < 1. In the first case the dominant vortex is (1, 0) and
the solution for Td < T(1,0) exists if 1 < δ < (1 +X)2/15.
If 0 < δ < 1, the dominant vortex is composite (−X, 1)
and the conditions (6,8) become

8πδ

δ + (1 +X)2
< T <

π

2
δ. (9)

For X >> 1, Td → 0 while T(q1,q2) → (π/2)min(1, δ) as
long as δ is kept constant. Such a limit corresponds to
the largest range of T where SP are to be anticipated
for the two-layer model. However, for practical purposes
of simulations using too large X leads to slower conver-
gence. Thus, we choose X = 5, Y = 25.5 correspond-
ing to a reasonably wide range where SP is anticipated
to exist. Then, Eq.(9) becomes 8π/73 < T < π/4 or
0.344 < T < 0.785. [The simulations discussed below
have been conducted at T in the middle of the interval
(9), that is, T ≈ 0.565. More specifically, K11 = 1/T =
1.77, K22 = 25.5K11, K12 = 5K11].

Proliferation of the composite vortex pairs with vor-
ticities (q1, q2) corresponds to disordering of the origi-
nal fields exp(iφ1,2). At the same time the composite
field Ψ = exp(i(q1φ1 + q2φ2)) remains (algebraically)
ordered. This mechanism constitutes the formation of
thermally induced bound phases (or using the language
of superfluidity – Thermally Paired Superfluid29). For
the values chosen above this composite field is Ψ =
exp(i(φ1 + Xφ2)). Since X > 1 we call such a com-
posite phase as thermally bound superfluid (TBS). This
effect does not require that X is necessarily integer. If
X is non-integer, its closest integer part will determine
the power of ψ2. In Fig.1 the TBS exists in the range
T(q1,q2) < T < Tn. Full symmetry is restored above Tn
– that is, no algebraic order exists in any composite or
original fields.

Concluding this section, the presented analysis based
on the RG finds the range of temperatures where the se-
quence of phases is as presented in Fig. 1 in the panel
(a): at T < Td the Josephson coupling is relevant. At
Td < T < T(q1,q2) there is the SP where the symmetry
U(1) is promoted to U(1)× U(1). In the range T(q1,q2) <
T < Tn the TBS phase is characterized by the composite
field Ψ. Thus, the broken symmetry is partially restored
through the subgroup ZN , where N = 1 + q2. At higher
temperatures, T > Tn, the composite field Ψ becomes
disordered too. In what follows we will show that the ac-
tual sequence of phases is correctly depicted in the panel
(b) rather than in (a), Fig. 1.

B. Dual representation

As described in detail in the Appendix A, the bilayer
model (1,3) can be reformulated in terms of the dual
variables which account for the compact nature of the
variables φ1,2 . [The logic behind this transformation
is along the line of the J-current model, Ref.23]. The
partition function (3) is now represented as

Z =
∑

{Jz,ij},{Jz,i}

e−HJ , (10)

with the action

HJ =
∑
〈ij〉

1

2
(K−1)zz′Jz,ijJz′,ij +

∑
i

1

2uV
J2
z,i, (11)
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where (K−1)zz′ is the matrix inverse to Kzz′ introduced
in Eq.(1) and uV is the Villain value of the Josephson
coupling u. Since we are interested in the limit u << 1,
it is uV ≈ 1/(2 ln(2/u))30,31 (for more details see the Ap-
pendix A). The summation runs over the integer bond
currents Jz,ij = −Jz,ji, z = 1, 2 defined between neigh-
boring sites i and j and oriented from site i to site j
within each corresponding layer as well as over the inte-
ger currents Jz,i oriented along the bond connecting the
site i in the layer 1 to the site i in the layer 2. All the
configurations are restricted by the Kirchhoff’s current
conservation rule – the total of all J-currents incoming
to any site must be equal to the total of all outcoming
currents from the same site.

The resulting configurational space consists of closed
loops of the bond currents as schematically depicted in
Fig. 2. Further simulations can be effectively performed
by the Worm Algorithm32. As will be shown, in ad-
dition to being very effective in numerics, the language
of loops also allows obtaining analytic expression for the
renormalized Josephson coupling ur which is exact in the
asymptotic limit u→ 0 while strong algebraic order per-
sists along the layers.

If u = 0, there are two sorts of loops – one in each
layer. Thus, each configuration is characterized by def-
inite values of the windings Wz,α in the zth layer along
the α = x̂, ŷ directions of the planes. This quantities
are defined as a total of all J-current crossing any line
perpendicular to the direction α. [The Kirchhoff’s rule
guarantees that windings are independent of the choice
of the line]. It is straightforward to show that statistics

of these windings determine the renormalized values K̃zz′

of the matrix Kzz′ along the line of the approach33. More
specifically

K̃zz′ =
1

2

∑
α=x̂,ŷ

〈Wz,αWz′,α〉. (12)

This expressions are valid for periodic boundary con-
ditions (PBC). It is important to note that K̃zz′

represents an exact linear response with respect to
the Thouless phase twists. In other words, if there
are externally imposed infinitesimal constant gradi-
ents ∇αφ1,2 → 0 (violating the PBC) of the phases
φ1,2, the free energy acquires the contribution δF =
1
2L

2
∑
z,z′,α K̃zz′∇αφz∇αφz′ . On the other hand, in the

presence of the gradient the integrand of the partition
function gets the factor exp(iL

∑
z,αWz,α∇αφz). Com-

paring both expressions leads to the relation (12).
As a test of consistency, we have checked numerically

that in the regime where the SP state is supposed to exist
(that is, X = 5, Y = 25.5, T ≈ 0.565), the deviations of

K̃zz′ from the bare values Kzz′ are within the statistical
error less than 1% for all tested sizes of the layers 10 ≤
L ≤ 1000. Significant deviations are observed only as the
system approaches fully disordered state – that is, T →
Tn, Fig.1, where the fields ψ1,2 as well as the composite

one Ψ become disordered. In this case, K̃zz′ flow to zero

X 

Y 

Jz,i 

Jz,ij 

Z 

Z=1 

Z=2 

Z=3 

FIG. 2: (Color online) A J-current configuration characterized
by Wz = 1, Wx = 0, Wy = 0. Horizontal oriented arrows
show J-currents along planes, with |Jz,ij | = 1. The vertical
ones indicate J-currents between the planes, with Jz,i = 1,
with the dashed lines showing currents which are completing
periodic boundary conditions.

as L increases. The deviations remain small (about 2-
3%) even in the regime where Ψ is the only ordered field.
The emergence of the TBS is detected by observing that
windings Wz,α in the layers 1 and 2 are changing exactly
by the increment ∆W1 = 1, ∆W2 = X (plus or minus),
respectively.

At finite values of u the loops belong to both layers so
that no separate windings can be introduced. However,
the sums Wα = W1,α+W2,α remain well defined and can
be used to evaluate the rigidity ρα of the fields along the
layers. In a general case of Nz layers ρ = ρx = ρy :

ρ =
1

2Nz

∑
α

〈W 2
α〉 (13)

Wα =
1

L

∑
〈ij〉,a=1,2,...Nz

Ja,ij , (14)

where for a given α = x̂, ŷ in (14) the bond 〈ij〉 (as well
as Ja,ij) is oriented along the direction α.

Our focus here on the renormalized value ur of the
Josephson coupling u in the SP regime. In the case of
Nz layers, if the periodic boundary conditions are also
imposed perpendicular to the layers (along z-direction),
the inter-layer response ur is given by windings Wz along
z-direction:

ur =
Nz
L2
〈W 2

z 〉, Wz =
1

Nz

∑
i

Jz,i, (15)

where the summation
∑
i of the currents Jz,i (oriented

along z-direction) is performed over all sites of all layers.
Similarly to the cases (12) and (13), Eq.(15) represents
the full linear response at zero momentum – that is, the
renormalized value ur of the Josephson coupling u.

At this point, we should comment on how to interpret
the PBC for two layers, Nz = 2. While in the cases
Nz ≥ 3 it is a natural procedure to link the z = Nzth
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layer to the first one, z = 1, by the Josephson term, the
case Nz = 2 needs an auxiliary construction because the
layers 1 and 2 are coupled already directly. The formal
procedure, then, consists of adding a third layer, z = 3,
with no rigidity along x, y directions and coupled by the
Josephson term to both layers, z = 1, 2. If the coupling
u13 between the layers 1 and 3 and the coupling u23 be-
tween the layers 2 and 3 add up as 1/u13+1/u23 = 1/uV ,
in the dual action (11) the sum in the last term can be
extended to the layers z = 1, 2, 3 in the periodic manner.
The key to this procedure is the Kirchhoff’s rule: the J-
current from a site (x, y) along z-direction from the layer
2 to the layer 3 must be exactly the same as the current
from the site (x, y) in the layer 3 to the layer 1. Then, in
the form (11) the same value uV can be used for the cur-
rents from the layer 1 to the layer 2 directly or through
the layer 3 as shown in the sketch, Fig. 2.

C. Asymptotic expression for ur

As mentioned above, the dual representation allows
obtaining analytically asymptotic solution for ur . Let’s
begin with the simplest case of zero stiffnesses Kzz′

and arbitrary number of layers, Nz = 2, 3, 4,. The
action in this case in the field representation becomes
∼
∑
z

∫
d2x[−u cos(φz+1 − φz)], or in the dual form

HA =
Nz
2uV

∑
i

J2
z,i, Jz,i = 0,±1,±2, ... (16)

where the summation runs over all sites i of only one
layer, say, z = 1. In this expression the Kirchhoff rule
dictates that the current Jz,i at a given site along z-
direction must be the same for all values of z. Thus, such
a current with Jz,i constitutes one closed loop character-
ized by the winding W = Jz,i. This allows constructing
the partition function exactly as

ZA =

 ∑
W=0,±1,±2,...

exp

(
− Nz

2uV
W 2

)L
2

(17)

where L2 is the number of sites in one layer. The stiffness
(15) can be found by taking into account that the total
winding along z-direction is Wz =

∑
i Jz,i, where the

summation runs over L2 sites of only one layer. Then,
using statistical independence of different sites we find

ur =
2Nz

∑
W=1,2,...W

2 exp
(
−NzW 2/2uV

)
1 + 2

∑
W=1,2,... exp (−NzW 2/2uV )

. (18)

This expression shows that, as long as Nz is finite, the
Josephson coupling remains relevant even if there is no
in-plane order. In the limit uV << 1 only the term
W = 1 is important, so that Eq.(18) becomes

ur =
2Nz

2 + exp(Nz/2uV )
∼ 2Nz exp(−Nz/2uV ). (19)

The exponential decay vs Nz in Eq.(19) is a direct con-
sequence of the absence of the stiffness along the layers,
that is, ρ = 0 in Eq.(14), so that the shortest loop is ”ver-
tical” with the number M = Nz of the vertical currents
Jz=1,i = Jz=2,i = ... = Jz=M,i.

Thus, it is natural to anticipate, that the dimensional
decoupling in a strong sense, when ur scales to zero as
some negative power of L as prescribed by RG, should
not occur even in the absence of the algebraic order along
the planes, when ρ → 0. The stiffness along z-direction
remains finite in the limit L→∞ as long as Nz is finite.

This example indicates that short-range inter-plane
correlations rather than long-range intra-plane coher-
ences are responsible for finite inter-plane Josephson cou-
pling. In terms of the original variables φz, the result (19)
implies that ur ∼ uNz (because uV ≈ 1/(2 ln(2/u)) in the
limit u→ 0). This can be viewed as the perturbative re-
sult of Nzth order with respect to u.

If there is a finite strong stiffness ρ >> 1, Eq.(19) can
also be used, with Nz substituted by some effective value
M = 1, 2, 3, ..., that is,

ur =
2M

2 + exp(M/2uV )
→ 2M exp(−M/2uV ). (20)

The value of M is determined by the length of a ”cheap-
est” string of J-currents along z-directions. The loop pro-
liferation can be viewed from the perspective of the Worm
Algorithm32 where one open end of a string of J-currents
walks randomly until it meets another open end so that
a closed loop is formed. Then, the most of the path is
residing in a layer with only occasional jumps between
neighboring layers (in the limit uV → 0). Such an el-
ementary jump has the probability ∼ exp(−M/2uV ) so
that all higher values M are exponentially suppressed.
In other words, the situation is reminiscent of the ”ideal
gas” of rare fluctuations of the J-currents of length M in
z-direction.

Thus, generically, it is expected that ur ∝ uM in the
limit u→ 0 because then uV ≈ 1/(2 ln(2/u))30,31. Below
we will show that for the model we consider M = 2 and,
thus, ur ∝ u2.

In the standard XY model (with no drag effect
and no asymmetry between the layers) in its J-current
representation23, characterized by finite in-plane stiffness
ρ and small inter-layer coupling uV , the ”cheapest” string
in z-direction has M = 1 in Eq.(20). The standard XY
model and its comparison with the multi-layer extension
of the bilayer model will be discussed in more detail in the
Sec. III D. Below we will show that M = 2 in Eq.(20) for
the bilayer in the SP regime and will present the numer-
ical support for this. In other words, contrary to the RG
prediction, the Josephson inter-layer coupling ur remains
finite in the limit L→∞.
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D. Numerical results for Nz = 2

Here we discuss the results of Monte Carlo simulations
of the bilayer in the regime of SP. The action (11) can be
represented in the notations T,X, Y, δ (introduced below
Eq.(5)) as

HJ =
∑
〈ij〉

[
T

2
J2
1,ij +

T

2δ
(J2,ij −XJ1,ij)2

]
+

+
∑
i

J2
z,i

2uV
, (21)

where the values of the parameters have been discussed
at the end of Sec.II A: X = 5, δ = 1/2, T = (Td +
T(X,−1))/2 ≈ 0.565.

The structure of the loops is determined by the energy
of creating a J-current element along a given direction. A
typical energy to create a J-current element along a bond
in the plane 2 can be estimated as δE2 ≈ T/(2δ) ≈ 0.5.

Thus, large loops with a typical values | ~J2| = 1 can exist
in the plane 2. In contrast, the energy to create an iso-
lated element in the plane 1 (with no J2 currents along
the same bond in the layer 2) costs much larger energy:
δE1 ≈ T (1 + X2/δ)/2 ≈ 15 . Accordingly, the probabil-
ity to create such an element is exponentially suppressed
as ∼ exp(−15), and no entropy contribution (due to 4
optional directions along the plane) can compensate for
such a low value. This implies that no large isolated loops
can exist in the layer 1. The only option to create a large
loop in the layer 1 is if each element J1,ij is mirrored
by the current J2,ij = XJ1,ij along the same bonds in
the layer 2. A typical energy of this combined element is
δE12 ≈ T/2 ≈ 0.25. This strong asymmetry between the
layers has immediate implication for the windings along
z-direction – the minimal length M of the element Jz,i
must be M = 2 in Eq.(20). Thus, the stiffness ur in the
limit u << 1 becomes

ur =
4

2 + exp(1/uV )
≈ 4e−1/uV = u2, (22)

where the asymptotic expression uV = 1
2 ln(2/u)

30,31 has

been used. Accordingly, for the simple XY model (with
no drag interaction) the corresponding dependence is
ur ∝ u1. This will be discussed below.

As discussed above, the power u2 stems from the value
M = 2 in Eq.(20). Formally speaking, Eq. (22) appears
to be as though the weak layer (z = 1) is incoherent and,
thus, is eliminated in second order of perturbation with
respect to u – very much alike to the situation discussed
in Sec.II C. It is, however, important to note that the
weak layer is coherent and the application of the pertur-
bative approach in terms of the original variables— the
phases φz— is not that apparent. In contrast, the dual
representation leading to the picture of the ”ideal gas”
of the vertical currents gives the result ur ∼ u2 quite
naturally.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0
1 E - 8

1 E - 7

1 E - 6

1 E - 5

1 E - 4

1 E - 3

0 . 0 1

0 . 1

1
 9 6 0
 f i t
 4 8 0
 1 0
 3 0
 2 4 0
 8
 6 0
 1 2 0
 8 0

u r

1/ u V

FIG. 3: (Color online) Monte Carlo results for the inter-layer
stiffness ur vs its bare value uV for the bilayer for various layer
sizes (shown in the legend).Error bars are shown, and for the
majority of the data points these are smaller than symbols.
The fit line is the solution (22).

The results of the simulations is shown in Fig.3. The
first striking feature to notice is that ur, while chang-
ing over 7 orders of magnitude, does not depend on
the layers size L. Second, ur vs uV follows the an-
alytical result (22) with high accuracy – even for val-
ues uV ∼ 1. Both features are in the striking con-
flict with the RG prediction stating that ur should scale
as ∝ L2(1−T/Td) ≈ L−1.28 → 0 in the SP regime. It
should be also noted that the stiffness along the layers
(13) remains finite and much larger than ur, that is,
ρ = 32.3 ± 0.1 for all simulated sizes from L = 8 to
L = 960. This justifies the validity of Eq.(22) even in the
case uV ∼ 1.

III. STACK OF BILAYERS

As it became evident from the previous analysis, no SP
can occur in the double layer. Referring to the sketch of
the possibilities, Fig. 1, the option (b) is realized instead
of (a). Here we will address a possibility of SP in a Nz-
layers setup. In other words, we will be looking for a
behavior where the renormalized Josephson stiffness ur
decays as a function of Nz in the limit L → ∞, while
the stiffness along planes remains finite.This would be a
”weaker” version of the SP in a clean system. [cf. the
SP in the layered disorder case20].

We consider the PBC setup: the odd z = 1, 3, 5, 7, ...
and the even z = 2, 4, 6, .. layers are characterized by the
inplane stiffnesses K11 and K22 > K11, respectively, with
the nearest layers coupled by the current-current term
∝ K12 (the same for all pairs of layers) as well as by
the Josephson coupling −u

∑
x,y,z cos(φz+1−φz) , where

ψz(x, y) = exp(iφz(x, y)) is the XY variable defined on a
site (x, y) belonging to the layer z.

In the linearized with respect to the gradients of φz



7

approximation analogous to Eq.(1) the model becomes

HN =
∑

z=1,3,5,...

{Hz −∫
d2xu[cos(φz+1 − φz) + cos(φz−1 − φz))]} (23)

where the summation runs over odd values of z and the
notation

Hz =

∫
d2x[

K11

2
(~∇φz)2 +

K22

2
(~∇φz+1)2

+K12
~∇φz(~∇φz+1 + ~∇φz−1)] (24)

is used. The gaussian part of the action can be diago-
nalized by using Fourier representation along z-direction
with doubled unit cell. Then, the matrix Kzz′ be-
comes dependent on the wave vector qz = 4πnz/Nz,
nz = 0, 1, 2, ..., Nz/2−1 along z-axis. The corresponding
partition function becomes

Z =

∫
Dφz exp(−HN ), (25)

where the measure of functional integration Dφz must
explicitly account for the definition of the phases φz(x, y)
modulo 2π.

A. RG solution

The corresponding RG equation for ur (B19) is analo-
gous to that discussed in the Appendix B for the bilayer.
Then the critical temperature of the dimensional decou-
pling becomes

T−1d =
1

4πNz

(Nz/2)−1∑
m=0

1 + Y + 4X cos2 qm
Y − 4X2 cos2 qm

, (26)

where the wavevectors along z take values dictated by
the periodic boundary conditions qm = 4πm/Nz, m =
0, 1, 2, ..., (Nz/2) − 1. Here we use the same notations
T = 1/K11, X = K12/K11, Y = K22/K11 introduced in
Sec.II A. Thus, RG predicts irrelevance of ur at T > Td.

The upper limit on T is determined by the loss of alge-
braic order along the layers. [ At ur = 0 there should be
no 3D vortices ]. Clearly, if T is as high as > πY/2 >> 1,
all layers will become disordered. Less drastic situa-
tion occurs when only weak layers (odd) are disordered
π/2 < T < πY/2. In this case the Josephson coupling
between even layers will be supported by the proximity
effect. We, however, will be considering the situation
T < π/2 which implies algebraic order in all layers.

We considered also a possibility of proliferation of the
composite vortices. One option is a composite vortex
characterized by phase windings q1 = 1 and q2 = X > 1
in odd and even layers, respectively, forming a string of
length Nz perpendicular to the layers. In this case the
vortex energy will have a factor ∼ Nz which makes such

vortices too energetically costly to play any role in the
limit Nz >> 1, provided the system is not too close to
the instability (when the matrix of the gradient interac-
tions acquires zero eigenvalue, that is, Y − 4X2 = 0).
In our simulations we have been avoiding this region.
Thus, such ”infinite” vertical vortices are excluded. An-
other option, is when composite vortices occur as finite
length vertical strings – say, of length 2 (along z-axis)
with q1 = ±1 in an odd layer and q2 = −[2X]q1 in
the neighboring (even) layer. However, a simple anal-
ysis shows that energy of such (and longer) composite
vortices turns out to be higher than that of the simple
vortex with q1 ± 1, q2 = 0 destroying order in the odd
layers. Thus, we impose the requirement Td < π/2 in
order to have a finite range Td < T < π/2 for the SP to
exist within the RG approximation. This implies

1

Nz

Nz/2−1∑
m=0

1 + Y + 4X cos2 qm
Y − 4X2 cos2 qm

> 8. (27)

It can surely be achieved for large enough X in the limit
Nz >> 1. Replacing the summation by integration in
this limit and considering δ << 1, Eq.(27) gives δ <
X2/64. For the simulations we have chosen δ = 0.3 and
X = 6, which gives Td ≈ 0.983 with T = 1.28 chosen
in the middle of the interval between T(1,0) = π/2 ≈
1.57 and Td. The chosen value of Td corresponds to the
limit Nz →∞, and for any finite Nz, the actual Td from
Eq.(26) is below this value.

It is worth reminding that, according to RG, ur should
exhibit suppression as some power of L→∞ in the range
Td < T < T(1,0). However, as shown below analytically
and then numerically, there is no such a suppression in
the asymptotic limit uV << 1.

B. Dual formulation

The dual formulation of the model (23,24,25) in terms
of the closed loops of integer J-currents (along bonds in
and between the layers) can be achieved similarly to the
case Nz = 2. Using Villain approach (see Appendix A) to

the discrete gradients : ~∇φz → (∇ijφz + 2πmz,ij) along
the planes and −u cos(φz+1−φz)→ (uV /2)(φz+1−φz +
2πmi,z) for the Josephson terms, where mz,ij refers to
integer defined on the bond ij belonging to the plane
z and mz,i stands for an integer on a bond connecting
site i in the plane z to the same site in the plane z + 1,
the partition function (25) follows as a result of explicit
integration over all φz(i) and summations over all bond
integers.

The J-currents enter through the
Poisson identity

∑
m=0,±1,±2,.. f(m) ≡∑

J=0,±1,±2,..
∫
dx exp(2πiJx)f(x) applied to each

bond integer. This allows explicit integration over all
phases φz as well as over the bond integers mz,ij ,mi,z.

There are two types of J-currents: inplane J
(a)
z,ij , a = 1, 2
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within each ”elementary cell” (along z) and between the
planes Ji,z. The label a = 1, 2 refers to J-current defined
on the bond ij belonging to a plane with odd and even
z, respectively. Jz,i denotes the current from the site i
from the plane z to the plane z+ 1. The integration over
phases φ generates the Kirchhoff constraint — similarly
to the bilayer case.

Finally the J-current ensemble can be represented as

Z =
∑
{ ~J}

exp(−HJ),

HJ =
1

2

∑
ij;z,z′

Vab(z − z′)J (a)
z,ijJ

(b)
z′,ij′

+
1

2uV

∑
i,z

J2
z,i, (28)

where the matrix Vab(z − z′) is defined in terms of
the matrix Kzz′ . It reflects the asymmetry between
odd and even layers. Explicitly, V11(z) = Y V22(z), for
z = z − z′ being even, describes the interaction between
odd layers, and V22(z) is defined between even layers;
V12(z) = −X[V22(z + 1) + V22(z − 1)] refers to the inter-
action between odd and even layers (that is, z is odd),
and

V22(z) =
2T

Nz

∑
qm

cos(qmz)

Y − 4X2 cos2(qm)
, (29)

with z = 0,±2,±4, ... and the summation running over
qm = 4πm/Nz,m = 0, 1, ..., N/2− 1.

C. Asymptotic solution

Analogously to the case of the bilayer, the dual repre-
sentation allows constructing the asymptotic solution for
ur for arbitrary Nz. We begin by finding the renormal-
ized Josephson coupling in the asymptotic limit u → 0,
L→∞ withNz kept fixed. The dual formulation (28) for
Nz layers allows obtaining the asymptotic expression for
ur within the same logic used for deriving Eq.(22). We
will repeat it here. The loop formation can be viewed as
a process of random walks of two ends of a broken loop
– exactly along the line of the Worm Algorithm32. Such
a walk of each end is controlled by energetics of creating
one bond element |J | = 1 in a randomly chosen direction
– either along a given plane or perpendicular to it. Sim-
ilarly to the case of the two layers, the energy to create
such an element alone along an odd layer costs energy
>> T ∼ 1, while the same element along an even layer
costs energy ∼ 1. The only option for creating a loop in
an odd layer is if its energy is compensated by parallel
elements in the even plane. This feature is caused by the
strong current-current interaction ∼ X. Thus, if the walk
occurs along z-direction from some even layer z toward
the neighboring odd layer z + 1, the subsequent move
along the odd layer will be too energetically costly so that

the walker would either move further toward z+2 layer or
will go back to the original layer z. Thus, the inter-layer
elements are characterized by either Ji,z = Ji,z+1 = ±1
or Ji,z = Ji,z+1 = 0. The weight of such a process is
either exp(−1/uV ) or 1, respectively. Even if the walker
makes a step or two along the layer z + 1 (which is a
highly improbable event) and then chooses to go toward
the layer z+2, the contribution to the partition function
will be further reduced exponentially by the energy of
the element J along the odd plane. Thus, such processes
can be ignored, and we arrive at the conclusion that ur
given by Eq.(22) must be valid for arbitrary Nz in the
asymptotic limit. The validity of this solution will be
verified numerically as explained below.

It is instructive to discuss the dependence on Nz in the
situation when L >> 1 is fixed and uV → 0 . In this situ-
ation the renormalized Josephson stiffness ur does exhibit
the SP-like behavior ur ∼ exp(−...Nz) (which, however,
transforms into the solution (22) as L→∞). The reason
for this, however, is of a purely geometrical nature (which
has nothing to do with the drag interactions). Indeed, for
any finite Nz >> 1 , the system becomes essentially of
(quasi-) 1D nature as long as uV → 0. In this case, there
is such a value u∗ of uV below which there is essentially
only one macroscopic vertical loop with Wz = ±1 for a
given area L2, with higher ones exponentially suppressed.
This situation corresponds to the contribution of zero
modes to the stiffness along z-direction. These modes are
characterized by ∇x,yφz(x, y) = 0 which leads to the ef-
fective Hamiltonian H0 =

∑
z urL

2 cos(φz+1 − φz), with
ur ≈ 2 exp(−1/uV ) being the renormalized mesoscopic
stiffness. Zero modes become dominant excitations as
long as urL

2 << K11.
The dual form of the zero mode action takes a form

H̃0 =
Nz

2L2ur
W 2
z , (30)

where the duality procedure has been implemented as
explained earlier. Calculation of the Josephson stiffness
according to Eq.(15) gives the resulting stiffness

u(0)r ∼ exp

(
−Nz exp(1/uV )

8L2

)
(31)

in the main exponential approximation in the limit

u
(0)
r << ur ≈ 4e−1/uV . Thus, if uV is taken to zero,

there is such a value uV = u∗ below which this inequality
will be satisfied for fixed L,Nz >> 1. The corresponding

value can be obtained from Nz exp(1/u∗)
8L2 ≥ 1 which gives

u∗ ≈ 1

ln(8L2/Nz)
(32)

in the main logarithmic approximation. Thus, for fixed
L,Nz the solution (22) is valid as long as uV > u∗ and it
must cross over to (31) as long as uV << u∗. However,
as L → ∞, the crossover value of uV , Eq.(32), goes to
zero which means the recovery of the asymptotic solu-
tion (22) for any finite uV . This effect will be seen in
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FIG. 4: (Color online) Monte Carlo results for the inter-layer
stiffness ur of the model (28,29) in the SP regime. Dashed
orange line is the analytical solution (22). Dotted black line
represents the offset ur = 0.1 of the analytical solution (22).
The first and the second numbers in the legend indicate values
of L and Nz, respectively

the simulations as discussed below. It is important to
mention, though, that such a suppression has nothing to
do with SP because the RG solution (discussed above)
implies the suppression of ur → 0 in the limit L→∞ for
fixed uV , while the asymptotic solution gives finite ur,
Eq.(22), in the same limit.

D. Numerical results for Nz > 2

The model (28) has been simulated by the Worm
Algorithm32. The renormalized inter-layer stiffness ur
was found for a range of layer sizes, 6 ≤ L ≤ 640 and
layer numbers 10 ≤ Nz ≤ 40. The resulting data is
presented in Figs. 4,5. As can be seen in Fig. 4, the
solution (22) plays the role of the envelop for the fam-
ily of the curves ur vs 1/uV for various L and Nz. We
note that the stiffness ρ along the layers (as determined
by Eq.(13)) remains independent of the sizes and much
larger (ρ = 22.6±0.5) than ur. This justifies the applica-
bility of the asymptotic limit for Eq.(22). We have also
controlled that the system is far enough from any possible
composite phases28 state by measuring the lowest order
correlator 〈exp(iφz(x, y)) exp(−iφz′(x′, y′))〉 and observ-
ing that it exhibits long-range order.[In the composite
phase state such a correlator is short ranged]. Thus, the
system is well in the putative SP state. Its behavior,
however, is drastically different from the RG prediction.

At this point we should discuss the deviations of the
numerical curves from the analytical result seen in Fig.4.
As discussed above, this behavior is a consequence of
zero modes. The value of uV = u∗ below which the
suppression begins decreases as

(u∗)−1 = γ ln(L2/Nz), γ = 1.00± 0.02 (33)

for L2/Nz >> 1 in the main logarithmic approximation.
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FIG. 5: (Color online) The values of u∗ determined numeri-
cally from the data shown in Fig. 4 by finding the crossings
of the curves ur with the offset (dotted) line in Fig. 4. The
linear fit of this line gives the slope γ = 1.00± 0.02.
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FIG. 6: (Color online) Monte Carlo results for the inter-layer
stiffness ur of the strongly asymmetric XY model. Dashed
orange line is the analytical solution (20) with M = 1. Dotted
black line represents the offset ur = 0.1 of the analytical value.
The first and the second numbers in the legend indicate values
of L and N , respectively.

This behavior is demonstrated in Fig.5, where the value
u∗ corresponds the offset for ur taken at 1/10 of the value
given by the analytical expression (22). The result (33)
is consistent with the analytical formula (32).

Clearly, such a quasi-1D suppression (zero modes ef-
fect) is also present in the standard XY model (where
no SP are anticipated to exist). In order to demonstrate
this explicitly we have also simulated a simple XY model
given by the system

ZXY =

∫
Dφz exp(−HXY ), (34)
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FIG. 7: (Color online) The values of u∗ determined numeri-
cally from the data shown in Fig. 6 by finding the crossings
of the curves ur with the offset (dotted) line in Fig. 6. The
linear fit of this line gives the slope 1.95± 0.05.

HXY = −
∑
〈ij〉,z

[K̃ cos(∇ijφz) + u cos(∇zφz)],

with some K̃ >> 1 (guaranteeing that no BKT transition

occurs in each layer for u = 0), and 0 < u << K̃. In the
dual representation this system is described by

HXY → H̃XY =
∑
〈ij〉,z

1

2K̃
J2
z,ij +

∑
i,z

1

2uV
J2
i,z, (35)

where Jij,z and Ji,z are the same J-currents introduced
above for the model (28). The results of the simulations
of this model are presented in Fig.6,7. In the asymptotic
limit the inter-layer stiffness is described by Eq.(20) with
M = 1. Then, according to the above discussion, the
value u∗ determining where the deviations from the an-
alytical formula begin is given by (u∗)−1 = 2 ln(L2/Nz),
that is, with the slope γ = 2 which should be compared
with the numerical value γ = 1.95± 0.05 in Fig.7. Thus,
both models demonstrate essentially the same 3D behav-
ior, with the only difference being the slope of the renor-
malized Josephson coupling lnur vs its bare value uV .

IV. DISCUSSION

The RG approach to 2D systems proves to be very ef-
fective in many cases including 2D XY model when it can
be mapped on the Sine-Gordon (SG) one34. A success-
ful implementation of the RG analysis to the Josephson
coupling was demonstrated in Ref.35 where a single weak
link can make one channel Luttinger liquid insulating.

The merit of RG, however, should be taken with cau-
tion when applied to the dimensional reduction situa-

tions in layered systems hosting compact U(1) variables.
In this case there is no exact mapping between XY and
SG representations at finite inter-layer Josephson cou-
pling, and the approximation ignoring the compact na-
ture of the variables becomes uncontrolled. As our anal-
ysis of one particular layered system shows, no SP exists
in such a system despite the RG prediction: the sys-
tem shows essentially the 3D behavior of the asymmet-
ric XY model. Clearly, the simplest example presented
here reveals the flaw in extending RG to the dimensional
decoupling situations12–16 when the effective model cor-
responds to zero conformal spin11. [At non-zero spin,
tunneling of pairs can take over10]. As shown in Sec.II C,
the interlayer Josephson coupling exists even when there
is no intra-layer order – which is consistent with the prox-
imity effect.

The dual formulation in terms of the closed loops gives
a very important insight. Specifically, the SP means that
as layer size L → ∞, a suppression of the Josephson
coupling between layers would require that the number
of times elements of closed loops fluctuate between layers
must scale slower than L2 so that the density of such
events is zero in the limit L = ∞. The loops statistics,
however, is controlled by local energies of creating finite
elements and the entropy due to 6 directions in 3D vs 4
along layers. Thus, as long as there is a finite energy to
cross between neighboring layers, the entropy will lead to
a finite density of crossings for large enough L. Similar
argument can be applied to quantum wires in terms of
the quantum to classical mapping where imaginary time
is treated as an extra dimension.

The dual approach and the argumentation along the
line of the numerical algorithm32, treating closed loops
formation as a process of the worm head wondering
around and eventually finding its tail, allowed us to
expose the actual stages of the renormalization of the
Josephson coupling: i) At small scales Josephson cou-
pling is controlled by exponentially suppressed random
and independent (in the asymptotic limit) events of cross-
ings between layers. It can be viewed as an ideal gas of
J-currents between the layers. This stage leads to the
renormalized coupling, in general, represented by Eq.(20)
with M = 1, 2, 3, .... ii) If the number of layers Nz in-
creases, with L being fixed, quasi 1D fluctuations further
suppress the coupling exponentially as demonstrated in
Eq.(31).

Here we have discussed a local model characterized by
short range interactions between the inter-layer J-current
elements. This feature in combination with the low den-
sity of such elements justifies the ”ideal gas”, which in its
turn leads to finite values of the renormalized inter-layer
Josephson coupling.

The question may be raised if a presence of long-range
forces between the inter-plane J-currents Jz,i can change
the situation and lead to the SP or its weaker version –
where ur → 0 with the growing number of layers Nz in
the limit L = ∞. In this respect we note that in order
to realize this, fluctuations of the difference of the J-
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currents with positive and negative orientations must be
macroscopically suppressed. In this case the fluctuation
of the winding numbers in z-direction 〈W 2

z 〉 will scale
slower than L2 so that ur ∼ 〈W 2〉/L2 → 0. This may be
caused by interactions between the inter-layer J-currents
decaying not faster than second power of their separation
along planes. More specifically, the following additional
repulsive term

HSP =
1

2

∑
i,j;z

U(~xi − ~xj)Jz,iJz,j (36)

in the simple XY J-current model (35) with U(~x) having
the long range tail ∼ 1/|~x|σ with σ < 2 will generate the
energy contribution ∼ W 2

z L
−σ in terms of the windings

in z-direction. Consequently, the renormalized Josephson
coupling (15) would scale as ur ∼ Lσ−2 → 0.

As one particular example, long-range forces can be in-
troduced in the standard XY model (34) by some effective

gauge-type term −u cos(∇zφ − gzAz) + (~∇Az)2, where
~∇Az refers to the derivatives along the layers of some
soft mode Az, with gz being a constant. The resulting
interaction in the dual form (36) becomes U ∼ g2z ln(|~x|)
and, thus, it suppresses the inter-layer Josephson as
ur = Nz〈W 2

z 〉/L2 ∼ 1/(L2 lnL) in the limit L → ∞
for fixed Nz. At the moment we do not comment on how
realizable in practice such mechanism is.

Here we have analyzed a clean system and found no
SP. The situation is completely different in the presence
of layered disorder19,20 when the weakly sliding phases
occur due to rare fluctuations of disorder resulting in a
large stack of insulating layers simply blocking the flow
perpendicular to the layers. The number of such layers
scales logarithmically with the total number of layers, so
that ur ∼ N−cz with some non-universal exponent c > 0.
This effect does not need any drag-type interactions and
can occur in a simple XY model.
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Appendix A: Lattice formulation

In order to introduce the cross-gradient term ∼ K12 in
Eq.(1) (cf.3,13,14,16) consistent with the compact nature
of the phases, we use an effective gauge-type field Aij
defined on bonds of the lattice:

HA,φ = −
∑
〈ij〉

[t1 cos(∇ijφ1 −Aij) + t2 cos(∇ijφ2 − g2Aij)

+
1

2g
A2
ij ]−

∑
i

u cos(φ2(i)− φ1(i)) (A1)

where t1 >, t2 > 0, g > 0 and g2 are parameters; 〈ij〉 de-
notes summation over nearest neighbor sites within each
layer; ∇ijφz ≡ φz(i) − φz(j); Aij is a bond vector field
(that is, Aij = −Aji) oriented along the bond 〈ij〉. Ac-
cordingly, the partition function (3) should be rewritten
as

Z =

∫
DADφ1Dφ2 exp(−HA,φ), (A2)

where the temperature is absorbed into the the param-
eters t1, t2, u, g. Our focus here is on verifying the ap-
plicability of the RG analysis to the renormalization of
the Josephson coupling u. Hence, we will not discuss
physical origins of the variables and the parameters.

If the fugacity of the inplane vortices is irrelevant,
the terms − cos(∇ijφ1 − Aij) and − cos(∇ijφ2 − g2Aij)
in Eq.(A1) can be replaced by (∇ijφ1 − Aij)

2/2 and
(∇ijφ2−g2Aij)2/2, respectively. Then, the gaussian inte-
gration over Aij can be carried out explicitly in Eq.(A2),
so that (A1) in terms of the phases becomes exactly the
expression (1). where the 2×2 matrix Kzz′ , z, z

′ = 1, 2
is related to the original parameters as

K11 =
t1(1 + gg22t2)

1 + g(t1 + g22t2)
, K22 =

t2(1 + gt1)

1 + g(t1 + g22t2)
,

K12 = − gg2t1t2
1 + g(t1 + g22t2)

. (A3)

[As a matter of taste, we will keep g2 < 0 in order to
have K12 > 0].

The stability requirement (2) is guaranteed by

K11K22 −K2
12 =

t1t2
1 + g(t1 + g22t2)

> 0. (A4)

The condition (9) for the existence of SP for the cho-
sen values Y = 25.5, X = 5 in terms of the param-
eters t1, t2, g2, g, implies that gt2|g2|(1 − 5|g2|) = 5,
gt1(5.1|g2|−1) = 1 , t1 ≈ 0.177|g2|/[(1−4|g2|)(5.1|g2|−1)
and 10/51 < |g2| < 1/5.

The partition function Z, Eq. (A2), with the full ac-
tion (A1) can be evaluated by the high-temperature ex-
pansion method (see e.g. in36) in terms of t1, t2, u with
further explicit integration over the variables. This ap-
proach allows obtaining Z in terms of the integer bond
variables – powers of the corresponding Taylor series.
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We will be utilizing the Villain approximation30 for the
cosines to obtain the so called J-current version23 of
Eqs.(A2),(A1):

Z =
∑

{ma,ij ,mi}

∫
Dφ

∫
DAe−HV , (A5)

HV =
∑
〈ij〉

[
t̃1
2

(∇ijφ1 −Aij + 2πm1,ij)
2

+
t̃2
2

(∇ijφ2 − g2Aij + 2πm1,ij)
2 +

1

2g
A2
ij ]

+
∑
i

uV
2

(φ2(i)− φ1(i) + 2πmi)
2, (A6)

where ma,ij = −ma,ji = 0,±1,±2, ... (a = 1, 2) are in-
teger numbers defined along bonds between two nearest
sites i and j along the planes and mi = 0,±1,±2, ... is
an integer assigned to a site i and oriented from the layer
1 to the layer 2.

The Villain approximation proves to be very accurate
for establishing the transition points as well as in general
if the effective constants t̃1, t̃2, uV are properly expressed

in terms of the corresponding bare values t1, t2, u (see in
Ref.31). The ”renormalization” can be essentially ignored
for t1, t2 ≥ 1, so that in what follows we will be using
t̃1 = t1, t̃2 = t2. Similarly, for the Josephson coupling
u ∼ 1 one should take uV = u and, if u << 1, the corre-
sponding relation is uV = 1/(2 ln(2/u))30,31. After using
the Poisson identity,

∑
m f(m) =

∫
dmf(m) exp(2πimJ)

for arbitrary function f , for each integer and performing
the integrations over φi and A, the resulting expression
becomes the dual formulation (10,11) of the original sys-
tem (1,3).

Appendix B: RG equations for the bilayer

Here we will provide the derivation of the RG equa-
tions based on the quantum to classical mapping. In our
case it should rather be viewed as classical to quantum
mapping. Treating one of the layers direction (say y)
as imaginary time τ and using Haldane’s approach37 in
terms of the phases φi and the ”angles” θi counting parti-
cles as mutually conjugated variables, the corresponding
action in D = 1 + 1 becomes20,22

HQ =

∫ L

0

dx

∫ β

0

dτ [
i

π
∂xθz∂τφz +

1

2
Kzz′∂xφz∂xφz′ +

1

2π2
(K−1)zz′∂xθz∂xθz′

− u cos(φ1 − φ2)−
∑
q1,q2

Vq1,q2 cos(2(q1θ1 + q2θ2))], (B1)

where (K−1)zz′ are the matrix elements of the matrix
inverse of Kzz′ ; β = L (that is, the ”speed of sound”
Vs = L/β = 1) and the summation over the repeated in-
dexes (z, z′ = 1, 2) labeling layers is used here and below.
The last summation terms account for the backscatter-
ing events with q1, q2 being arbitrary integers (from -∞
to +∞) which represent charges of the instantons (or
composite vortices – in the ”language” of the original
classical layers).

We begin by looking for a solution where all the har-
monics amplitudes Vq1,q2 are irrelevant. In this case the
gaussian integration of the θi variables leads the effective
low energy action (1). In this regime the renormaliza-
tion of u and Kzz′ can be obtained within the standard
RG procedure (see, e.g., in Ref.25). It consists of the re-
peated elimination of the high momenta harmonics from
some cutoff Λ to Λ/(1+s) with s→ 0 and further rescal-
ing of the unit of length (and time) by the factor (1 + s).
More specifically, the variables φz

φz = φ(<)
z + φ(>)

z (B2)

are separated into the low energy φ
(<)
a and the high

energy φ
(>)
a parts, where the latter is to be integrated

out from the partition function Z =
∫
DφDθ exp(−HQ).

This (with the rescaling) will generate the effective action

H
(<)
Q which depends on the low energy harmonics only

and the renormalized values of Kzz′ and u. To the lowest
order the resulting RG equation for u can be represented
as

du

dl
=

(
2− 1

2s
〈(φ(>)

1 − φ(>)
2 )2〉s

)
u, (B3)

where the averaging 〈...〉s is performed over the harmon-
ics in the narrow shell Λ < |~q| < Λ/(1+s) in the gaussian
part of the action (1).

The renormalization ofKzz′ is determined by the terms
∼ u2 in the lowest order. The resulting equations are

dK11

dl
=
Cu2

s

(
〈(φ(>)

1 − φ(>)
2 )2〉s

)
, (B4)

dK22

dl
=
Cu2

s

(
〈(φ(>)

1 − φ(>)
2 )2〉s

)
, (B5)
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dK12

dl
= −Cu

2

s

(
〈(φ(>)

1 − φ(>)
2 )2〉s

)
, (B6)

where C > 0 stands for a constant which depends on the
cutoff procedure. As usual, this constant can be absorbed
into the definition of u, and we choose it as C = 1.

Using the notations K22 = K11Y, K12 = K11X in the

gaussian integral 〈(φ(>)
1 −φ(>)

2 )2〉s/s, the above equations
become

du

dl
=

(
2− 1

4πK11

1 + Y + 2X

Y −X2

)
u, (B7)

dK11

dl
=

u2

2πK11

1 + Y + 2X

Y −X2
, (B8)

d(K11Y )

dl
=

u2

2πK11

1 + Y + 2X

Y −X2
, (B9)

and

d(K11X)

dl
= − u2

2πK11

1 + Y + 2X

Y −X2
. (B10)

Eqs.(B8,B9,B10) imply K11 = C1/(1 + X), Y = 1 +
C2(1 + X), where C1 > 0, C2 > 0 are constants of inte-
gration. Finally, Eqs.(B7,B8) can be expressed in terms
of two variables u and Kφ ≡ K11 − C1/(2 + C2) as

du

dl
=

(
2− 1

4πKφ

)
u, (B11)

and

dKφ

dl
=

u2

2πKφ
. (B12)

These are the standard RG equations which are fully in-
tegrable. The SP phase corresponds to Kφ < 1/(8π)
which is represented by Eq.(6) (with T ≡ 1/K11) . In
this phase u flows to zero and the Luttinger matrix Kzz′

remains essentially scale independent.
The SP implies that Luttinger liquids in both wires

remain gapless. Thus, the condition Kφ < 1/(8π) should
be consistent with the requirement that all the harmonics
Vq1,q2 are irrelevent. In the regime Kφ < 1/(8π) (where
u is irrelevant), Eq.(B1) can be expressed in terms of the
”angles” θa as

Hθ =

∫ L

0

dx

∫ β

0

dτ [
1

2π2
(K−1)ab~∇θa~∇θb

−
∑
q1,q2

Vq1,q2 cos(2(q1θ1 + q2θ2))]. (B13)

The RG equation for the most relevant harmonic can be
obtained along the same lines as discussed above. It is

dVq1,q2
dl

=

(
2− 1

2s
〈(q1θ(>)

1 + q2θ
(>)
2 )2〉s

)
Vq1,q2 .(B14)

Evaluation of the correlator 〈(q1θ(>)
1 + q2θ

(>)
2 )2〉s within

the gaussian part of the action (B13) gives

dVq1,q2
dl

= [2− πKabqaqb]Vq1,q2 , →
dVq1,q2
dl

=
[
2− πK11

(
(q1 +Xq2)2 + (Y −X2)q22

)]
Vq1,q2 . (B15)

As can be immediately seen, this equation features the
critical point of the transition into the composite phase
described by Eq.(8) (where T ≡ 1/K11).

The renormalization of the K-matrix in the second or-
der in the amplitude Vq1,q2 is given by

d(K−1)ab
dl

= qaqbV
2
q1,q2Krsqrqs. (B16)

Eqs.(B16) have two integrals. Using the notations

(K−1)22 = Ỹ (K−1)11 and (K−1)12 = X̃(K−1)11 (which
are related to the previously introduced variables as
Ỹ = 1/Y and X̃ = −X/Y , we find Ỹ = q22q

−2
1 −

B1q
2
2/(K

−1)11 and X̃ = q2q
−1
1 −B2q1q2/(K

−1)11, where
B1, B2 are constants of integration. Using these relations
in Eqs.(B15,B16), we find

dVq1,q2
dl

=

[
2− πq21

Kθ

]
Vq1,q2 , (B17)

dKθ

dl
=

q41
Kθ

V 2
q1,q2 , (B18)

where the notation Kθ = (K−1)11 − q21B2
2/(2B2 −B1) is

introduced.

Eqs.(B17,B18) are also the standard RG equations.
For Kθ < πq21/2 the most ”dangerous” harmonic Vq1,q2 is
irrelevant, that is, the system remains in the superfluid
regime with two gapless modes (provided the SP phase
exists).

The above analysis implies that the SP phase exists
if two conditions hold: Kθ < πq21/2 and Kφ < 1/(8π).
These conditions are represented by Eqs.(8,6) , respec-
tively. As further analysis in the main text, Sec.II A,
has shown Eq.(9) is one of the solutions satisfying both
inequalities.
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1. RG for arbitrary Nz

The equation for ur in the case of a stack of bilayers,
as discussed in Sec.III, can be obtained along the same
line as for the bilayer (see also in Ref.38 in the context of
the bosonic composite phases in a layered system):

dur
d ln l

= (2− 1

2s
〈(φz+1 − φz)2〉s)ur. (B19)

We note that, due to the PBC along z-direction, the
mean 〈(φz+1 − φz)2〉 does not depend on z. Using dis-
crete Fourier representation along z direction with dou-
bled unit cell containing two layers (the odd and the even)

with two sorts of phases φz = φ(1)(z) and φz = φ(2)(z)
along odd and even layers, respectively, the part Hz

in Eq.(23) can be diagonalized and the correlator in
Eq.(B19) found. This gives Eq.(B19) rewritten as

dur
d ln l

= 2

(
1− T

Td

)
ur, (B20)

where Td is given by Eq.(26).

The flow equations for the matrix K can also be found
along the same line as described in Ref.38. In this case
the matrix Kzz′ , which now depends on the wavevector
qz, remains essentially unrenormalized as long as T > Td.
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