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We study the effect of the electron-phonon coupling on vibrational eigenmodes of nano- and
micro-mechanical systems made of semiconductors with equivalent energy valleys. We show that
the coupling can lead to a strong mode nonlinearity. The mechanism is the lifting of the valley

degeneracy by the strain.

The redistribution of the electrons between the valleys is controlled

by a large ratio of the electron-phonon coupling constant to the electron chemical potential or
temperature. We find the quartic in the strain terms in the electron free energy, which determine
the amplitude dependence of the mode frequencies. This dependence is calculated for silicon micro-
systems. It is significantly different for different modes and the crystal orientation, and can vary
nonmonotonously with the electron density and temperature.

PACS numbers: 62.25.-g, 62.25.Jk, 63.20.kd, 63.22.Gh

I. INTRODUCTION

The electron-phonon coupling strongly affects vibra-
tional modes of nano- and micro-electro-mechanical sys-
tems. Much interest have attracted the effects of this
coupling related to the reduced dimensionality of the
electron system, as they make it possible to reveal in-
teresting consequences of the electron correlations at the
nanoscale, the Coulomb blockade being a simple exam-
ple, and their strong effect on the vibrational dynamics,
cf. [1-10] and references therein.

Much less attention has been paid to the consequences
of the electron-phonon coupling, which are related to the
discreteness of the vibrational spectrum of a nanosys-
tem, but emerge in the absence of size quantization of
the electron motion. One of such consequences, which
we study in this paper, is the coupling-induced change
of the vibration nonlinearity. Strong nonlinearity is a
generic feature of vibrations in small systems [11, 12].
Its easily accessible manifestation is the dependence of
the mode frequencies on the vibration amplitudes. This
dependence corresponds to the “self-action” of the mode,
and its familiar analog in bulk crystals are acoustic soli-
tons [13, 14]; however, the nonlinearity required for ob-
serving such solitons usually is sufficiently strong only
for high-frequency phonons. Also, the change of the
eigenfrequency with the mode amplitude is of interest
for modes with a discrete frequency spectrum, such as
standing waves in mesoscopic systems, but not for prop-
agating waves with a quasi-continuous spectrum.

Much attention have been recently attracting Si-based
nano- and micromechanical systems, see [15, 16] and ref-
erences therein. In such systems there was observed an
unexpectedly large change of the amplitude dependence
of the vibration frequency with the varying electron den-
sity [17, 18]. When the doping level was increased from
2.8 x 10'® cm ™3 to 5.9 x 10™ cm ™3, the nonlinearity pa-
rameter increased by more than an order of magnitude.
Moreover, the nonlinearity change was different for the
vibrational modes with different spatial structure.

In this paper we develop a theory of the nonlinearity

of vibrational modes in semiconductor nano- and micro-
mechanical systems with high electron density. We show
that the electron-phonon coupling can lead to a strong
self-action of the vibrational modes, which in turn signif-
icantly modifies the amplitude dependence of the mode
frequencies. We find the dependence of the effect on the
electron density and temperature.

For bulk semiconductors, the effect of the electron-
phonon coupling on the elastic properties, including the
three-phonon coupling, was first analyzed by Keyes [19].
The analysis referred to n-Ge and was based on the defor-
mation potential approximation. The idea was that de-
formation lifts the degeneracy of the equivalent electron
valleys, which leads to a redistribution of the electrons
over the valleys. In turn, such redistribution changes the
speed of sound depending on the direction and polariza-
tion of the sound waves and also affects the sound speed
in the presence of uniaxial stress. This theory was ex-
tended to silicon and the corresponding measurements
were done by Hall [20]. However, Hall also observed the
change of the speed of transverse sound waves and the
effect of stress on sound propagation in the geometries,
where these effects are due to shear deformation and do
not arise in the deformation potential model. A theory of
the change of the linear shear elastic constant in silicon
due to the intervalley redistribution of the electrons was
developed by Cerdeira and Cardona [21].

As we show, in mesoscopic systems the strain-induced
redistribution of the electrons over the valleys of the con-
duction band leads to the previously unexplored strong
fourth-order nonlinearity of the vibrational modes. This
nonlinearity gives a major contribution to the amplitude
dependence of the vibration frequency. The redistribu-
tion also leads to a temperature dependence of the fre-
quencies. The magnitudes of the effects sensitively de-
pends on the mode structure. We describe them for sev-
eral types of modes, including those studied in the exper-
iment [17, 18] and qualitatively compare the results with
the observations. The theoretical results refer to both
degenerate and nondegenerate electron systems. Specific
calculations are done for silicon resonators.



In Sec. IT we give, for completeness, the expressions
for the mode normalization and the amplitude-dependent
frequency shift of coupled nonlinear modes in a nano-
or micro-system. In Sec. III and Appendix A we pro-
vide expressions for the electron-phonon coupling in-
duced change of the elasticity parameters, including the
parameters of quartic nonlinearity. In Sec. IV we dis-
cuss the asymptotic behavior of the parameters of quar-
tic nonlinearity for low and high electron density and
give their explicit form for silicon. In Sec. V we calcu-
late the nonlinear frequency shift for several frequently
used vibrational modes in single-crystal silicon systems
and show the dependence of this shift on the electron
density and temperature. The explicit analytical expres-
sions are given in Appendices C and D. Sec. VI contains
concluding remarks.

II. NONLINEAR FREQUENCY SHIFT OF
LOW-FREQUENCY EIGENMODES

Of primary interest for nano- and micro-mechanical
systems are comparatively low-frequency modes with
wavelength on the order of the maximal size of the sys-
tem. Examples are provided by long-wavelength flexu-
ral modes of nanotubes, nanobeams, and nano/micro-
membranes, or acoustic-type modes in microplates or
beams. These modes are easy to excite and detect. We
will enumerate them by index v. Their dynamics is de-
scribed by the elasticity theory [22]. The spatial struc-
ture of the displacement field of a mode u'*)(r) in the
harmonic approximation is determined by the boundary
conditions. We will choose u®)(r) dimensionless, so that
in our finite-size system

/dr u () - u®)(r) = V6, (1)

Here, V is the volume of the system. We assumed that
the mode eigenfrequencies w, are nondegenerate; includ-
ing degenerate modes is straightforward. For simplicity,
we also assumed that the system is spatially uniform; an
extension to spatially nonuniform systems is straightfor-
ward as well.

We emphasize the distinction of the normalization (1)
from the conventional normalization for bulk crystals,
where v corresponds to the wave vector and the branch
number, and the normalization integral is independent of
the volume. The normalization (1) is convenient for the
analysis of low-frequency modes with the discrete spec-
trum characteristic of mesoscopic systems. Such modes
are standing waves, and therefore vectors u*) can be
chosen real.

The low-frequency part of the displacement can be
written as

=3 Q(uP (), (2)

Functions @, (t) give the mode amplitudes. In the har-
monic approximation the dynamics of the standing waves
is described by the Hamiltonian

Hy =5 Y (M7'P}+ MwjQ), (3)

v

where P, is the momentum of mode v and M is the mass
of the system.

The anharmonicity of the crystal leads to mode-mode
coupling. Within the elasticity theory this coupling is de-
scribed by the terms in the Hamiltonian, which are cubic
and quartic in the strain tensor. We will not consider
higher-order terms, which are small for the mode ampli-
tudes of interest. From the expansion (2), we obtain the
nonlinear part of the Hamiltonian in the form

1
Hnl :g Z 51}11/21/3 Qul ng ng
1
+ Z Z'YV1V2V3V4QV1 QV2 QV?, QV4' (4)

Equation (4) is essentially an expansion in the ratio of
the mode amplitudes to their characteristic wavelength,
which is of the order of the appropriate linear dimension
of the system. This is why mesoscopic systems are of
particular interest, as here vibrations of low-frequency
eigenmodes become nonlinear for already small vibration
amplitudes.

A familiar consequence of nonlinearity in nano- and
micromechanical systems is the dependence of the vibra-
tion frequency of a mode on its own amplitude and on
the amplitudes of other modes, see Ref. 12 for a review.
In particular, the change dw, of the mode frequency due

to the vibrations of the mode itself, Q, (t) = A, cosw,t,
is [23, 24]
| 3w S 3w , — 8w?) o
Owy ~ Z 4M2w5 A (5)

8Mw, —4w?) | TV
where 7, = Y, and we kept the terms of the first order
in v and the second order in (.

The nonlinear mode coupling (4) leads also to the fre-
quency shift due to thermal vibrations of the modes. The
dominating contribution to this shift for low-frequency
modes comes from their coupling to modes with fre-
quencies ~ kpT/h, which have a much higher density
of states. This shift is described by an expression that is
similar to Eq. (5) with A2 replaced by A2, ~ kpT/Mw?,
and placed under the sum over v/, in the classical limit.

III. THE NONLINEARITY DUE TO THE
ELECTRON-PHONON COUPLING

We will consider the vibration nonlinearity due to the
electron-phonon coupling in multi-valley semiconductors
with cubic symmetry, silicon and germanium being the



best known examples. In such semiconductors, the en-
ergy valleys of the conduction band are located at high-
symmetry axes of the Brillouin zone. Strain lifts the sym-
metry and thus the degeneracy of the valleys.

The simplest mechanism of the electron-phonon cou-
pling is the deformation potential. Here, the energy shift
0F, of valley « is determined by the deformation po-
tential parameters =, and Z;. Parameter =, gives the
valley shift due to the strain along the symmetry axis of
the valley. In contrast, parameter =4 gives the shift re-
lated to dilatation; such shift is the same for all valleys.
These parameters are well known for various semicon-
ductors [25]. In terms of the strain tensor e;;, we have

0F, = Zm Ez(-;-!)sji, where 2@ = 2,7 + Z,e® @ el®),
with e(® being the unit vector along the symmetry axis
of the valley. We use the hat symbol to indicate tensors
and symbol “®” to indicate tensor products (e(®) @ e(®)
singles out the strain along the axis of valley a). The
analysis below is not limited to the deformation potential
approximation. An important extension will be discussed
using silicon as an example.

We assume that the strain varies in time and space
slowly compared to the reciprocal rate of intervalley elec-
tron scattering and the intervalley scattering length, re-
spectively. Then the electron system follows the strain
adiabatically. The electron density (%) (r) in valley o
is decreased or increased depending on whether the bot-
tom of the valley goes up or down. In the single-electron
approximation and for the deformation potential cou-
pling, the electron free energy density for a given strain is
F. = So{ £ 0 ()] + 0 (1)Z(;(x)} where f,[n(r)]
is the free energy density for electrons with density n(r)
in a valley in the absence of coupling to phonons.

The electro-neutrality requires that the total electron
density summed over the valleys be constant. The free
energy density F, has to be minimized over n(®)(r) to
meet this constraint. This gives the change of the elec-
tron chemical potential du due to strain €. The resulting
increment of the electron free energy density has the form
of a series expansion in the strain tensor,

Here Kl, Kz, K?” and K4 are tensors of ranks 2, 4, 6, and 8,
respectively. They are contracted with the tensor prod-
ucts of the strain tensor €. Respectively, /A\k are the elec-
tronic contributions to the linear (for £ = 2) and nonlin-
ear (for k > 2) elasticity parameters of the crystal. These
contributions are isothermal, but since the change of the
mode frequencies from the electron-phonon coupling is
small and the nonlinearity is also small, the difference
with the adiabatic expressions can be disregarded.

To the third order in € the expression for § F, in terms
of the shift of the valleys was found by Keyes [19] in the
analysis of sound wave propagation. However, to find the

parameters of the quartic nonlinearity of resonant modes
in small systems, which is of primary interest to us, we
also need to keep quartic terms in Eq. (6).

As seen from the explicit form of the parameters
of the expansion (6) given in Appendix A, Ay o
Eu[Eu/ max(po, kpT)]*~1 (k = 1,2,...), where pq is the
electron chemical potential in the absence of strain; it is
determined by the total (summed over the valleys) elec-
tron density n. Of central importance for the analysis
is that parameter =,/ max(ug, kpT) ~ 103 for electron
densities n ~ 10'° cm ™3 and room temperatures, i.e.

=/ max(po, kpT) > 1. (7)

As a consequence, the coefficients at the nonlinear in &
terms in Eq. (6) quickly increase with the increasing order
of the nonlinearity [the overall series (6) is converging fast
because of the smallness of the strain tensor].

The increase of Ay with k allows us to keep in € only
the terms linear in the lattice displacement, i.e., to set
gij = (1/2)(0u;/0x; + Ou;/0x;), where u; and z; are
the components of the displacement and the coordinates,
respectively. Indeed, in this case a kth term of the series
(6) is of order k in the displacement. If we included the
quadratic in Ou;/0x; term into one of the & tensors in
the kth term, this term would become of order k + 1 in
the displacement. However, for linear € the (k + 1)th
term in the series (6) is also of the (k + 1)th order in the
displacement, but is larger by factor 2,/ max(ug, kgT).
We note that, for the modes that involve rotation, one
should use the relative lattice displacement u(r) rather
than the overall displacement [22].

For linear £, the total strain is a sum of partial con-
tributions of strain from individual modes. For mode
v, such partial contribution is expressed in terms of the
scaled displacement u)(r) [see Eq. (2)] as é = Q,&W),
where 51(-;) (r)= %[auz(-”) (r)/0x; +8u§y)(r)/8xi}. We note
that, in contrast to the dimensionless strain tensor €, ten-
sor £) has dimension [length] .

From Eq. (6) we find the electronic contributions to the
nonlinearity parameters 8, Vs A vsv,s in Hamiltonian

4),

1 ~
Bl =3 / dr Ay - £ @ 80) @ 80,

1 —~
Wibavars =g / driy - @ e g et @ty (3)

where £*) = ()(r); tensors A, are independent of r.
Similarly, the electronic contribution to the eigenfre-
quency is

Awl®) =

S / drhy - W) @ &™), (9)

Generally, the term A5 leads to mode mixing; however,
if the mode frequencies are nondegenerate, this mixing is
weak and can be disregarded, to the leading order in the



electron-phonon coupling. One can see that the effect of
the static stress o Ay can be disregarded as well.
The frequency change (9) depends on temperature be-

cause of the temperature dependence of As. The non-
linearity (8) also leads to a temperature dependence of
the mode eigenfrequency. Together they modify the tem-
perature dependence of the mode eigenfrequencies com-
pared to that of undoped crystals. This modification
often weakens the temperature dependence of the eigen-
frequencies, which proves very important for applications
of micro-mechanical systems in devices that work in a
broad temperature range [26].

Equations (6) - (9) are generic and apply beyond the
deformation potential approximation. This is of particu-
lar importance for silicon. Here, the electron band valleys
lie on the (100)-axes close to the X-points on the zone
boundaries where two electron energy bands cross. Lat-
tice strain can lead to a band splitting at X-points and
a shift of the valleys [27, 28]. Importantly, this shift re-
sults from a shear strain, which does not lead to a linear
in the strain shift in the deformation potential approx-
imation. The valley shift is quadratic in € in this case,
as explained in Appendix A, which corresponds to an ef-
fectively two-phonon coupling. The coupling parameter
Zgn 18 quadratic in the strain-induced band splitting, see
Eq. (A2). It is large, much larger than the constant =,.
Therefore the arguments given below Eq. (7) apply in
this case as well. For purely shear strain in silicon, terms
of odd order in ¢ in 6F,, Eq. (6), vanish.

IV. EXPLICIT FORM OF THE TENSORS OF
NONLINEAR ELASTICITY

Tensors Kn can be obtained by minimizing the free
energy density of the electron system for a given strain
and expanding the result in a series in €. A generaAl pro-
cedure that allows one to find the components A,, for
n < 4 is described in Appendix A. Using the symmetry
arguments, the elasticity tensors are conveniently written
in the contracted (Voigt) notation where the symmetric
strain tensor is associated with a six-component vector.
Then the nonlinear elasticity tensors Kg and K4 become
tensors of rank three and four in the corresponding vector
space. We use notation ¢ for tensors A in these notations
to emphasize that we are calculating corrections to the
nonlinear elasticity tensors due to the electron-phonon
coupling.

The explicit expressions for the nonlinear elasticity
tensors 0¢ are given in Table I. They refer to silicon
and include the contributions that come from both the
deformation potential coupling and from the splitting of
the electron bands due to shear strain. In the defor-
mation potential approximation, the components of the
third-rank tensor &¢, which determine the cubic in the
strain terms in the free energy, were found earlier [20].

Therefore we give only the components that contain a
contribution from shear strain.

The fourth-rank tensor d¢ determines the quartic in
the strain terms in the free energy and has not been dis-
cussed before, to the best of our knowledge. We give all
independent components of this tensor. It is expressed
in terms of the derivative of the electron density n over
the chemical potential in the absence of strain ug, which
is a familiar thermodynamic characteristic. It is intu-
itively clear that the considered effect of the change of the
electron density in different valleys in response to strain
should be related to the derivative dn/dpug. Interestingly,
because we consider nonlinear response to strain, the ex-
pressions in Table I contain also higher-order derivatives
of n over pug. As we will see, this leads to a nontriv-
ial behavior of the nonlinear frequency shift with vary-
ing temperature and density. The considered mechanism
of the strain-induced inter-valley electron redistribution
does not contribute to the components ci123 and cy456,
therefore (561123 = 601456 =0.

A. Nonlinear elasticity in the limiting cases

The expressions for ¢ simplify in the case of low dop-
ing (or high temperature), where the electron gas is
strongly nondegenerate, and in the opposite case of a
strongly degenerate electron gas. For a nondegenerate
gas, where the chemical potential in the absence of strain
is po < 0,|uo| > kpT, we have in Table I Fyy(z) =
%71’1/26‘77 with = po/kpT. The po-dependent factors
exp(po/kpT) in F /5 and its derivatives cancel each other
in the expressions for 6¢ and drop out from these expres-
sions. The dependence of §¢ on density is then just lin-
ear, ¢ o< n. Parameters C . 4 in Table I depend only
on temperature, C; o« T, Cy o« T73,C3 o« T~2 and
Cy x 71

The decrease of the nonlinear elasticity parameters
with increasing temperature in a nondegenerate electron
gas is easy to understand. The effect we consider is de-
termined by the competition between the energetically
favorable unequal population of the electron energy val-
leys in a strained crystal and the entropically more favor-
able equal valley population. With increasing tempera-
ture the entropic factor becomes stronger, leading to a
smaller population difference and thus smaller effect of
the electron system on the vibrations.

For strong doping, where puo/kgT > 1, we have
o o< n?/3, and then Fyjo(r) = %x3/2 with @ = po/kpT.
Therefore parameters C . 4 in Table I become temper-
ature independent, with nC; x n'/3,nCy x n=!,nCs
n~ Y3 and Cy x n'/3.

The results on the asymptotic behavior of the correc-
tions to nonlinear elasticity are not limited to silicon.
Since parameters C 234 are given by the coefficients in
the general expansion of the free energy in strain, (A1),
these results can be applied to the nonlinear elasticity
induced by the electron-phonon coupling in other multi-



TABLE I. The change of the components of the nonlinear elasticity tensors due to the strain-induced electron redistribution
between equivalent energy valleys in doped silicon. The coordinate axes are chosen along the (100) axes. Parameter Egy
characterizes the effectively two-phonon coupling to shear strain. This parameter as well as function Fj/;(z) are defined in

Appendix A; z = po/kgT and n is the electron density.

56144 = —250155 %nEuEshcl 01 = F{/Q/Fl/gk:BT = dh’ln/dﬂo
dci111 = —2dc1112 = 26c1122 #nZ,Cs Ce = (kBT)73F1//22 [dz(l/F{m)/de] /Fi/2

1

—2 =
0c1144 = —20C1155 = —20C1244 = IC1266 —5=1nZ,5nCs

27

0Ca444 = —66Cass5s5

1, =2
—57ZanCa

= (dn/dpo)* [d*(dpo/dn)/dug] /n
Cs = F{)y/F1)2(kT)* = n~'d°n/duj

04 = Fll Q/Fl/szT = dlnn/duo

valley semiconductors. To illustrate this point, in Ap-
pendix B we give §¢ tensor in germanium.

The difference between the asymptotic behavior of the
tensors d¢ in the limits of nondegenerate and strongly
degenerate electron gas can lead to a peculiar density
and temperature dependence of the nonlinear frequency
shift of the vibrational modes. It comes from the co-
efficients C1 ... 4 containing higher-order derivatives of n
with respect to pg. In the transition region g ~ kg7,
thinking of the competition between the entropic and en-
ergetic factors does not provide a simple insight into the
behavior of §¢, as both the energy and the entropy are
complicated functions of density and temperature.

V. DOPING-INDUCED NONLINEARITY OF
SIMPLE VIBRATIONAL MODES

The nonlinear elasticity tensors in Table I give the
doping-induced contributions to the nonlinearity param-
eters of the eigenmodes of micro- and nanomechanical
systems. These contributions are described by Eq. (8).
As mentioned before, an important characteristic of the
mode nonlinearity is the dependence of the mode fre-
quency on the vibration amplitude. To the leading order,
it is given by Eq. (5). This dependence has a contribu-
tion from the nonlinearity of an undoped crystal, which
is quadratic in the parameters of the cubic nonlinearity;
for example, if the latter is described by the Griineisen
constant, the corresponding contribution is quadratic in
this constant. It is typically small. There is also a contri-
bution from the quartic nonlinearity; the parameters of
such nonlinearity are not known in undoped crystals and
are not expected to be large. Respectively, the amplitude
dependence of the vibration frequency for low-frequency
modes in weakly doped single-crystal micro-mechanical
systems is relatively weak [18].

A feature of the doping-induced nonlinearity described
by Table I is that the quartic in the strain term in the
free energy has a large coefficient compared to the cubic
term, cf. Eq. (7) and the discussion below this equation.
Therefore, in Eq. (5) for the amplitude dependence of
vibration frequency one can keep only the Duffing non-

linearity constant 7,. The contribution from the cubic

nonlinearity terms oc 32, , can be disregarded. For a

mode v, the doping-induced contribution to 7, is equal
(e)

to Yove in Eq. (8).

To find the dependence of the mode frequency on the
vibration amplitude we go through the following steps.
First, we find the normal modes of interest for the given
geometry of the system, with account taken of the bound-
ary conditions, and normalize the displacements u(”)(r)
as indicated in Eq. (1). We use u”)(r) to find the strain
tensor £(*)(r). The result is substituted into Eq. (8) and
is convoluted with tensor K4, giving the value of v, , which
is then used in Eq. (5) to find the frequency dependence
on the vibration amplitude dw,,.

Of particular interest is the relative frequency shift
dwy,/w,. To find this shift to the leading order, one
can disregard nonlinearity when calculating the eigen-
frequency w,,. Then, from Eq. (5),

ow, 3y, A2
= ~f) 2 ) (10)
Wy 8 [drAy’ W) @e®)

where Kg) is the full tensor of linear elasticity, which
includes the major term of the linear elasticity of the
undoped crystal and the doping-induced correction KQ.
An important feature of the relative shift dw, /w, is
its scaling with the size of the system. The vibration
amplitude A, in Eq. (10) can be scaled by the lateral
dimension L, for example the length of a nanobeam or a
nanowire for an extension mode, or the size of the square
for a Lamé mode, or the diameter of a disk for a breath-
ing mode in a disk. Respectively, we write A, = 7, L.
Then, if one takes into account the explicit form (8) of

the parameter v, = 7£°JW7 one finds from Eq. (10) that
the ratio dw,/(n2w,) is independent of the system size
for the aforementioned modes. In this estimate we used
that the tensors A are material parameters and are inde-
pendent of the geometry. We also used that the modes of
interest have typical wavelength ~ L, and therefore &)
scales as L1,

Most of the experiments in nano- and micromechan-
ics are done with nanobeams, nanowires, membranes, or
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FIG. 1. Relative change dw, /w, of the vibration frequency of a mode with the vibration amplitude 7, scaled by the relevant
size of the system, cf. Eq. (10). The results refer to single crystal silicon resonators. Curves 1 and 2 refer to the first Lamé
mode in square plates cut in (100) and (110) directions, respectively. In this case, the size of the resonator is the length of the
side of the square. Curves 3 and 4 refer to the first extension mode in beams cut in (100) and (110) directions, respectively. In

this case, the size of the resonator is the length of the beam.

thin plates. In such systems the thickness is much smaller
than the length or, in the case of membranes or plates,
the lateral dimensions. Then, from the boundary condi-
tion of the absence of tangential stress on free surfaces
[22], it follows that the strain tensor é weakly depends on
the coordinate normal to the surface. This simplifies the
denominator in Eq. (10), making it proportional to the
thickness. Similarly, from Eq. (8) 4, is also proportional
to the thickness, and the thickness drops out of Eq. (10).

The explicit expressions for Mw? and v, that deter-
mine the denominator and the numerator in Eq. (10),
respectively, are given in Appendices C and D for Lamé
and extension modes. These expressions are cumber-
some, and it is convenient to use symbolic programming
to obtain them. [? ]

A. Temperature and electron density dependence
of the scaled nonlinear frequency shift

The scaled ratio dw, /(n2w, ) that characterizes the rel-
ative nonlinear frequency shift is shown in Fig. 1 for sev-
eral modes that are often used in single-crystal silicon
MEMS. This ratio depends on the type of the mode and
the crystal orientation. Figure 1 refers to high-symmetry
crystal orientations, in which case the modes have a com-
paratively simple spatial structure and the surfaces can
be made smooth. We used the values =, = 8.8 eV [25],
Zsn = 300 eV, the effective mass for density of states
meg = 0.32m, [30], and the temperature-dependent lin-
ear elasticity parameters given in Ref. [31].

Figure 1 shows that the electron-redistribution induced
nonlinearity of vibrational modes is very strong. For the
ratio of the vibration amplitude to the system size n ~
10~* and the mode eigenfrequency w, /27 ~ 10 MHz, the
frequency change can be as a large as dw, /27 ~ 0.1 kHz.
This explains, qualitatively, the observations [18]. A
quantitative comparison with the experiment [18] is com-

plicated, as the observations refer to different samples.
Our preliminary results show an excellent quantitative
agreement with the data obtained for the same sample
at different temperatures and for different types of modes
[32].

The nonlinear frequency shift displays several charac-
teristic features, as seen from Fig. 1. One of them is the
strong dependence of the shift on the type of the mode
and the crystal orientation. For both the Lamé and the
extension mode, the shift is much stronger for crystals
cut out in (100) direction than in (110) direction. This is
a consequence of the electron energy valleys lying along
the (100) axes, making the system more “responsive” to
the lattice displacement along these axes. Interestingly,
in the both configurations the shifts for the Lamé modes
are larger than for the extension modes.

A somewhat unexpected feature is the nonmonotonic
dependence of the nonlinear frequency shift on the elec-
tron density and temperature. The nonmonotoncity oc-
curs in the range where the electron system is close to
degeneracy, po/kpT ~ 1, and it strongly depends on the
crystal orientation. It is much stronger for crystals cut
in (100) than (110) directions. For a crystal cut in (110)
direction, both the density and temperature dependence
of the shift are monotonic in the case of the Lamé mode,
whereas for the extension mode the nonmonotonicity is
weak.

The nonmonotonicity of the frequency shift stems from
the behavior of the parameters nCs 34 in the range
o ~ kgT. As seen from Table I, parameter nCy expo-
nentially increases with the increasing po/kpT for nega-
tive uo/kpT, but for large positive po/kgT it falls off
as (po/kpT)~%/2. Tt has a pronounced maximum for
to/kpT =~ 0.6. Parameter nCj also displays a maximum,
which occurs for po/kgT =~ 1.1. In contrast, parameters
nC1 4 depend on pp/kpT monotonically.

The results of Appendices C and D show that, for the



Lamé and extension modes in crystals cut in (100) di-
rection, the relative shift dw, /w, is determined by coef-
ficient nC5, which explains the nonmonotonicity of the
shift. For crystals cut in (110), the shift of the Lamé
mode is fully determined by coefficient nCy and is mono-
tonic, whereas for the extension mode the expression for
the shift has contributions from nC5, nCs, and nCy that
partly compensate each other, leading to a comparatively
small shift all together and its weak nonmonotonicity.

VI. CONCLUSIONS

The results of this paper show that the electron-
phonon coupling strongly affects the nonlinearity of vi-
brational modes in semiconductor-based nano- and mi-
cromechanical systems. The mechanism of the effect is
the strain-induced redistribution of the electrons between
the valleys of the conduction band. The redistribution
results from lifting the degeneracy of the electron en-
ergy spectrum by the strain from a vibrational mode.
The analysis refers to the range of temperatures where
the rate of intervalley scattering strongly exceeds the fre-
quencies of the considered modes. In this case the valley
populations follow the strain adiabatically.

The change of the valley populations is a strongly non-
linear function of the strain tensor. The respective ex-
pansion of the free energy in the strain is an expansion in
the strain multiplied by the ratio of the electron-phonon
coupling energy (in particular, the deformation poten-
tial) to the chemical potential of the electron system or
the temperature. This ratio is large, > 103. It is this
parameter that makes the nonlinearity of the vibrational
modes in doped semiconductor structures strong.

Of special interest in nano- and micromechanical sys-
tems is the amplitude dependence of the vibration fre-
quency. To the leading order, it is determined by the
quartic terms in the expansion of the free energy in strain.
These terms are comparatively large in doped crystals.

We have calculated the nonlinear elasticity tensor that
describes the electron contribution to the terms in the
free energy, which are quartic in the strain. The explicit
expressions for the tensor components refer to semicon-
ductors with the valleys on (100) axes, in particular, to
silicon. We have also found this tensor for germanium. In
silicon, along with the deformation potential coupling, an
important role is played by the coupling to shear strain.
Such strain lifts the band degeneracy at the zone bound-
ary and is effectively described by a two-phonon coupling.
We show that this coupling also leads to strong nonlin-

J

earity of vibrational modes.

The parameter of the electron coupling to shear strain
in silicon is not easy to access in the experiment [28, 33].
Measurements of the nonlinear frequency shift provide
a direct means for determining this parameter. In par-
ticular, the nonlinear frequency shift of the fundamen-
tal Lamé mode in a silicon plate cut along (110) axes
is determined by this parameter only, except for small
corrections from the nonlinearity of the undoped crystal.

We found that the nonlinear frequency shift strongly
depends on the type of a vibrational mode and the crys-
tal orientation. We also found that the ratio of the fre-
quency shift to the squared vibration amplitude can be
profoundly nonmonotonic as a function of electron den-
sity and temperature. The results provide an insight into
the experimentally observed strong mode nonlinearity in
doped crystals [18]. In terms of applications, they enable
choosing the appropriate range of doping and the tem-
perature regime to optimize the operation of nano- and
micromechanical resonators.
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Appendix A: Expansion of the free energy in terms
of the strain-induced shift of the energy valleys

The major effect of a strain on the electron free energy
comes from the shift of the energy valleys. We will as-
sume that valley « is shifted in energy by §E, and the
shift is small, |0F,| < max(kpT), 1o), where ug is the
chemical potential in the absence of strain. We further
assume that the vibrations are slow compared to the time
it takes the electron system to come, locally, to thermal
equilibrium for given values of § E,, i.e., the temperature
and the chemical potential are the same in all valleys.
Since for high electron densities the thermal conductivity
is high, the change of the temperature compared to the
ambient temperature can be disregarded; also, as men-
tioned in the main text, the electron density n summed
over all valleys is constant.

The contribution F(®) of the electrons in valley « to the free energy density can be written as F(®) = Q(®) 4 n(®)

with

Q™ = —fpT / dE p(E)log [1+e<~*E*5Ea>/kBT ,
0

where p(E) is the electron density of states in a valley, which is the same for all valleys, u is the chemical potential,



and n(® = —GQ(“)/ O is the electron density in valley a. Expanding F(® to the 4th order in the strain-induced
shifts §F,, we find that, in an N-valley semiconductor, the change §F, of the free energy density summed over the

valleys is
TR T 1 PSR
=Ac+ - = [(AL)? - A2| + -2 A3 - 3A2 A, +2(AL)?
nksT 0 2, [( e) €}+6F1/2{ 2 3AZ A+ 2 5)}
2 "
1Fl///2 A2V2 _9AZ (A )2 1 (A4 1Fl/2 A3 A4 2 (A_)2 A V4
SFAT, (B2 = 2R2 (B + (Bo)] + 5 e (AT R -RT-6A2(R.)2+3(B)Y. (A1)

Here, A" = N='" (6E,/kgT)™. We use the standard
notation Fyp(z) = [~ dyy'/?/[1 + exp(y — )]; primes
indicate differentiation over z, for example, F| /2 =
dFy/o/dx. Function I/, and its derivatives are calcu-
lated for x = po/kpT.

Equation (Al) immediately gives the tensors A, of
the expansion of the free energy increment (6) if one ex-
presses the shift 0 E, of the valleys in terms of the strain
tensor. In the deformation potential approximation the
relation between 0 F, and € is given in the main text, see
also Eq. (A2) below.

In the case of Si crystals, which are often used in mi-
cromechanical resonators, an important contribution to
0F, comes from the shear-strain induced splitting of the
electron energy bands at the zone boundary. Shear strain
does not lead to the valley shift in the deformation po-
tential approximation. The overall shift of valley «, to
the lowest order in the coupling that causes it (i.e., to the
first order in the deformation potential where its contri-
bution is nonzero and to the second order in the band
splitting for shear strain) is [28]:

=2
=( = 2 = S
0F, = Ei?)&j — Eehes, Zeh = Agj . (A2)

ij

Here we use that silicon has six valleys located at the
(100) axes, and we chose the coordinate axes z,y, z along
(100). Respectively, the valley index « takes on three
values that correspond to the xz,y,z axes (the valleys
lying on the same axis, but in the opposite directions,
are equivalent). The strain e,, which enters the second
term in the right-hand side of Eq. (A2), is a component
of the strain tensor €;; with 4, j such that 4,j # « and
i # j. The parameter 2=,/ is the interband matrix ele-
ment of the electron-phonon coupling calculated for the
electron conduction bands A; and Ay at the X point
on the boundary of the Brillouin zone, where the bands
cross; AFE is the energy separation between the bands
A1 and Ay at the value of the wave vector k that corre-
sponds to the conduction band minimum. Parameter =g,
is the effective deformation potential of two-phonon cou-
pling to shear strain. The numerical value of Zgy is not
well known. The experimental data give =, =~ 7 — 8 eV
[28, 33] and the numerical data on the band splitting
give AE = 0.7 eV [34] so that Eg, is in the range of

(

280 — 360 eV this is essentially an order of magnitude
estimate.

In calculating §F, in Eq. (A1) we kept terms that are
quartic in £. The components of the tensors Ay, in Eq. (6)
are expressed in terms of JF, as

OFSF,

- A3
851-13-1...6'5%“ ( )

(Ak)iljlmikjk =

Tensors A are symmetric with respect to the interchange
of indices iy > ji and the pairs (igjg) <> (ixjx’). For the
considered long-wavelength strain, tensors Kk are inde-
pendent of coordinates. The corrections As to the linear
elasticity tensors were found previously [20, 21] and are
not discussed in this paper.

Appendix B: Nonlinear elastic constants of
germanium

In this section we provide the corrections to the nonlin-
ear elastic constants of germanium, which are due to the
redistribution of the electrons over the valleys. Germa-
nium has four equivalent valleys in the conduction band,
which are located on the boundary of the Brillouin zone
along (111) axes. We use the Voigt notation and write the
components of the corrections to the nonlinear elasticity
tensor 0¢ in the frame where the axes (z,y, z) are along
the (100) directions of the crystal. Using the results of
Appendix A, we obtain

Soe n=LF,
18T 9T 5 (kpT)?’

Se _ n=4 3(F1H/2)2 _ Fln/lz
M T R1(kpT)? \ Fy o FY o Fip

Se _ n=t (Fll//Q)Q B Flll/IQ (B1)
55 7 81(kpT)3 FipF, Fip)

The notations are the same as in Appendix A and in Ta-
ble I. The electron-phonon coupling does not contribute
to the other third- and fourth-order elastic constants.
Corrections dcgy and deys6 for germanium were found
by Keyes [19]; however, his final expression for dcyse



differs from Eq. (B1) by a factor of 4 (our expressions
for dcyq coincide with Ref. [19]). Parameters dcgqqqq and
dcaq55 have not been found before, to the best of our
knowledge. In the limiting cases, corrections dcqq44 and
dcqq55 have the same dependence on temperature and
electron density as constant nCs discussed in Sec. IV A.

Appendix C: Duffing nonlinearity parameter for a
Lamé mode in a square single-crystal plate

We consider a square plate with side L and thickness
h made out of a single crystal with cubic symmetry. If
the crystal is cut out along (100) or (110) axes, one of
the simplest modes is the first Lamé mode [35]. The
normalized displacement field is

ul") = /2 cos(mz /L) sin(my/L),

ul") = —\/2sin(rz/L) cos(my/L). (C1)
Here, x and y axes are in the lateral plane along the sides
of the square, axis z is perpendicular to the plate and
u(zy) = 0. Calculating the strain tensor for the displace-
ment (C1) and substituting the expressions into Egs. (8)
and the relation

Muw? = / drA) . e @ 20 (C2)
for the plate cut out along (100) axes we obtain, in Voigt
notation for the elasticity tensors,

Mwlz, = ’/T2h (011 — 612) s
_ 3rth

(c1111 — 4e1112 + 3ci122) -

If we consider silicon and take into account only the con-
tribution d¢ to the nonlinear elasticity tensor ¢, with the
account taken of Table I, the expression for v, simplifies
to

Y = (277T4h/32L2)501111. (C4)

For the Lamé mode cut along the (110) axis, if the
tensors are calculated in the axes (100), we have

Mw? = 2n%heyy,

Yo = (37T4h/2L2)(5C4444.

Note that only coupling to shear strain contributes to the
nonlinearity parameter 7y, in this case.

Appendix D: Duffing nonlinearity parameter for an
extension mode in a single-crystal narrow beam

We consider the fundamental extension mode in a thin
beam of length L with a rectangular cross-section of
area S < L2. The beam is cut along a symmetry axis,
and the sides are also along symmetry planes of a cubic
crystal. From the free-surface boundary conditions, the
normalized displacement field is [35]:

ul”) ~ V2 cos(mx/L),
(v) \/§7T0'2
Uu. ~
Y L
(v) \/571'0'3
U ~
Y L

ysin(rz/L),

zsin(rz/L). (D1)
This expression takes into account transverse compres-
sion that accompanies beam extension and uses the
smallness of the beam cross-section; corrections ~ S/L?
are disregarded. The transverse compression in a cu-
bic crystal cut in a symmetric direction is described by
Poisson’s ratios o2 and o3. Generally, they do not coin-
cide. In Eq. (D1) the transverse coordinates y and z are
counted off from the center of the beam

For the longitudinal direction of the beam (100) and
the sides parallel to (100) planes, the Poisson parameters
are equal, o9 = 03 and 0 = 09 = 03 = ¢12/(c11 + ¢12). In
this case Egs. (8) and (C2) give

Mu? — 728 (c11 (11 + c12) — 2¢3,)
v L (ci1 + ci2)

Yy = (7*S/4L?) [e1111 — 8oci112

+120%(c1122 + c1123) — 80°(c1112 + 3c1123)

+20*(c1111 + 4erniz + 3er122)] - (D2)

)

The expression for v, is simplified if in the nonlinear
elasticity tensors we take into account only the contribu-
tion from the electron-phonon coupling as given in Ta-
ble I and also allow for the interrelation between different
components of the tensor §¢. Then for a silicon beam

Yy = (7*S/4L3) (1 + 0)*dcyi1y (D3)

For extension along (110) axis, with one side parallel to (100) plane and the other side parallel to (110) plane, the
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Poisson’s ratios oy = (110, 110) and o3 = ¢(110,001) are given in Ref. [36]. Then Egs. (8) and (C2) give

Mw

o Am?S cay (cr1(e1n + c12) — 2¢3,)

)

"= 308

YL en(enn +cia + 2c4q) — 263

[01111 (O’éL — 403 + 605 — 4oz + 80§ + 1)

+4c1112 (02 — 1) (Ug + 20%03 - 30% — 40903 + 309 + 80§ + 203 — 1)

+ 361122 (0’2 — 1)2 (05 — 20’2 + 80'§ + 1) + 246112303 (0'2 — 1)2 (0’2 + g3 — ].)
=+ 48011440'§ (0’2 + 1)2 + 96¢124403 (0'2 — 1) (0'2 + 1)2 + 24cq155 (O’% — 1)2

2
+2431266 (O’S — 1) + 804444 (0'2 + 1)4:| .

(D4)

If in the nonlinear elasticity tensor ¢ we take into account only the contribution §¢ from the electron-phonon coupling,
in the case of a silicon beam the expression for v, simplifies to

B )
-~ 32I3

T

((0'2 — 20’3 — ].)4 501111 -+ 24 (0'2 -+ 1)2 (02 — 203 — 1)2 601144 -+ ].6 (02 + 1)4 664444) .

(D5)

Expressions (D2) and (D4) were generated using a computer code to calculate the sums and integrals in Eq. (8).
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