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Abstract

We study lasing in distributed feedback lasers made from square lattices of silver particles in a dye-doped

waveguide. We present a systematic analysis and experimental study of the band structure underlying the

lasing process as a function of the detuning between the particle plasmon resonance and the lattice Bragg

diffraction condition. To this end, as gain medium we use either a polymer doped with Rh6G only, or

polymer doped with a pair of dyes (Rh6G and Rh700) that act as Förster energy transfer (FRET)-pair. This

allows for gain respectively at 590 nm or 700 nm when pumped at 532 nm, compatible with the achievable

size-tunability of silver particles embedded in the polymer. By polarization-resolved spectroscopic Fourier

microscopy, we are able to observe the plasmonic/photonic band structure of the array, unravelling both the

stop gap width, as well as the loss properties of the four involved bands at fixed lattice Bragg diffraction

condition and as function of detuning of the plasmon resonance. To explain the measurements we derive an

analytical model that sheds insights on the lasing process in plasmonic lattices, highlighting the interaction

between two competing resonant processes, one localized at the particle level around the plasmon resonance,

and one distributed across the lattice. Both are shown to contribute to the lasing threshold and the overall

emission properties of the array.
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I. INTRODUCTION10

Organic distributed feedback lasers have been widely studied since the mid-nineties for their11

ability to provide large area lasing upon optical or electrical pumping, while being very simple12

to fabricate1. Such lasers generally consist of an organic gain medium that is deposited as a13

thin layer over a periodically corrugated dielectric surface, with a periodicity chosen such that it14

offers an in-plane Bragg diffraction condition within the gain window2,3. A wide range of emis-15

sion wavelengths can be selected through the availability of a vast variety of organic fluorophores16

and fluorescent polymers, while the typically small corrugations over the surface can be realized17

through optical lithography, or soft imprint lithography4,5.18

More recently a different class of lasers was proposed that rely on plasmonic effects. Plasmon-19

ics uses the fact that free electrons in metals offer a collective resonance at optical frequencies6.20

This causes metal nanoparticles or nanostructured surfaces to provide highly enhanced and21

strongly localized electromagnetic fields upon irradiation, boosting the spontaneous emission rate22

of coupled fluorescent emitters7–9. When such plasmonic particles are placed in two-dimensional23

diffractive periodic arrays, they can also provide control over emission directivity and brightness,24

due to the hybridization of localized plasmonic resonances with grating anomalies associated with25

the array geometry and surrounding dielectric environment10–12. In particular, these systems have26

been studied as substrates for Surface Enhanced Raman Scattering (SERS)13, sensing14,15 and27

solid-state lighting10,16. Recently, several groups17–20 have shown distributed feedback lasing in28

such plasmonic periodic systems. A significant difference with conventional distributed feedback29

lasers is that, while the dielectric perturbation is typically weak and non-resonant, for plasmonic30

systems the scattering strength per unit cell of the lattice can become very strong, and strongly31

dispersive, around the supported resonance. One practical advantage is that strong scattering im-32

plies broader stop gaps, which corresponds to smaller Bragg scattering lengths, or equivalently33

much smaller required device sizes for lasing, and large robustness to disorder21.34

In earlier work20, some of us presented the first experimental observation of the plasmonic band35

structure underlying lasing action of a plasmon particle lattice coupled to a dielectric waveguide36

that also provides gain. In this system Bragg resonance was established using diffraction by metal37

particles which are relatively strong scatterers compare to all-dielectric gratings. However, in that38

study the plasmonic particles were off resonance within the gain window and the lasing frequency39

set by the lattice periodicity. Therefore their individual scattering, while stronger than that of40
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dielectric corrugations, was still weak compared to the maximum attainable cross section. Like-41

wise, in work by other groups17–19 on lasing in systems with surface lattice resonances (diffractive42

plasmonic resonances without assistance of a waveguide mode), the plasmon particle resonance43

frequency was not systematically varied. On the contrary, here we present a systematic study of44

the band structure underlying lasing when the plasmon resonance is tuned close to, and onto, the45

lasing condition. We identify a systematic dependence of the stop gap width on the scattering46

strength of the particles. Moreover, we find that, as the plasmon resonance crosses the lasing con-47

dition, the loss characteristics of the supported bands interchange and, as a consequence, also the48

stop gap edge at which lasing occurs moves from the low to the high end of the gap. These findings49

are in full agreement with an electrodynamic point dipole analytical model that we develop in this50

work, accounting for near- as well as far-field interactions among the particles mediated by the51

waveguide structure in which they are deposited. This paper is structured as follows. In section II,52

and III, we develop and analyze a rigorous theoretical study of the structure’s complex-valued53

dispersion relation based on this dipolar model. In section IV and V we introduce our experimen-54

tal methods and report on the spectroscopy of our gain medium. In section VI,VII we analyze55

band structure measurements, showing that they validate our theory for the competing resonant56

phenomena behind the lasing effect. We close by a real-space full-wave analysis in section IX.57

II. SEMI-ANALYTICAL MODEL58

In this section we theoretically analyze the mode structure of two-dimensional plasmon particle59

lattices embedded in planar waveguides using the discrete dipole approximation. The geometry of60

interest is an infinite square lattice of silver cylindrical particles with periodicity d embedded in a61

high index slab that acts as waveguide and through doping also acts as gain medium (Figure 1(a)).62

Commensurate with the experiments reported here and in Ref. 20, we take this slab to have a63

thickness h = 450 nm and relative dielectric constant ε2 = 2.79 (equivalent to the polymer SU8).64

The slab is surrounded by air on one side (ε1 = 1, located at z > h), and glass on the other (sub-65

strate with ε3 = 2.25 located at z < 0). The array is embedded close to the SU8-glass interface,66

as shown in Fig.1. The air/SU8/glass stack supports a single transverse electric (TE) and a single67

transverse magnetic (TM) mode of almost identical mode index (1.55, calculated using the method68

of Urbach and Rikken22). Mode profiles (Fig. 1(c,d) evidence that the TE mode has a strong polar-69

ization component in the plane in which the particles are polarizable, while the TM mode has only70
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FIG. 1. (a) Schematic of the sample geometry, consisting of a periodic square lattice of thin silver discs

(pitch d) on a glass substrate, embedded in a high index polymer SU8 that supports a waveguide mode and

is doped with organic dye to provide gain. (b) Extinction cross section according to FDTD simulations

(Lumerical using CRC tabulated optical constants) of single silver disks of various radii r embedded in the

air/SU8/glass system, under normal incidence from the glass side. (c,d) Electric field profile of the single

TE and single TM mode supported by the structure. In (c) the in-plane field is perpendicular to the in-plane

wave vector, while in (d) it is along it.

weak overlap. To understand the physics of the particles’ interaction with the modes, we have con-71

ducted FDTD simulations (Lumerical, using tabulated optical constants23) to determine extintion72

cross sections of single particles in the stratified system (incidence from the glass side). As the73

particle diameter, D=2r, increases, the extinction crosssection (Fig. 1(b)) strongly increases, and74

furthermore exhibits the well-known shift to longer wavelengths due to dynamic depolarization75

effects24–26. For D > 60 nm, the dipolar resonance has a distinct Lorentzian shape, and is well76

separated from the features at wavelengths λ < 500 nm, that are due to intraband features in the77

dielectric constant.78

Our goal is to calculate the passive array dispersion of the composite system including loss, as79

well as the relation between the local surface plasmon resonance excitation strength of the array80

and the efficiency of coupling to far-field radiation. Since Ohmic and radiation loss are impor-81

tant we target a complex-valued dispersion relation, where the imaginary part of wavenumber82
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quantifies loss. Lasing is established by a combination of feedback and amplification processes.83

Particularly, in distributed feedback lasers the former is achieved by a distributed backward Bragg84

resonance, a result of coupling between counter-propagating slab modes1. The threshold for lasing85

is determined by the quality factor of the feedback mechanism in the absence of gain. Therefore,86

dominant lasing will take place in the frequency range for which the quality factor of the feedback87

mechanism is the highest, namely the frequency regions where the imaginary part of the complex88

dispersion wavenumber of the resulting coupled slab modes, in the absence of gain, is minimal.89

At the same time, to observe lasing the emission must be able to couple out into the far field. Our90

aim is hence to isolate the low-loss points of the complex-valued dispersion diagram that at the91

same time are not forbidden from coupling to radiation. Since this type of passive-system model92

accounts for linear loss, but not gain dynamics or spontaneous emission noise, it only gives insight93

up to threshold, answering what modes will lase first, but not what their nonlinear physics will be94

well above threshold.95

In order to rigorously tackle the above threshold dynamics, one may apply a time-domain ap-96

proach, such as the Finite Difference Time Domain method, which can be used to calculate the97

real-space field distribution, which is mutually and nonlinearly affected by the 4-level system de-98

scribing the medium through a simultaneous solution of the time-dependent Maxwell equations99

and the active medium rate equations27. Unfortunately, such an approach is limited to finite struc-100

tures and thereby cannot provide the complex k-vector details that naturally emerge in our linear101

k-vector analysis. Full wave solution methods with periodic boundary conditions naturally deal102

with infinite systems. However the Bloch-Floquet boundary condition imposes the wave vector, as103

opposed to the physics of a lasing process that selects the wave vector. With such real-space meth-104

ods one can in principle sample k-space to map out dispersion and loss, by doing many simulations105

that sample k-space point by point. This approach is limited to real wave vectors and requires sig-106

nificant computational effort. An alternative approach is proposed in28, where the discrete dipole107

method is used in the frequency domain, but with the Green’s function of an infinitely homoge-108

neous medium (therefore no slab modes are considered). In order to obtain a time-domain model109

that includes the 4-level system dynamics, the periodic system response, i.e., the dipole lattice110

sum, is approximated using the assumptions that (a) the lattice response at diffraction resonance111

is a Lorentzian single resonance, and (b) that lasing occurs at k=0. Hence, although this analysis112

captures interesting features of the lasing process above threshold, it does not treat the lasing as113

a process that originates from noise and settles at the minimal loss k(ω) points. Using our linear114
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model we find, in accord with our measured data, that not only that lasing takes place at k 6= 0 but115

also that under certain conditions, that are discussed below, there are two rather than one lasing116

points k(ω). In this case, the frequency response becomes close to the diffraction resonance with117

the profile of two overlapped Lorentzians. Therefore we believe that to gain a complete picture of118

the lasing process in such a plasmonic array system various perspectives are required, as proposed119

in27,28 and29 for the above threshold behaviour as well as the linear k-space model discussed in120

this paper, below threshold, that fully accounts for the loss mechanism and hence for the lasing121

initiation dynamics, as a battle between gain and loss.122

As method of choice for our work we focus on a semi-analytical model that describes the123

particles as strong dipolar scatterers, and accounts for all the electrodynamic multiple scattering124

interactions in the lattice that may take place via the waveguide. Such electrodynamic point dipole125

models for lattices have been considered in earlier work mainly in the context of lattices in a126

homogeneous background30–33, with a few exceptions that consider also the presence of a dielec-127

tric slab34,35. It is important to distinguish this method from coupled mode theory typically used128

for conventional periodically corrugated dielectric waveguides36. In solid-state terms, such plane129

wave expansion methods are equivalent to a “nearly-free photon” approach, where the waveguide130

dispersion relation folds at the edges of the Brillouin zone, and where the small index contrast131

causes minute stop gaps to open up. This type of model is not applicable for the case at hand,132

since the plasmonic particles are characterized by strong individual scattering, which does not133

perturb, but instead significantly modifies the band structure. This is also evident in numerical134

plane wave expansion aproaches to periodic plasmon particle systems that either do not converge135

or need of order 103 plane waves to resolve the plasmon particle resonance despite the fact that at136

the operation point (2nd order Bragg diffraction) only 4 diffraction orders couple. Since the plas-137

monic particles are designed to operate around their dominant dipolar resonance, we have a strong138

basis to assume that the particle’s interaction is essentially dipolar. For this reason, our analytical139

approach employs an electrodynamic dipole model with Ewald summation to deal with all the140

retarded dipole-dipole interactions mediated by the waveguide slab. This model builds on recent141

implementations of periodic point-dipole lattice models that successfully describe the hybridiza-142

tion of localized plasmons with propagating and evanescent photonic diffraction orders31–33,37–42.143

The dipolar response of a scatterer is described by its polarizability response α(ω), which for a144
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resonant scatterer in the quasistatic limit reads32
145

αstatic(ω) =
V ω2

0

ω2 − ω2
0 − iωγ

(1)

(in CGS units, with ω angular frequency, ω0 the particle resonance, γ an Ohmic damping rate, and146

V an (effective) particle volume), in the limit in which the response is locally approximated by147

a single resonance43. One must include radiation damping30,32 to turn this polarizability into its148

dynamic form, which is required to build a self-consistent electrodynamic theory with a correct149

energy balance. For a particle in free-space, the dynamic polarizability reads150

1

α
=

1

αstatic

− i2
3
k3 (2)

(with k = nω/c). However, our case is somewhat different, since the particles are located inside151

a dielectric layered system which affects both the radiation damping correction, as well as red152

shifts the resonance frequency. In the following, we use the model given in Eq. (1) and Eq.153

(2), and fit the plasmonic resonance model to our full wave simulations of a single inclusion in154

the dielectric stratified system (discussed further below). This fit yields a resonance frequency155

λ0 = 334 × 10−9 + 3.6 × 2r[m] and a damping rate γ = 0.05ω0 where ω0 = 2πc/λ0, k =156

2π
√
ε2/λ0. It turns out that, while in rigorous terms the radiation damping in Eq. (2) should be157

corrected using the imaginary part of the Green’s function at the location of the particle34, it is158

a fair approximation to simply use Eq. (2) since the Ohmic damping in the particles dominates159

compared with the radiation loss, and its modification is also partially being taken into account by160

the fitting. Using this model, we can use a fitted analytical expression for the polarizability of the161

particles, which yields a very good approximation to the scattering cross section we obtain from162

full wave simulations in the diameter range 40 − 110 nm. As particles used in experiments are163

flat in the z-direction (30 nm height, versus 100 nm diameter typically), we constrain the particle164

polarizability to the xy-plane, meaning that dipole moments can only be excited in plane.165

The array is periodic by translation over d in both the x and y directions, and thereby we can

assume that the induced dipole moments assume a Bloch form pmn = p00e
id(nkx+mky), where

m,n are the particle indices and (kx, ky) is the wavevector of the excited collective plasmonic

mode parallel to the layers. For a lattice driven by an incident field of the form Eine
id(nkx+mky),

the induced dipole moments are given by

p00 = α

[
Ein +

∑
n,m 6=0,0

G(r00, rmn)pmn

]
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or equivalently p00 = 1
α−1−CEin with

C =
∑

n,m 6=0,0

G(r00, rmn)eid(nkx+mky).

Here the term C accounts for all dipole-dipole interactions and is also known as lattice sum31–33,37–42.166

The dyadic Green function G accounts for the full physics of the stratified system, meaning that167

it includes the TE and TM guided mode that the assumed slab supports, plus the continuous168

spectrum that accounts for radiation into the substrate and superstrate.169

From this starting point, we can make several simplifications. The 2nd order Bragg resonance170

on which lasing occurs at the Γ-point (kx, ky) = (0, 0) takes place in the two orthogonal directions171

parallel to the lattice primitive vectors (diffraction by lattice vectors 2π/d(±1, 0) and 2π/d(0,±1).172

Given the symmetry, without loss of generality we can analyze the kx = 0 slice of the dispersion173

relation (propagation direction is ŷ), in which case the dipole polarization is along x̂. Hence, the174

modal matrix problem reduces to the simplified scalar equation175

∆(ω, kx, ky) ≡ α(ω)−1 − C(ω, kx, ky) = 0. (3a)
176

C(ω, kx, ky) =
∑′

Gxx(ω, r00, rmn)eid(mkx+nky). (3b)

In Eq. (3b), the symbol
∑′ denotes summation over all indices except (m,n) = (0, 0), and Gxx is177

the xx component (the x̂ component of the electric field due to a x̂ polarized dipole) of the electric178

Green’s function tensor in the 3-layer dielectric medium host.179

Taking the full spectral content of the Green’s function into account in the infinite summation in180

Eq. (3b) is numerically challenging, as the Green function in a stratified medium is generally ex-181

pressed in angular spectrum representation as a parallel wave vector integral that includes guided182

modes as poles on top of a radiation continuum. We expect the Green function to be dominated183

by its poles on basis of physical considerations: First, the distance between the particles corre-184

sponds to Bragg resonance at the TE mode, and second the particles strongly overlap with the TE185

waveguide mode as consequence of their position in the slab, and their anisotropic, flat, geometry.186

Since the TE and TM modes of the slab (in absence of particles) are very close in dispersion, we187

expect significant TE-TM coupling. On this basis, we employ the assumption that we can neglect188

any continuous spectrum contribution to the Green’s function, yet need to retain the TE and TM189

guided mode contribution to the Green function. Based on these considerations, we replace the190

full Green’s function Gxx with its modal part, Gm
xx including both TE and TM mode contributions,191
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i.e. Gm
xx = GTE

xx +GTM
xx , where the TE and TM contributions are separately given by192

GTE
xx = 2ATE

[
H

(1)
0 (kTEρ) +

∂2x′H
(1)
0 (kTEρ)

(kTE)2

]
(4a)

193

GTM
xx = −2ATM

[
∂2x′H

(1)
0 (kTMρ)

k2TM

]
(4b)

where ρ =
√

(x− x′)2 + (y − y′)2, kTE, kTM are the wavenumbers in the transverse direction of194

the guided slab mode in the absence of the array, given by a solution of the corresponding mode195

transcendental equation22. The amplitudes ATE, ATM are given by196

AX =
k30

4πε0

i

2η0
2πξXg(z, z, ξX), X = TE, TM (5)

where ξX = kX/k0, and g is the 1D Green’s function given in Appendix A. The infinite summation197

in Eq. (3) is slowly converging due to the inverse square root dependence of the Hankel function198

with respect to its argument. However, the convergence can be significantly accelerated applying199

the Ewald summation technique, adapted to the problem at hand (Appendix B).200

Solution of Eq. (3) provides the complex-valued dispersion of the collective plasmonic ex-201

citation of the array in absence of gain. The lasing process in the structure is expected to build202

up in the regions of the frequency - wavenumber plane where the imaginary part of the complex203

wavenumber is minimal. To observe lasing, radiation must also couple out of the waveguide. Fo-204

cusing on x-polarized excitation, the dipolar moment p00 due to an impinging x-polarized plane205

wave with amplitude E0 at ω with (0, ky) is given by p00 = E0/∆(ω, 0, ky). By reciprocity, the206

radiated field due to a dipole strength p00 at ω and (real) (0, ky) can be calculated from the reverse207

problem, i.e., from the induced dipole strength p00 induced by an incident plane wave of given208

strength E0, incident at ω with (0, ky). Therefore, the quantity 1/∆(ω, 0, ky), essentially indicates209

the coupling between x-polarized induced dipoles and x-polarized far-field radiation with k|| = ky.210

In the following section, based on this analytical model, we explore how the interplay of these two211

resonances controls the lasing mechanism in the lattice.212

III. THEORETICAL PREDICTION OF THE LASING CONDITIONS213

Fig. 2 shows the coupling efficiency between the excited dipolar moments and far-field radia-214

tion in a relatively wide frequency region around the TE Bragg resonance frequencies as grayscale215

where, black (white) represents poor (strong) radiation. Panels (b)-(d) correspond to three distinct216
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FIG. 2. (a) Sketch of the free photon approximation to the dispersion relation between ky on the x-axis,

and dimensionless frequency nωd/2πc, where d is the lattice pitch and n the mode index. The dispersion

relation folds back by diffraction at 2π/d(0,±1) resp. 2π/d(±1, 0) to give the lines resp. parabolas crossing

at ky = 0 (2nd order Bragg diffraction). (b-d) coupling efficiency between x-polarized dipolar excitation

and x-polarized far-field for incidence in the kx zero plane (varying real ω and k)y. (a) λTEB < λLSPR, (b)

λTEB ≈ λLSPR, (c) λTEB > λLSPR. Panels (e-g): the left panels show the dispersion of the imaginary part of

ky, while curves in the righthand panels show the corresponding real part of the dispersion relation (blue and

brown curve indicating different dispersion branches). The background grayscale shows the efficiency of

coupling taken from panels (b-e). We expect that lasing is observed at a minimum of Imky (indicated by red

dashed lines) and simultaneously good outcoupling (conditions marked by circles). For reference in the left

panels we indicate with black dashed lines the free-photon Bragg conditions for the TE and TM waveguide

mode. Panels (e-g) are for the same parameters as (b-d), meaning that they correspond to λTEB < λLSPR,

resp. λTEB ≈ λLSPR and λTEB > λLSPR.

cases of interest, λTEB < λLSPR, λTEB ≈ λLSPR, and λTEB > λLSPR, respectively, where λLSPR217

is the wavelength of the plasmonic particle resonance frequency, and λTEB is the free-space wave-218

length at which the 2nd order TE mode Bragg resonance takes place. The salient feature is an219

10



anticrossing at kx = ky = 0 and ω around 3.1 · 1015 s−1 that involves four bands. These originate220

from the folded free-photon dispersion (Panel (a)), that generates two linear bands (dispersion221

ky = nTEω/c diffracted by 2π/d(0,±1)), and two parabolas (diffracted by 2π/d(±1, 0)). While222

in the case of significant red and blue detuning from the plasmon resonance (tuned by particle223

size) the photon dispersion is recognizable in the coupling efficiency 1/∆ as narrow features close224

to the free photon dispersion, for the on-resonance case, the dispersion is qualitatively different.225

In Figure 2(e-g) we zoom in at the frequency of the TE Bragg condition and plot the coupling226

efficiency (grayscale map) together with the complex dispersion of the collective plasmonic exci-227

tation, obtained as a solution of Eq. (3). This figure allows to predict at which frequencies lasing228

is expected.229

The curves (blue only or blue and brown) in each panel represent the relevant parts of the com-230

plex dispersion. In the left (right) side of each panel, we show the dispersion of the imaginary231

(real) part of k||. Additional dispersion branches with much higher imaginary part are not shown,232

since we focus only on branches with an imaginary part close to zero that can contribute to lasing.233

For all three detuning scenarios considered, there are two frequencies for which the imaginary234

part of k|| has a minimum. If only a single waveguide mode would contribute (e.g, TE-only),235

only a single minimum would be expected, as one would expect one of the two stop gap edges236

to correspond to strong overlap (large loss), and one with weak overlap (low loss), of the corre-237

sponding Bloch mode with the particles. The fact that two minima occur is hence a sign of TE-TM238

coupling. While each minimum indicates a distributed resonance for which field amplification is239

expected when gain is added, observing clear laser output also requires efficient outcoupling. In240

other words, we now focus on simultaneously finding a frequency corresponding to minimum of241

Im
{
k||
}

, and at the same time significant outcoupling as indicated by the grayscale colormaps on242

the right hand side of each panel in Fig. 2(e-g) (for Re
{
k||
}

near zero).243

In the first scenario, shown in Fig. 2(e), λTEB < λLSPR the only point for which we have244

simultaneously low imaginary part of k|| and significant coupling efficiency is at a frequency just245

above the kinematic TE Bragg condition (dashed line). In the opposite-detuning case, Fig. 2(g),246

λTEB > λLSPR, the only point with low imaginary part of k|| and simultaneously good outcoupling247

is below the kinematic TE Bragg condition. Finally, in the case in which particle resonance and248

lasing condition are tuned close to each other (Fig.2(f), λTEB = λLSPR), there are two points, one249

above and one below the TE Bragg condition, where this condition is satisfied. These results hence250

predict that for plasmon resonance and Bragg condition detuned from each other, one expects a251
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distinct splitting in the dispersion relation, with lasing occuring always on the stop gap edge that252

is closes to the plasmon resonance. For the intermediate case, both stop gap edges would lase. We253

further note that the proximity of the imaginary part of k|| to the zero axis, and the brightness of254

the greyscale images representing coupling strength to radiation are expected to relate to the lasing255

mode loss (and hence, required threshold) and lasing outcoupling efficiency. In the following,256

we discuss a campaign of experiments analyzing plasmonic arrays satisfying the three detuning257

conditions outlined in Fig. 2. Sections IV,V report on methods, while measured band structure258

results as function of the detuning between Bragg condition and plasmon resonance are discussed259

in section VI and compared to the point dipole model in section VII.260

IV. SAMPLE GEOMETRY, SET UP AND CHARACTERIZATION OF THE GAIN MEDIUM.261

We fabricated silver particle arrays using electron beam lithography on ZEP resist, thermal262

evaporation of silver, and lift-off, on standard glass coverslips (Menzel, borosilicate). The square263

lattices are embedded in SU8. We study cylindrical particles with varying diameter (about 60 to264

120 nm), and a height of about 30 nm. Since previously we established20 that only silver gives265

advantageous results for plasmon lasers, owing to the much higher loss in other metals, this study266

focuses on silver. The dye-doped SU8 film of about 450 nm thickness is prepared by spincoating267

from a solution that is prepared by mixing equal parts of SU8-2005 (SU8 in cyclopentanone, 45%268

solids, Microchem) and cyclopentanone in which the dye is mixed. As gain medium we have used269

two systems. On one hand, with Rh6G as dye (5 mM in cyclopentanone), we can achieve gain270

near 590 nm. This requires small pitches, between 360 and 400 nm, and gives access to cases with271

particles red-detuned from the gain medium. With a gain medium at 700 nm, and concomitantly272

larger lattice pitch of 460 nm we can access blue detunings. To obtain a gain medium in this range273

that we can actually pump with our pump laser at 532 nm, we use a pair of dyes, namely 5 mM of274

Rh6G that absorbs the pump light, and acts as donor for Förster energy transfer to Rh700 which275

provides the gain, and which we have included at 0, 0.5, 3, 5 and 10 mM concentration. If one276

assumes that after spincoating all material except the cyclopentanone remains, dye concentrations277

in the film are approximately 2.2 times the nominal dye concentrations in solution. By ellipsometry278

we verified that the dye doped films have a refractive index of around 1.60, resulting in a single TE279

and a single TM mode that both have an effective index of about 1.55. We note that as the particle280

diameter is changed to control detuning, this changes the scattering strength at the lasing condition281
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both because there is simply more polarizable matter per particle and because the resonance shifts.282

We collect fluorescence emission that is resolved in frequency and parallel wave-vector using283

the set up presented in Ref. 20 in which the sample is placed on an inverted optical microscope284

equipped with a 100× Nikon objective (Plan Apo NA=1.45). We excited a 40 µm spot using 532285

nm light offered in a 0.5 ns pulse with energy per pulse controlled in the range 0-20 nJ via an286

acousto-optical modulator. We also performed spectroscopy and fluorescence lifetime measure-287

ments on dye-doped films without plasmon particles to calibrate the dye system. To this end we288

used the fluorescence lifetime and spectroscopy set up presented in Ref. 44.289

V. SPECTROSCOPY OF CONSTITUENTS & FRET290

Figure 3 shows reference results for the gain medium composed of the FRET pair Rh6G and

Rh700. Using samples without plasmonic particles, and low excitation amplitude, we measured

emission spectra at fixed Rh6G concentration, and various Rh700 concentrations. Emission at

the short wavelength end is clipped by a 540 nm longpass filter. Evidently the strong Rh6G

emission band (550 to 620 nm) rapidly decreases in intensity as Rh700 is mixed into the film,

while at the same time strong emission of the Rh700 dye (650 to 750 nm band) arises. At a one-

to-one ratio (where the nominal dye concentrations prior to mixing with SU8 is 5 mM) the Rh6G

emission has almost completely vanished. For larger concentration of Rh700, the Rh700 emission

decreases, and redshifts. The disappearance of Rh6G emission and the appearance of Rh700

fluorescence, that is poorly pumped by 532 nm directly, is commensurate with Förster Resonance

Energy Transfer” (FRET). As usual45 we define the energy transfer efficiency asE = 1−FDA/FD
where FD is the integrated (detector-corrected) spectral intensity of the donor-only sample, while

FDA is the integrated spectral intensity of the acceptor. Figure 3(c) shows the energy transfer

efficiency deduced from the data in (b) as a function of the nominal concentration (symbols)

alongside the prediction45–47

E = −
√
πγeγ

2

(1− erfγ)

that is appropriate for FRET in 3D homogeneous media. This expression depends only the dimen-

sionless concentration C/C0 via the parameter

γ =
Γ(1/2)

2

C

C0

with C0 =

(
4

π
R3

0

)−1
,
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FIG. 3. (a) Emission spectra of dye mixtures under weak pumping. Here the concentration of Rh6G

is fixed to 5 mM and the concentrations given in the figure represent Rh700 concentrations. (b) FRET

efficiency curve from spectral integrals. The horizontal axis represents the concentration of Rh700, and

the vertical axis represents energy transfer efficiency from the donor to the acceptor. (c) Lifetime traces

for four concentrations (0.5, 1, 3 and 5 mM) of Rh700. The solid curves plotted through the data points

are FRET theory where no adjustable parameter is used except a vertical scaling. (d) Sketch of the lasing

set up consisting of a inverted fluorescence microscope used in back focal plane spectral imaging mode.

(e) Spectra (inset) at pump powers just below (10 nJ blue curve) and just above (15 nJ, organce curve),

considering only a narrow band of wavevectors around ky = 0. Note the stop gap, and lasing on the blue

edge of the stop gap. The intensity of the lasing peak shows distinct threshold behavior.

where Γ represents the Gamma-function. We obtain a reasonable fit to the data for a critical291

concentration C0 = 0.9 mM. Correcting for the difference between nominal concentrations before292

spincoating this result implies C0 = 2.2×0.9 mM in the SU8, which in turn translates to a Förster293

radius of about R0 = 5.5 nm. Since this is on par with expected Förster radii45, we conclude that294

the concentration dependence of spectra is consistent with FRET.295

As independent check, we also measured fluorescence decay traces of the donor emission. If296

energy transfer is due to FRET, decays should be given by46
297

ID(t) = I0exp
[
−t/τD − 2γ(t/τD)1/2

]
(6)
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where τD is the donor decay time. Figure 3(d) shows measured decay traces at various concentra-298

tions alongside the prediction Eq. 6 convoluted with the instrument response function of our setup.299

We note that for this comparison we only adjust the overall scaling I0, but adjust neither τD = 3.4300

ns which is taken from a donor-only measurement, nor γ, which is taken from the spectral data.301

We note excellent correspondence, especially given that no parameter except overall scaling was302

adjusted. We identify the one-to-one 5 mM sample as most suited for our gain measurements as it303

provides strong Rh700 emission by FRET from Rh6G pumped by our 532 nm pump laser. From304

here onwards, in this paper we focus on samples with this gain medium, referring to them simply305

as ”Rh700 samples”.306

It should be noted that in this paper we will not deeply discuss any above-threshold data, instead307

focusing on answering which mode reaches threshold (first) depending on the detuning between308

plasmon and Bragg condition. In order to show that lasing does occur (for all the samples we report309

on), Fig. 3 shows an exemplary result for a sample with particle size 2r = 74 nm in diameter310

and pitch of 460 nm, lasing at 710 nm, using the Rh6G:Rh700 dye mixture as gain medium.311

The spectra are obtained using the inverted fluorescence microscope in Fourier imaging mode312

(Fig. 3(d)). At pump powers below about 12 nJ, the spectrum (panel (e), obtained by integrating313

only a narrow band of emission directions around ky = 0) is similar to that on substrates with no314

particles, except for the appearence of a shallow gap near 715 nm. At the blue edge of this gap315

a narrow lasing peak appears for pump powers above 12 nJ. Tracing the intensity in a 5 nm wide316

spectral bin around the narrow lasing peak shows clear threshold behavior20.317

VI. BAND DIAGRAMS318

Figure 4 shows measured ω, k diagrams of fluorescence below threshold. The measurements319

generically display two linear bands, as well as the expected parabolic feature, with a distinct anti-320

crossing centered around 2.63 · 1015 s−1 (715 nm, in accord with 1.55d). The most notable feature321

in Fig. 4 that is distinct from the free photon folded dispersion relation sketched in Figure 2(a) is322

that the two parabolic bands are not degenerate but distinctly split. Such a splitting is also observ-323

able in the calculated dispersion for the point dipole model. In particular, Fig. 2(d,g) correponds to324

a particle size/pitch combination that can be compared with the data in Fig. 4(d), where the reader325

is admonished that the data extends over a wider frequency- and wavenumer scale. In addition, the326

linear bands also show a stop gap, with band edges coincident with the minima of the parabola.327
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FIG. 4. Fluorescence (pumping below threshold) mapped in ω − k space as function of plasmon particle

diameter, where the diameter varies from 53, 61, 74, 82, 86 to 95 ± 5 nm for panels (a-f), for samples with

pitch d = 460 nm, using the Rh6G:Rh700 dye mixture, taken below threshold. Maxima are 5350, 8600,

11650, 14300, 25200, and 27950 counts/µJ/shot, respectively. Note how the stop gap increase in size.Panels

(g,h): Polarization-resolved dispersion measurements for particle diameter of 86 nm, taking polarization

along and perpendicular to the spectrometer slit. Panel (i): sketch of parallel momentum space. At a fixed

frequency ω (here chosen at 2nd order Bragg diffraction), the slab waveguide mode appear as a circle of

radius nWGω/c centered at the origin (black), and due to diffraction by the lattice repeated every reciprocal

lattice vector 2π/d(m,n) (color coded). For the TE waveguide mode, the electric field polarization is in-

plane, normal to the momentum. The slit (rectangle) maps a slice of momentum space. In (g) and (h) the

color bar maximum is at 5500 resp 2400 counts per µJ of pump power.
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This stop gap corresponds to the narrow gap visible also in Fig. 3(e,inset) around 715 nm, at the328

blue edge of which lasing occurs once threshold is exceeded.329

Fluorescence in momentum space is expected to show distinct structure tracing out features330

close to the waveguide-array dispersion10,20, commensurate with the predictions that the outcou-331

pling efficiency of the excited lattice will depend on frequency and angle (see maps of 1/∆(ω, ky)332

in Fig. 2(b-d)).Figure 4(a-f) shows the progression of the measured band structure as we increase333

particle size. Clearly, the band structure stays qualitatively identical up to a particle size of 86 nm334

diameter, however, with a distinct increase in stop gap width. For particles above 95 nm in di-335

ameter, the band structure develops a qualitatively different appearance, both in terms of avoided336

crossing geometry, and in terms of the widths of the various bands. This is the regime where337

particles and lasing condition come in resonance, whereas for smaller diameters, the particles are338

blue-shifted with respected to the Bragg condition that is set by the lattice.339

The polymer slab supports two modes, the fundamental TE and fundamental TM mode, as340

reported in Fig. 1(c,d). According to our modeling both participate in setting the geometry of341

the anticrossing in Fig. 2, although outcoupling is predominantly through the TE waveguide. To342

verify this assertion we collected data on a series of samples using a linear polarizer in front of343

the spectrometer slit. To understand the measurement, we refer to a sketch of the repeated zone344

scheme dispersion that is projected on the spectrometer entrance plane (Fig. 4i). Fluorescence345

is expected to dominantly be emitted into the waveguide mode. Since back focal plane imaging346

directly maps k||/k0, this would appear on our detector as a ring that is nTE,TM ≈ 1.55 times347

bigger then the free space light cone, if it weren’t for the fact that the objective clips the signal to its348

NA of 1.45. Bragg diffraction causes the dispersion to be replicated every reciprocal lattice vector349

G = 2π/d(m,n) (withm,n integer), leading to a set of intersecting circles of radius 1.55k0 on the350

spectrometer entrance port20. In our measurement we only collect a slice along one axis (labelled351

ky), spectrally dispersing the fluorescence from this slice over the other axis of our CCD camera.352

In such a measurement, the diffracted orders δ(|k|−k0nmode)±2π/d(0, 1) appear as straight lines353

that intersect at ky = 0 for the 2nd order Bragg diffraction conditions. In contrast, the diffracted354

orders δ(|k| − k0nWG)± 2π/d(1, 0) appear as the two parabola’s, that have their minimum at the355

2nd order Bragg diffraction condition. If the dominant waveguide mode is TE (TM) polarized,356

i.e., tangential (radial) to the mode circles, this reasoning implies that the parabolic bands must be357

polarized along (crossed to) the slit, while the linear bands are polarized crossed to (resp. along)358

the slit. Measurements of the band structure with linear polarization analyzer along and across the359
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slit are shown in Fig. 4(g,h) The observed behavior clearly indicates that the features we observe360

are strongly TE polarized. Indeed, the TE mode has a strong electric field component in the plane361

of the particles, along their main polarizability tensor axes. The TM mode mainly provides field362

along the sample normal. Through the small in-plane field, however, coupling between TE and363

TM polarized slab modes is possible via scattering at the particles. Especially the fact that the364

upper parabola remains visible in Fig. 4(h) indicates TE-TM mixing.365

VII. STOP GAP WIDTH366

The measured band structures as function of particle size indicate a strong dependence of gap367

width on particle scattering strength, or detuning. To quantify this relation, we extract the relative368

stop gap width (∆ω/ω) and plot it versus particle size in Figure 5(a). A direct relation between369

stop gap width and a scattering parameter such as cross section is not unexpected. For instance, in370

3D dielectric photonic crystals of spheres the relative stop gap width is given by48
371

∆ω

ω
= 4π

α

V
(7)

where α stands for (electrostatic) polarizability (real and positive for dielectric spheres), and V for372

the unit cell volume. At first sight it stands to reason that a similar relation holds in 2D plasmonic373

systems. However, in the plasmonic case the physics is richer, since α is a complex quantity, while374

stop gap widths must obviously be real and positive. There is no currently available theory that375

reports the equivalent of Eq. (7) for stop gap width in terms of scattering parameters of plasmon376

particles.377

To bring out the dependence of stop gap width on scattering strength more clearly, we construct378

a ”master diagram” that plots the data obtained here with the Rh6G-Rh700 FRET pair, and data379

obtained earlier with just Rh6G20 as function of a normalized frequency detuning parameter. We380

use the detuning between particle plasmon and lasing wavelength ωLSPR−ωlasing, normalized to the381

bandwidth of the plasmon resonance (FWHM ΓLSPR). Note that this is the only apparent relevant382

linewidth to normalize to in our system. The relevant single-particle frequency and linewidth are383

obtained by fitting a Lorentzian to the simulated particle response (specifically, σscatλ4 ∝ |α|2).384

The data in Fig. 4 taken with Rh700 as gain medium, appear at negative detuning, while data taken385

with Rh6G correspond to positive detuning. We remind the reader that for the Rh700 data we kept386

lasing frequency ωlasing fixed (fixed pitch), while particle size tuned the plasmon resonance ωlasing387

18



onto the lasing condition. For positive detuning, data was taken with a fixed particle size of 110388

nm, varying pitch from 360 to 400 nm.389

The resulting stop gap width clearly drops when detuning in either direction away from zero

detuning, however, in an asymmetric fashion. Stop gap widths are about three times higher for

detuning to the blue of the resonance, then for equal detuning to the red of the resonance. Such an

asymmetry could be expected, in the sense that even if one starts with a Lorentzian polarizability

α(ω) as in Eq. 1, the scattering response of a plasmon particle is asymmetric in frequency as a con-

sequence of radiation damping (Eq. (2)). This is highlighted by plotting (cf.Fig. 5) the scattering

cross section

σscatt =
8π

3
k4|α|2

for an archetypical Lorentzian scatterer alongside the data (taking typical Ohmic damping for sil-390

ver (γ = 0.05ω0) and a particle volume chosen to obtain a scattering cross section at 80% of the391

unitary limit (3/2πλ2)). The stop gap width correlates well with the scattering cross section which392

shows a similar asymmetry as the data. For reference, in blue the cross section from full-wave393

simulations for each particle size (Fig. 1b), taken at the stop gap center frequency, is reproduced.394

It should be noted that Fig. 5 reports no stop gap width for any sample at zero detuning, although395

near-zero detuning is achieved for 2r > 100 nm. As discussed below, for these large scatter-396

ing strengths, the band structure we measure can not be trivially traced to the original four-band397

crossing in a coupled-mode/slightly perturbed free-photon picture, hampering a stop gap width398

assignment.399

VIII. BAND STRUCTURE TOPOLOGY VERSUS DETUNING400

We now turn to discussing more detailed features of the measured dispersion relations beyond401

just stop gap width. Figure 6 shows three measured dispersion diagrams. Panel a, shows a disper-402

sion diagram taken from Ref.20, obtained on a sample that has the lasing condition well to the blue403

of the localized surface plasmon resonance (Rh6G sample, d = 380 nm, 55 nm radius particle).404

Panel c shows a dispersion diagram for the converse case, i.e., with the lasing condition well to405

the red of the plasmon resonance (case (e), Fig. 4). The panel in the middle, finally, corresponds406

to a case where the lasing condition is aligned to the plasmon resonance (Rh700 sample, particle407

diameter 129 nm). These three detuning cases correspond to the separation into blue detuning,408

zero detuning, and red detuning case that we also presented for our theory results in Fig. 2.409
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FIG. 5. (a) Relative stop gap width versus particle size. Red and blue points correspond to two distinct

sample series. Error bars in particle size are from SEM measurements. The drawn line corresponds to the

Lumerical-simulated extinction cross section. (b)Stop gap width versus normalized detuning between plas-

mon resonance and Bragg diffraction wavelength. Points in red and blue have been taken from Rh6G:Rh700

samples with large pitch (as in Fig. 4), while the black points at positive detuning are obtained using RH6G,

with 110 nm particles and pitches from 360 to 400 nm20. The red line represents the scattering cross section

expected in a dipole model, while in blue the cross section versus diameter from Lumerical calculations is

shown that is also plotted in (a).
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the plasmon resonance (panels a, c and b). These concern d = 380, 2r = 55 nm (panel (a)), d = 460, 2r =

129 nm (b), and (c) d = 460, 2r = 86 nm. For panel (a) we used Rh6G only, while the other panels used

the Rh6G:Rh700 FRET mixture. White arrows indicate the ω − k-point on which the system lases first.

We note the following progression in the data. First, when the Bragg condition is well to410

the red of the localized surface plasmon resonance (negative detuning, panel c), the lower and411

upper parabola have their minima coincident with the maximum and minimum of the anticrossing412

linear dispersion relations, quite similar to nearly-free-photon band structure predictions would413

yield36,49. Lasing in these samples always occurs on the upper band edge, consistent with the414

complex dispersion analysis in Figure 2. The fact that the parabola and the anticrossing lines415

share a common gap is consistent with the scalar coupled mode theory for dielectric DFB lasers416

(adapted to metal hole array plasmon lasers by van Exter et al.49 (Fig. 4b)) in the limit that417

coupling by G = 2π/d(0,±1) and (±1, 0) dominates, and (±1,±1) scattering is weak. For418

the opposite-detuning case, i.e., panel (a) in which the Bragg condition occurs to the blue of the419

particle resonance (positive detuning), again two split parabola, and two anticrossing linear bands420

are retrieved, now with the upper parabola consistently very broad. For these samples lasing421
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occurs on the lower stop gap edge instead of the upper stop gap edge, again commensurate with422

the complex-valued dispersion analysis reported in Figure 2. Finally, when the particle plasmon423

and lasing condition coincide, i.e. panel b in Figure 6 the band structure is markedly different.424

The minimum of the lower parabola is pushed below the frequency range of the measurement, and425

a set of additional features has appeared that can not be trivially traced to the original four-band426

crossing in a coupled-mode/slightly perturbed free-photon picture (for which reason, the sample427

in panel b does not appear as a datapoint in Fig. 5). Lasing occurs on both apparent band edges,428

with similar thresholds.429

IX. REAL SPACE COMSOL STUDY430

Complementary to a wave vector space study that identifies which dispersion branches have low431

loss, yet good outcoupling, one can also perform a real space analysis that targets to understand432

what distinguishes the modes with large and low loss. A likely explanation carries over from433

coupled mode theory and the field of photonic crystals, where it is well known that gap edge modes434

are standing waves concentrated at different locations in the unit cell. For dielectric photonic435

crystals the band with most energy density in the dielectric (air) corresponds to the the lower436

(upper) band edge, giving rise to the terminology of ”dielectric (air) band”. One can hypothesize437

that also in plasmonic crystals one band will reside at, and one band will reside away from the438

plasmon particles. The energetic ordering, as well as the Ohmic loss, of these two bands could439

then be expected to flip when the sign of the scattering potential, i.e., polarizability α flips, which440

occurs as one goes from negative to positive detuning. In turn this would explain that opposite441

sign of detuning also implies a swap in the band edge that lases.442

Since dipole models are not suited to obtain near fields, we consider a COMSOL 3D finite443

element simulation. As indices for the dielectric stack we take 1.46/1.65/1.0 - although the actual444

glass we use is not quartz but fused silica (n=1.52), and the SU8 index from ellipsometry is actually445

1.60, not the datasheet value of 1.65. The reason for this choice is that it provides a larger sep-446

aration between waveguide mode indices, and hence easier separation in the discussion, between447

waveguide modes, and plain diffraction into the glass. Fig. 7(a) shows calculated lattice extinction448

alongside the single particle resonance in panel (b). As particles we assume silver disks of height449

30 nm and diameter 100 nm. The single-particle extinction (Fig. 7b) shows a strong resonance450

at ω = 2.76 · 1015 s−1, equivalent to 680 nm light, comparable to the result in Fig. 3. Next, we451
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FIG. 7. The blue curve in the lower panel (b) shows the extinction cross section for a single silver disk with

a height of 30 nm and a diameter of 100 nm on a substrate with index n=1.46, embedded in a waveguide

with a refractive index of 1.65 and a thickness of 450 nm. Panel (a) shows transmission for an array of

these particles with a pitch of 500 nm (pink) and 370 nm (green). The pink and blue areas represent the

frequencies limited by ω = 2πcnmatd with nmat =1.65 and 1.46 for both pitches, that would correspond

to grazing angle grating coupling into solid SU8, or the glass. The dotted lines show the frequencies for

which the waveguide mode without particles has a TE and a TM mode, as indicated. We label the broad

and narrow dip that are associated to the stop gap edges as ω− and ω+ (near 2.4 resp. 3.25 · 1015 s−1 for

pitches of 500 nm resp. 370). Panel (c): Crosscuts in the xy plane, xz and yz plane through one unit cell of

in a particle array for frequencies ω− and ω+ indicated in panel (a), with m and 500 nm. Plotted is scattered

field Ex − Ex,in along the 1 V/m x-oriented incident field.

implemented Bloch-Floquet boundary conditions to obtain the diffractive properties upon plane452

wave driving incident from the glass side. We studied two pitches, i.e. 500 nm and 370 nm, to453

meet the 2nd order Bragg condition on either side of the resonance, and use slightly off-normal454
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excitation (0.5◦ along ky) to make sure that symmetry does not forbid coupling.455

Figure 7a shows the transmission in a small frequency range around the diffractive coupling456

condition for both pitches. The curves present the following three features. First, the generally457

high transmission is dominated by a relative broad (though still narrow compared to the plasmon458

resonance) asymmetric minimum that has the appearance of a Fano lineshape. Second, the spectra459

show two extremely narrow features. The frequency at which the two narrow features occur match460

very well with diffractive coupling to the TE and TM waveguide mode. We interpret the wide461

minimum, and the narrow TE feature as the relevant lower, and upper stop gap edge for the TE-462

like waveguide mode. This assignment is supported by examination of field cross cuts (see below).463

Note that for the large-pitch case d = 500 nm, the broad minimum occurs at a frequency below the464

narrow feature, while for the small-pitch case, the ordering is reversed. We examine the scattered465

fields (i.e., full field, minus the field that we calculate in absence of the particle) upon plane wave466

driving at the center frequencies of the broad and narrow minima. Figure 7c shows the scattered467

field componentEx that is along the incident polarization for both pitches, and for each pitch at the468

labelled lower and upper gap edge ω±. The vertical cuts show that the transverse field distributions469

is essentially the mode profile of a TE mode. At the frequency of the narrow feature (ω+ resp. ω−470

for the large resp small pitch case), the scattered field has a nodal plane at the particle, and resides471

mainly away from it. Conversely, at the broad minimum in transmission, the associated field472

plot shows strong excitation of the particle. The COMSOL simulation hence corroborates the473

interpretation that lasing selects the stop gap edge that corresponds to the Bloch mode that forms474

a standing wave with energy density predominantly away from the particle, as this is the lowest-475

loss mode that still couples out. As one goes through resonance, the stop gap edge to which this476

standing wave corresponds is reversed, as the real part of the polarizability flips sign.477

X. CONCLUSIONS AND OUTLOOK478

In summary, we have shown how the optical response of plasmonic scatterers affects the band479

diagram of a plasmon particle array embedded in a dye doped waveguide layer. By combining480

data for lasers with various particle sizes, pitches, and two gain media near 590 nm and FRET-481

based gain at 700 nm, we were able to systematically map the behavior of plasmon lattice lasers as482

function of the detuning between particle resonance and lasing condition as set by the lattice peri-483

odicity. A main conclusion is that the stop gap width in the band structure of the plasmon lattice484
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lasers is much larger than in dielectric distributed feedback lasers, and is essentially proportional485

to the particle scattering cross section. Commensurate with the complex lattice dispersion that we486

calculate from an electrodynamic coupled dipole model, the stop gap edge that gives rise to lasing487

is always the one closest to the particle resonance, and corresponds to the condition of a low loss488

Bloch mode that at the same time has nonzero outcoupling efficiency. While the strong scatter-489

ing by plasmon particles couples TE and TM mode, the outcoupled light is of TE nature. When490

plasmon and lattice resonance are aligned, the band structure is particularly far from a nearly-free491

photon approximation, which is qualitatively correct only for lasing far to the red of the plasmon492

resonance.493

We note that our work also provides pointers for further experiments and theory. Any theory494

must account at least for the scaling of stop gap with scattering strength, the qualitatively very495

different band structure at zero detuning, and for subtle features such as where the mode resides496

and what mode has least loss, depending on the choice of detuning. It is a surprisingly challenging497

problem to build a theory for this system. Coupled mode theory36,49 would treat the particles as498

a weak perturbation, and is essentially valid only for small dielectric perturbations. Numerically499

the difficulties in extending it to plasmon particles are clear from the fact that Fourier modal, i.e.,500

plane wave expansion, methods are very poorly convergent for plasmon particle gratings.20 Cou-501

pled dipole theory as presented here can treat complex-valued dispersion relations at very large502

scattering strength, yet only provides partial insight in the laser physics. A more refined treatment503

of near fields and of nonlinear dynamics of lasing above threshold is required to quantitatively ac-504

count for loss, local pump and Purcell enhancements, the overlap of modes with the gain medium505

and gain dynamics. Finite element treatment, finally is accurate for near field, can include gain29
506

and allows complicated unit cell geometries. However, although possible, this approach may be507

significantly more computationally demanding when extended to deal with complex-valued dis-508

persion relations of decaying modes. Experiments that could guide these theoretical efforts would509

for instance include studying variations in particle material, or using core-shell geometries, to in-510

dependently vary physical particle volume, loss and scattering cross sections. Also we envision511

that using gain media of different spatial distributions, be it arranged lithographically or by con-512

trolling the optical pump field50, and gain media of different quantum efficiency, will allow to513

unravel the role of near field enhancements. Finally we note that our considerations likely also514

carry over to lasing structures that use surface lattice resonances, but no waveguide17–19. In case of515

surface lattice resonances there is no waveguide, but lasing does occur at resonance crossings17–19.516
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According to Rodriguez et al. 51, extinction spectra of such systems also can show gaps, with a517

width that depends on the tuning of local plasmon resonance and diffraction condition. In our518

system, evidently lasing occurs on a hybrid plasmonic-photonic mode where the waveguide helps519

to optimize mode overlap with the scatterers, thereby aiding the opening of a stop gap that is wide.520
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Appendix A: 1D Green’s function530

First we define normalized longitudinal wavenumbers ζXi =
√
εri − ξ2X , with X = TE/TM

and subject to the radiation condition Im
{
ζXi
}
≥ 0. Then, the 1D Green’s function used in Eq.(5)

is given by

g(ω, z, z′) =
1

2

ZX
2

DX

(
eik

X
z |z−z′| +RX

1 e
ikXz (2h−(z+z′)) (A1)

+RX
3 e

ikXz (z+z′) +RX
1 R

X
3 e

ikXz (2h−|z−z′|)
)

where h is the SU8 layer thickness and kXz = k0ζ
X
2 , and531

RX
i =

ZX
i − ZX

2

ZX
i + ZX

2

, i = 1, 3

532

ZTM
i = η0

ζTM1

εri
, ZTE

i =
η0
ζTEi

i = 1, 2, 3,

and533

DX =
d

dξ
(1−RX

1 R
X
3 e

2ik0ζX2 h)

∣∣∣∣
ξX=kX/k0

.
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Appendix B: Ewald summation534

The convergence of the infinite summation in Eq. (3) can be significantly accelerated by using

the Ewald summation technique31–33,37–42. First, we write

C(ω, kx, ky) = 2ATE

(
S(kTE) +

Sxx(kTE)

k2TE

)
(B1)

− 2ATM
Sxx(kTM)

k2TM

with kTE = k0ξTE , and kTM = k0ξTM , and535

S(k) = lim
x′y′→0

∑′
H

(1)
0 (kRmn)eid(mkx+nky), (B2a)

536

Sxx(k) = ∂x′x′S(k) (B2b)

where Rmn =
√

(x′ −md)2 + (y′ − nd)2. The primed summation sign in Eq.(B2a) is used to537

exclude the (m,n) = (0, 0) term from the infinite two dimensional summation. The summation538

can also be written as539

S(k) = lim
x′y′→0

∑
H

(1)
0 (kRmn)eid(mkx+nky) −H(1)

0 (kρ′),

where ρ′ =
√
x′2 + y′2. The unprimed summation is used for infinite summation (m,n) ∈540

(−∞,∞) × (−∞,∞). Next we replace the Hankel function by one of its integral representa-541

tions542

H
(1)
0 (kRmn) = −2i

π

∫ ∞
0

du

u
e(k

2/4u2−R2
mnu

2).

Note that sinceR2
mn > 0, and assuming that k2 > 0, to formally guarantee convergence of the inte-543

gral representation in Eq.(B3) we have to require that u pass to infinity along the line argu = −π/4.544

However, once we use this representation and derive an alternative, rapidly converging representa-545

tion for the summation, we may apply Cauchy theorem and calculate the required integrals along546

a more convenient path.547

The semi-infinite integration path above is decomposed into two intervals, 0 → E, and E →548

∞, where E is an arbitrarily chosen constant picked as a trade off between fast convergence of S1549

and S2. We define550

S1 =
∑
−2i

π

∫ E

0

du

u
e(k

2/4u2−R2
mnu

2)eid(mkx+nky) (B3a)
551

S2 =
∑′ − 2i

π

∫ ∞
E

du

u
e(k

2/4u2−R2
mnu

2)eid(mkx+nky) (B3b)
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552

C =
2i

π

∫ E

0

du

u
e(k

2/4u2−ρ′2u2) (B3c)

such that S = S1 + S2 + C. Note that as long as E � k/2, the integration in the summands553

of S2 yields a Gaussian decay of the summands with respect to the sumation indexes hence the554

summation over this part of the integral convergence rapidly. Similarly, the integration required to555

calculate C converge rapidly. The only issue left is the slow convergence of S1 which is similar556

to the poor convergence of the original series. In this case, however, we are able to apply Poisson557

summation to accelerate the convergence. We obtain,558

S1 =
4i

d2

∑
p,q

ek
2
zpq/4E

2

k2zpq
(B4)

where kρpq = (kx, ky) − 2π/d(p, q), and k2zpq = k2 − kρpq · kρpq, p, q ∈ Z2 (Z denotes the559

set of integers). The convergence of the summation for S1 in its new representation is Gaussian,560

therefore, practically only a few terms are required. Finally, we have Sxx = S1xx + S2xx + Cxx561

where562

S1xx = −4i

d2

∑
p,q

ek
2
zpq/4E

2

k2zpq

(
kx −

2π

d
p

)2

(B5a)

S2xx =
∑′ 4i

π

∫ ∞
E

du(1− 2m2d2u2)u (B5b)

× e(k2/4u2−R2
mnu

2)eid(mkx+nky)

563

Cxx = −4i

π

∫ E

0

duue(k
2/4u2−ρ′2u2) (B5c)
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