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Abstract

Previous theoretical and experimental work has put forward 50-period semiconductor super-

lattices as fast, true random number generators at room temperature. Their randomness stems

from feedback between nonlinear electronic dynamics and stochastic processes that are intrinsic to

quantum transitions. This work theoretically demonstrates that shorter superlattices with higher

potential barriers contain fully chaotic dynamics over several intervals of the applied bias voltage

compared to the 50-periods device which presented a much weaker chaotic behavior. The chaos

arises from deterministic dynamics, hence it persists even in the absence of additional stochastic

processes. Moreover, the frequency of the chaotic current oscillations is higher for shorter su-

perlattices. These features should allow for faster and more robust generation of true random

numbers.
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I. INTRODUCTION

Fast random number generators (RNGs) are relied upon for many applications including,

inter alia, data encryption systems, stochastic modeling, and secure communication [1–3].

In many cases, the RNG is substituted by a numerical algorithm that produces a seem-

ingly unpredictable sequence of numbers when a short random ‘seed’ is entered as input [4].

While this approach is convenient and inexpensive, the resulting number sequences are only

pseudorandom, i.e. the algorithm will produce identical number sequences given identical

seeds. To eliminate this vulnerability, it is necessary to find fast and reliable physical sources

of entropy that produce true random number sequences. Recently, chaotic semiconductor

lasers [5–9] and superlattices [10] have been used for fast generation of truly random num-

bers at a rate of tens or hundreds of Gb/s. In both cases, quantum fluctuations are coupled

with chaotic dynamics to produce a macroscopic fluctuating signal that is detectable using

conventional electronics. However, while semiconductor lasers require a mixture of optical

and electronic components, semiconductor superlattices (SSLs) are entirely electronic sub-

micron devices that are more readily integrated into complex circuits, see Figure 1. Hence

SSLs could be vastly useful, as the security of digital computers and networks relies on fast

generation of truly random numbers.

Two different time scales are involved in the dynamics of SSLs. The inter-site tunneling

and inter-subband relaxation processes occur on much shorter timescales than the dielectric

relaxation processes [11, 12]. Therefore, the long timescale dynamics of semiconductor lasers

[9] and superlattices [13, 14] are typically modeled using semiclassical equations, while the

short timescale processes are treated stochastically. Chaotic dynamics via period-doubling

cascades have been theoretically predicted in optically-driven assymetric quantum well sys-

tems [15, 16] and in 100-period SSLs [17]. Until recently, experimental observation of chaos

in SSLs required ultralow temperatures [13]. Huang et al argued [18] that phonon-assisted

transport though the X-valley of AlAs allowed a thermal distribution of carriers to diffuse

through the SSL, eliminating self-sustained oscillations and spontaneous chaos at higher tem-

peratures. Therefore an Aluminum concentration of 45% was chosen for the GaAs/AlGaAs

SSL in order to maximize the lowest bandgap energy (making the X and Γ band gaps equal

to one another). They subsequently observed current self-oscillations and spontaneous chaos

in dc-biased 50-period SSLs at room temperature for the first time [18, 19]. Weak noise-
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FIG. 1: Simplified image of a semiconductor superlattice. A external voltage is applied

between the contacts at the top and bottom of the device, which consists of N periods of

GaAs/AlxGa1−xAs. The 7nm GaAs wells are divided into three zones to prevent doping

diffusion.

enhanced chaos has been found in simulations for 50-periods SSL [14], which opened the

way to new perspectives that could optimize the chaotic behavior in SSLs.

In this paper, we investigate the behavior of the sequential resonant tunneling (SRT)

model for shorter SSLs at room temperature. We consider two different barrier heights

corresponding to an Aluminum content of 45% (as in recent experiments [18, 19]) and a

different concentration of 70% to study the possible effect of increasing the barrier height

on the dynamical behavior. We observe a period doubling cascade to chaos on wide voltage

intervals for a 10-period SSL. Moreover, the chaotic self-oscillations occur at much higher

frequencies for these shorter superlattices, increasing the rate of random number generation.

The outline of the paper is as follows. In section II, we describe the SRT model of nonlinear

electronic transport in SSLs. The results of our numerical simulations are reported in section

III, and a discussion of our results is contained in section IV.

II. MODEL

Many phenomena are captured by means of a quasi-one-dimensional resonant sequential

tunneling model of nonlinear charge transport in SSLs [13, 20, 21]. Consider a weakly
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coupled superlattice having N identical periods of length l and total length L = Nl subject

to a dc bias voltage V . The evolution of Fi, the average electric field at the SSL period i,

and the total current density, J(t), is described by Ampere’s law

J(t) = ε
dFi
dt

+ Ji→i+1, (1)

and the voltage bias condition
N∑
i=1

Fi =
V

l
. (2)

Fluctuations of Fi away from its average value Favg = eV/L arise from the inter-site tunneling

current Ji→i+1, which appears in equation (1). A microscopic derivation of Ji→i+1 produces

the result [12, 20]

Ji→i+1 =
eni
l
v(f)(Fi)− J−i→i+1(Fi, ni+1, T ), (3)

in which ni is the electron sheet density at site i, −e < 0 is the electron charge and T is the

lattice temperature. Here the forward velocity, v(f)(Fi), is peaked at resonant values of Fi

for which one or more energy levels at site i are aligned with the levels at site i+ 1, and

J−i→i+1(Fi, ni+1, T ) =

em∗kBT

π~2l
v(f)(Fi) ln

[
1 + e

− eFil

kBT

(
e
π~2ni+1
m∗kBT − 1

)]
,

(4)

where the reference value of the effective electron mass in AlxGa1−xAs is m∗ = (0.063 +

0.083x)me, and kB is the Boltzmann constant. The ni are determined self-consistently from

the discrete Poisson equation,

ni = ND +
ε

e
(Fi − Fi−1), (5)

where ND is the doping sheet density and ε is the average permittivity. The field variables Fi

are constrained by boundary conditions at i = 0 and i = N that represent Ohmic contacts

with the electrical leads

J0→1 = σ0F0, JN→N+1 = σ0
nN
ND

FN , (6)

where σ0 is the contact conductivity. Shot and thermal noise can be added as indicated in

[14, 22].

Table I gives the numerical values of the parameters used in the simulations. The

GaAs/Al0.45Ga0.55As configuration corresponds with the configuration used in experiments
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[10, 18, 23]. The rest of the parameters are as follows: lb and lw, with l = lb + lw, are the

barrier and well lengths, respectively, and A = s2 is the transversal area of the superlattice.

The contact conductivity is a linear approximation of the behavior of J0→1, which depends

on the structure of the emitter; the value has been taken to reproduce the experimental

results with N = 50: σ0 = 0.783 A/Vm for Vbarr = 388 meV (x = 0.45) and σ0 = 0.06

A/Vm for Vbarr = 600 meV (x = 0.7), where Vbarr is the height of the barrier [14, 18].

III. RESULTS

We analyze the SRT model of 10-period GaAs/Al0.7Ga0.3As and GaAs/Al0.45Ga0.55As

SSLs with the material parameters indicated in table I. Equations (1)–(6) are evolved in

time for tf = 200 ns using the forward Euler method. We remove the transient behavior

due to the initial conditions by discarding first ti = 100 ns of evolution at each bias voltage.

Bifurcations are detected via the Poincaré map, which is depicted in Figures 3 and 4. First,

the time-evolution is projected onto a two-dimensional slice through phase space, in this

case, the F4-F6 plane was used. When F4(t) passes through its center value, and, in order

to sample the trajectory only once per cycle, Ḟ4(t
∗) < 0, the time t∗ and the values of F6(t

∗)

and Ḟ6(t
∗) are stored. These sets of values form PF6 and PḞ6.

The Poincaré map transforms the continuous time evolution in the 2N + 1-dimensional

phase space (electric fields, electron densities and total current density) into a discrete map

from a one-dimensional interval into itself [24]. Both, a stationary state and a periodic orbit

T (K) ND (cm−2) lb (nm) lw (nm) s (µm)

295 6× 1010 4 7 60

Vbarr (meV) E1 (meV) E2 (meV) E3 (meV)

600 53 207 440

388 45 173 346

TABLE I: (Top) The design parameters of the superlattice. (Bottom) Values of the

potential barrier and energy levels for GaAs/Al0.7Ga0.3As and GaAs/Al0.45Ga0.55As

superlattices, first and second row, respectively.
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Power Spectra and Bifurcation Diagram
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FIG. 2: Power spectrum and bifurcation diagram for a 10-period GaAs/Al0.45Ga0.55As

SSL, in a voltage region where chaotic behavior is present. (Top row) The power spectrum

of J(t) plotted against the bias voltage. (Bottom row) The bifurcation diagram, plotting

the Poincaré map against the bias voltage.

will appear as a fixed point of the Poincaré map. A period-doubling bifurcation is identified

when one-cycles transition to two-cycles. Chaotic regions are identified where a proliferation

of period-doubling bifurcations yields fractal structure in the bifurcation diagram.

We support our analysis of the Poincaré map by comparing our conclusions against the

power spectrum

P [J ](f) =

∣∣∣∣∫ tf

ti

dt e−i2πftJ(t)

∣∣∣∣2 , (7)

where f is the frequency. As in the Poincaré map, different spectra are associated with

different dynamical structures: (a) periodic orbits correspond to a series of peaks with widths

of the same order as the frequency bin size, falling at integer multiples of the fundamental

frequency, (b) period doubling bifurcations are recognized when the number of peaks in the

spectrum changes by a factor of two, and a new peak appears in the power spectrum at half

the fundamental frequency, (c) strange attractors have broadband spectra. These spectra

may contain both sharp and broad peaks.

Figure 2 shows a voltage region where deterministic chaotic behavior is present in the

simulations for the 10-period GaAs/Al0.45Ga0.55As SSL, see Table I. In contrast with the
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Power Spectra and Bifurcation Diagram
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FIG. 3: Power spectrum versus voltage and bifurcation diagrams for a 10-period

GaAs/Al0.7Ga0.3As SSL and different voltage regions. (Top row) Power spectrum of J(t)

versus voltage. (Bottom row) Bifurcation diagram of Poincaré map versus voltage. The

Hopf bifurcation from the steady state is shown in the first column. A period doubling

“bubble” is shown in the second column. A period-doubling cascade is shown in the third

column.

N = 50 case for the same aluminum content, there are observable windows of strong chaotic

behavior, whereas chaotic dynamics for N = 50 appeared within very narrow voltage win-

dows and were so weak that they became observable only by the addition of stochastic terms

to the evolution equations that enhanced chaos [14]. Moreover, the simulations show that

the lowest harmonic can reach frequencies up to 25 GHz, at least one order of magnitude

higher than those observed in the 50-period SSLs.

The bifurcation diagram for the 10-period GaAs/Al0.7Ga0.3As SSL, see Table I, is pre-

sented in Figure 3, and several phase portraits are presented in Figure 4. Voltage windows

where chaotic behavior is present are one order of magnitude wider than in the previous

case, Figure 2. Combining the bifurcation diagram, power spectra and phase portraits of

Figures 3 and 4, we characterize the dynamical instabilities of the SRT model for N = 10.

At low voltages, J(t) approaches a steady state. We observe the following bifurcations:
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a. Supercritical Hopf bifurcation. In the leftmost column of Figure 3, we observe a

transition from stationary state to periodic orbit. Subsequently, we observe a circle in the

phase portrait at the top row of Figure 4, and the power spectrum contains peaks falling at

integer multiples of a fundamental oscillation frequency.

b. Period doubling bifurcation. In the second column of Figure 3 and the second row of

Figure 4, we observe a transition from one-cycles to two-cycles in the Poincarè map, so that

a new peak in the power spectrum appears at half of the former fundamental frequency.

c. Period doubling cascade. The period doubling of the periodic orbit continues into a

period-doubling cascade, resulting in a strange attractor. In particular, we have determined

the first Feigenbaum constant with less than 1% error. The rightmost column of Figure 3

and the bottom three rows of Figure 4 illustrate the period-doubling cascade. Based upon

the emergence of a broad peak between the two strongest harmonics, we conclude that the

invariant manifold is a strange attractor.

IV. DISCUSSION

This work predicts that 10-period semiconductor superlattices (SSLs), in contrast with

the 50-period SSLs typically used in experiments, exhibit a more robust intrinsic determin-

istic chaotic behavior with faster self-sustained current oscillations. In the same direction,

to increase the voltage barrier height (through increasing the aluminum content) also en-

hances the chaotic behavior. The deterministic chaos found in simulations of the sequential

resonant tunneling (SRT) model is characterized as a Feigenbaum period doubling cascade

to chaos. These results open the possibility to create faster random number generators using

these shorter superlattices.

We associate the bifurcations described in Section III with several potential applications.

First, the Hopf bifurcation leads to nonlinear oscillations involving superharmonic frequen-

cies reaching several tens of GHz. Hence these SSLs could be used as solid-state sources

of electromagnetic radiation. Secondly, the half frequency found at the period doubling

“bubble,” see the middle column of Figure 3, could be used to compress information into a

desirable frequency range or to squeeze out of it undesirable noise [25].

The SRT model has proven to robustly describe the essential behavior of SSLs over a

wide parameter range, hence we put forward that the dynamical instabilities described in
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this work are the main mechanism triggering the experimentally observed chaos in SSLs. In

addition, it is important to note that intrinsic quantum entropy sources are not taken into

account in this work. In the real system, these quantum fluctuations are amplified by the

deterministic dynamics, enabling the construction of true RNG [6, 22].
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FIG. 4: Representative phase portraits for the 10-period GaAs/Al0.7Ga0.3As SSL. The first

column shows the average current J plotted against time t. The second column shows the

phase portrait F6(t) plotted against F4(t). The third column shows the Poincare map

PḞ6(t
∗) plotted against PF6(t

∗). The last column shows the power spectrum of J(t). A

periodic oscillation is shown in the first row. The period-doubling cascade to a chaotic

attractor is shown in the bottom four rows.
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