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We present a simple method that allows to calculate the electromagnetic response of non-
interacting electrons in strong magnetic field to arbitrary order in the gradients of external electric
and magnetic fields. We illustrate the method on both non-relativistic and massless Dirac electrons
filling N Landau levels. First, we derive an exact relation between the electromagnetic response of
the non-relativistic and Dirac electrons in the lowest Landau level. Next, we obtain a closed form
expression for the polarization operator in the large N (or weak magnetic field) limit. We explicitly
show that in the large N limit the random phase approximation (RPA) computation of the polar-
ization tensor agrees - in leading and sub-leading order in N - with a Fermi liquid computation
to all orders in the gradient expansion and for arbitrary value of the g-factor. Finally, we show
that in the large N limit the non-relativistic polarization tensor agrees with Dirac’s in the leading
and sub-leading orders in N, provided that Berry phase of the Dirac cone is taken into account via

replacement N — N + %

PACS numbers:

I. INTRODUCTION
A. Electrons in magnetic field

Two-dimensional non-interacting electrons subject to
the strong external magnetic field organize into N highly
degenerate Landau levels. Such many-body states are
gapped when the chemical potential lies anywhere be-
tween the Landau levels and exhibit the same qualita-
tive behavior when electrons have either Dirac or non-
relativistic nature. While qualitative features such as
quantized Hall conductance and absence of the ground
state degeneracy on a torus are identical, there is a quan-
titative difference in the local linear response functions.
Detailed investigation of these fine distinctions as well as
certain universalities in the behavior of both lowest Lan-
dau level and large N limit of the linear response func-
tions is the objective of the present paper. Additionally,
our results should be useful in the analysis of interacting
FQH states using the composite fermion' and boson? ap-
proaches.

We will study the electromagnetic response of Lan-
dau level electrons in great detail. To start we present
a straightforward method that allows to calculate linear
response functions in the form of the generating func-
tional for both relativistic and non-relativistic electrons
filling an arbitrary number of Landau levels. In the non-
relativistic case some of the results are available!3*, how-
ever we present a simpler method of derivation as well as
provide a number of new results. This method was first
used by one of us in Ref.[5], but only a few results were
presented. We will explain in detail how to calculate
the linear response to arbitrary order in the expansion

in momentum and frequency and give a compact expres-
sion for the polarization tensor in both non-relativistic
and Dirac cases. In addition to the general expressions
we present the leading order corrections in momentum
and frequency expansion for all linear response functions
in explicit form.

With the exact expressions at hand we will investigate
the linear response of the lowest Landau level (LLL) in
the limit when the mixing between the Landau levels is
neglected. It turns out that linear response of the Dirac
electrons can be extracted from the linear response of the
non-relativistic electrons via simple relation (110), which
is valid to all orders in the gradient expansion. We check
this relation via an explicit computation as well as using
the well-known relation between momentum-dependent
Hall conductivity and the static structure factor.

Next, we will meticulously investigate the validity of
the semiclassical approximation in the large N limit. Our
results on the large N limit are summarized in Fig 1. In
this limit the electrons form a Fermi sphere and experi-
ence a weak magnetic field. The linear response can be
calculated either using Landau’s Fermi liquid (FL) the-
ory or by directly taking the large IV limit of the exact
expressions. We will explain how to include a finite g-
factor g into the Fermi liquid theory and evaluate the
polarization tensor exactly. We will find that in the non-
relativistic case the Fermi liquid and direct large IV limit
agree in the leading and sub-leading order in N to all or-
ders in the gradient expansion and for arbitrary value of
the g-factor (provided the latter was correctly accounted
for in the FL theory, which we explain how to do). The
large N limit of polarization operator of Dirac electrons
agrees in leading and sub-leading order in N with the FL
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FIG. 1: In the large N limit electromagnetic linear response
of non-relativistic electrons agrees with the response of the
Fermi liquid to all orders in gradient expansion and arbitrary
g-factor. Electromagnetic response of Dirac electrons (in the
large N limit) can be extracted from either non-relativistic
or Fermi liquid result upon setting g = 0 and replacing
N — N + % The replacement is needed to account for
the contribution of the m Berry phase of the Dirac cone.

theory and non-relativistic results after the Berry phase
of the Dirac cone is taken into account for the value of
the g-factor g = 0 (this may come as a surprise since
Dirac electrons in vacuum correspond to g = 2). The FL
computation is done using the novel approach of Ref. [6]
where the Boltzmann equation is phrased in terms of the
(bosonic) fluctuations of the shape of the Fermi surface.
This formulation allows to effortlessly obtain the large N
polarization tensor to all orders in momentum and fre-
quency in a closed form. We also explain how to include
the effects of the short range interactions.

B. Generalities

Now we will introduce the main objects of interest,
mainly to fix the notations. Given an action Sy, ¥'; 4]
describing the (relativistic or non-relativistic, bosonic or
fermionic) charged matter fields v, coupled to external
electromagnetic field A, = A,, + A, we define the gen-
erating functional as follows

W[oA,] = —iln / DYt ST AL ()

where A, is the background value of the vector potential
chosen to fix the chemical potential Ay = p and back-
ground magnetic field €79;A; = B = £~2, where we have
chosen the natural units A = ¢ = e = 1. These units will
be used throughout the paper.

Generating functional is a compact way to encode the
multipoint correlation functions via

<H J“(arl-)> =11 755Ai(xi)W[5A#]. 2)

The correlation functions obtained this way are always
time-ordered.

In the present paper we will be interested in the linear
response functions, i.e. the two-point functions with per-
turbations of the external fields turned off. For example,
the polarization tensor encodes linear response of electric
current to the electric field and is given by

L B ) ) )
1 (o22) = (S s oA o

) 3)
Assuming that S[t,T; A,] describes a physical system
with a spectral gap and the perturbations 04, are weak
and slowly varying on the spatial scale of magnetic length
¢ and the time scale set by the gap, we can expand the
generating functional W[dA,] in powers of external fields
and in the gradients of external fields dA4,. If we also
assume translational invariance then the gradient expan-
sion can be converted into the expansion in momentum k
and frequency 2. To study the linear response functions
we need to keep only the terms quadratic in 64,,, but to
arbitrary order in momentum and frequency. The most
general expansion of this form is

oA = | G

+%6A#(k,Q)H“”(k,Q)cSAu(—k,—Q) ,(4)

where the matrix 11" (k, ) is known as the polarization
operator or polarization tensor. Each entry of this 3 x 3
matrix is an infinite double expansion in momentum and
frequency. We have also implicitly assumed in Eq.(4)
that the expectation value of the electric current van-
ishes in the unperturbed groundstate. Gauge invariance
implies a Ward identity

QI (k, Q) + kT (k, Q) = 0. (5)

It is easy to see that conductivity tensor is expressed in
terms of the polarization tensor as

7'k, 0) = - T (1, ). (6)
€2

The plan of the paper is as follows. We will calcu-
late the polarization tensor IT1*¥ (k, Q) for non-relativistic
electrons filling N Landau levels in Section II. The main
result of the Section II is the exact expression for the po-
larization tensor (64). In the Section III we will calculate
the polarization tensor for massless Dirac electrons filling
N Landau levels and compare it with the non-relativistic
one in the large N limit. In the Section IV we investigate
the electromagnetic response of the lowest Landau level
and find an exact relation between the linear response
functions for non-relativistic and Dirac electrons. In the
Section V we will obtain a closed form expression for the
large N polarization tensor for non-relativistic electrons
using the exact result (64) and using the FL theory. We



find that both approaches agree exactly and differ from
the Dirac electrons by the contribution of the Berry phase
of the Dirac cone. For reader’s convenience in every Sec-
tion we present an explicit form of the polarization ten-
sor in the leading and sub-leading orders in momentum
and frequency that can be understood and used without
reading the rest of the paper. Various Appendices are
devoted to (often tedious) technical details.

II. NON-RELATIVISTIC ELECTRONS

In this Section we will explain the method for calcula-
tion of the polarization operator for the non-relativistic
electrons filling N Landau levels.

A. Model

Our starting point is the system of two-dimensional
non-interacting non-relativistic fermions in external elec-
tromagnetic field described by a U(1) vector potential
A,. The action has a form

We assume that the fermions are spin polarized and, con-
sequently, 1 (z,t) is a complex Grassmann scalar. The
covariant derivative

Dy =0y — i(Au +0A,) (8)

includes both background vector potential and a weak
perturbation. We will omit the chemical potential from
the equations, but it will be implicitly assumed that the
first N Landau levels are completely filled in the ground
state and the chemical potential lies anywhere in the gap.

B. Computation of the Generating Functional

We will compute the generating functional as a gra-
dient expansions in the external fields. Throughout the
computation we will only keep the terms quadratic in
the external fields, but to arbitrary order in the gradi-
ents. This expansion is well-defined because there is a
cyclotron gap in the energy spectrum. The gradient ex-
pansion can be viewed as the expansion in the inverse
gap and magnetic length ¢ which is small compared to
any other spatial scale in the problem.

We start with rewriting the action as a differential op-
erator sandwiched between the fermionic fields

S = / dPadt $1G1p, (9)

where G~ is the differential operator obtained by inte-
grating by parts the derivatives acting on 9f. Since we

= =+ )

FIG. 2: The generating functional to quadratic order in ex-
ternal fields is given by the sum of three diagrams. The first
diagram, W™ s linear in the perturbations of electromag-
netic field and describes the constant background density of
electrons. The second diagram, W(2)7 contains the main con-
tribution to the generating functional, including the Chern-
Simons term. Finally, the third diagram, Wc(z), contains the
contact terms. Note, that the last diagram vanishes for the
Dirac electrons.

assume that the perturbations of external fields are small
we can write

G =G4V, (10)

where G|, 1is the “bare” Green’s function given by
Gy = ity — —|Dif?, (11)
2m

where Du =0y — iflu and V encodes the terms at least
linear in the perturbations of the external fields.

1 1
V =040+ 3 {641, 0)) — 5 -0ASAi. (12)

Since the functional integral is quadratic in the external
fields it can be formally written as a determinant of the
perturbed (differential) operator G=1. The generating
functional of (connected) correlations functions is

Wi [0A,] = L / DY D) e Snr[¥:04ul — L det[G™Y)
(2 (2
1 1 11

where in the last line we kept only the terms that con-
tribute to the linear response. We can also disregard the
(diverging) first term in the last line since it will not con-
tribute to the linear response because it does not depend
on the perturbations of the external fields by construc-
tion. To summarize, the object we are interested in is
given by

Wae = WD + W@ 4w 4 (14)

c,nr

where Wérl ) and Wéf) are the terms linear and quadratic

in external fields correspondingly, while Wc(zn)r contains
the so-called contact terms (See Fig. 2).

C. Fock Representation

The Hilbert space of a particle in magnetic field can be
mapped to the Hilbert space of two decoupled harmonic



oscillators. To make this manifest we will use Fock rep-
resentation for the basis states instead of the coordinate
representation. The advantage of this approach is that
we do not need to fix the gauge, thus our results will
be manifestly gauge invariant. We will work in complex
coordinates z = x + iy.

Define the creation and annihilation operators

_ i _
a= {D; = —0(D1+1iDs), 15
\/5 \/5 ( 1 2) ( )
t— ' yp, = Dy —iD 16
a' = L, = 7 .
7 7 (D1 2) (16)
The inverse relations are
_ 1 _ 1
_ t -
,=—1—a', D;=—i—a 17
N7, NG a7
It can be easily verified that
[a,a']=1. (18)

In terms of these operators the inverse Green’s function
takes form

1
Gal = ’Lhao — We (CLTCL + §>

= 10y — Hy, (19)
where Hy = w, (aTa + %) is the Hamiltonian for the par-
ticle in magnetic field.

We also define one more oscillator via

i

b =—at =2 b=-—a—- = 20

NGT] NGT] (20)

It can be verified that [b,b7] = 1 and all a’s commute
with all b’s.

Operators a', bl generate the entire Hilbert space of
the single particle problem. From this point of view the
coordinates themselves must be understood as operators
acting on the Hilbert space according to

2= V200" +a), z=+20"+b). (21)
The basis in the Hilbert space is given by
CLT n bT m
mm) =) o m) = X Oy 00 (2)

~Val Vil

The a-operators induce the transitions between the Lan-
dau levels, whereas b-operators generate the states of dif-
ferent angular momentum within each Landau level since

The bare Green’s function is then given by
ds i [nm) (nm|
S B el TN 24
G /%;e e T CT)

where

(25)

1
E, = (n+ 5) We

is the spectrum of the unperturbed Hamiltonian Hy.
It is easy to check that

GGy = [iao—Ho} Go = 8(t)-_ [nm)(nm| = 1. (26)

The trace of a local operator O over the Hilbert space
and time is defined as follows

Tr(O)EZ(nlt|@|nlt>:/dtZ(nl|O(t)|nl>. (27)
n,l

n,l,t

D. Setting up the “Feynman rules”

In this Section we will derive the differential operators
that will appear in the vertices of the diagrams in Fig. 2.

First, we expand the classical action to the second or-
der in external electromagnetic field

Spr =S + S + 53 (28)
The unperturbed action is given by
1
SO — /d%dt Pt [i@o — W, (aTa + 5)] 0
= /d%;dt G, 'w. (29)

The part of the action linear in external fields is given by
1
/ A xdt bt [MG -

S
nr 2v/2mt
= /d%dt PivWy,

({a',64:} + {a,64.}) ¥

where {a,dA.} is the anticommutator (recall that a is a
differential operator that we understand as acting to the
right).

The part of the action quadratic in external fields is
given by

1
52 — _/d%dt Pl {2—|5A|2} )= /d%dt IV @y
m
(31)
The full “vertex operator” consists of the terms linear
and quadratic in external fields

Ve, t) =V (z,t) + VO (x,t). (32)

Using (21) we interpret V' as an operator on the Fock
space.
We re-write all the vertices in Fourier space and intro-

duce a vector Vﬂl) (k, Q) according to

VO = Y1 (k, )64, (k, Q) (33)

(30)



which is always possible because V(1) is linear in the ex-
ternal fields by definition. Consider the terms in V' linear
in, say, 0A;

V(z, t)‘ —— {af,6A.). (34)

sA. f 1

In momentum space this takes form

1

V(k,Q ‘ — e gt oRXVGA (K, Q). (35

G| = e A ). ()
Then, using (21)

P P L A L L L . (36)

where we introduced the complex momentum k = k; +
iks. Finally, using that a’s and b’s commute with each
other we get an expression for

VI (1, 2) = s e Vile B0 fat o el e

2v/2m/l
(37)

Expressions for the other vertices can be derived in the
same way

1 0t —ELp be _ kLot kL
Vé)*e the VzlevE VoA e\ﬁa7 (38)
—1 _ _kLp ELpt _ kLt EL
VZE) the \/— vz {aT,e Noia 6\/7(1}(39)

2\/_m€

Notice that part of the vertices that depends on both time
and b’s has completely factorized and is the same for all
vertices. We will be able to use this fact to integrate
over time and to trace over the Fock space generated
by bt before tracing over the Fock space generated by
a’. Tt is the trace over a where all of the complexity
is concentrated. For this reason it will be convenient to
introduce a separate notation for the part of the “vertex
operators” that acts only in the Fock space generated by
a’. Thus we define

Vl(tl) = e~ VEY VR Vi (40)
where
Vo = e_\k/_%afe%_ga, (41)
~ 1 kLt EL,
V: = —2\/§m£{a,e 2% evaty, (42)
1 ETIPN B T
L = —2\/§m£{a, 2% eva®} (43)

Te GoV VGV = 3 (1| GoV I GoV Vi)

n,l,t

d*kd)

k)|n) + (0 [V (k) n) (| V" (=

E. Generating Functional to the Second Order

In this Section we will perform an exact computation
of the entire quadratic generating functional to all or-
ders in the gradient expansion. Before diving into details
we briefly pause to mention a few relations that will be
heavily used in the sequel

b, (1)) = f/(b1), (44)
e L) = F(bT + Q). (45)

Using these relations and elementary properties of the os-
cillator algebra we can evaluate the following expectation
values

_ kLt Ee, n (kN ke|?
(nle= %" By = ﬁ(ﬁ) L (' e )(46)

for m > n, and

(n|le™ V5 5% m) = @(‘Tkjy— Ln=m ('k§|2>(47)

for m < n. Similar equations can be found in [7].

There will be two major contributions to the gener-
ating functional in quadratic order. One contribution
comes from the contact terms. These are obtained by
plugging V® into

—iTrGoV . (48)

These contributions are always evaluated at zero momen-
tum and zero frequency. In fact, the contact terms can
be restored simply via analyzing the Ward identities for
electric charge conservation. We will denote the contri-
bution of the contact terms to the polarization operator

g
via L7, .

The main contribution comes from
%Tr GoV DGV ™. (49)

First, we will trace over the Fock space generated by
b,bt, then over frequency and in the end we will be left
with an irreducible expression for the trace over the Fock
space generated by a, a’. The details of the steps outlined
above can be found in the Appendix B.

We find

“ur) et
n'<N,n>N

g~ (ol )l o T
E,-E,—-Q

D) 5 A, (k)5 A, (—k). (50)



In the remainder of the Section we will simplify this expression.
We introduce the following notation

Lo (k,Q) = (n|VV (k) |n') (51)

then (using the dimensionless frequency w = Q/w.)

) 1 2 e (k)rv, (=k)+Tv (k)T (—k
W) = - Lot 5 ThnBl (D) + Ty (D0, (h)

(4 w n—n'—w

+ H’C“flr. (52)
n’<N,n>N

This is the main result of the Section. In the following we will show that all of the components of the polarization

tensor can be reconstructed from a single generating function.
[

F. The Generating Function We will introduce a trick that will allow to express all of
the components of the polarization operator in terms of
While (52) is indeed the final expression that cannot  derivatives of a single function.
be reduced further, it is not convenient to work with
since one has to use complicated expressions for TV . We define the generating function G(k, k’; N)

re . (k)ro, (k’) ro (kHro, (k)
k: k/' N — nn nmn nn nmn
Gk, k5 N) Z ( n—n'—w n—n'+w ) (53)
n>N,n'<N
N (kR (R (ke K02
2 nt\n—-n-w n-n4+w/ " 2 2
n>N,n' <N
[
First, we notice (with the help of (46)) that follows
PO(k) = 1 (61)
2 nr I
m = 2= Gk, —k; N) . (55)

In Palk) = ~3 <‘¥3’“+%k> -

other components of IT#Y can be expressed as derivatives

of G(k,k'; N) with respect to momenta. To see this we 5% (1) — 1 2\/_ 1 k
use the identities Prx(k) = 2\/_€m k— ﬁ : (63)
e—ka' gkagt _ (-0 + ]’{)e—ka*eIQa 7 (56) Then an arbitrary element of the polarization operator
. . is given b
aekaleka — (0 — k)e_k“Tek“. (57) & Y m
I3 (w, k) = —e” 2~ lim P (k JPYA(K)G (k, ks N)+IIEY
These identities allow us to re-write the vertex insertions am o=k (64)

(41)-(43) in terms of derivatives with respect to momen-

This expression is the one we will use for practical com-
tum as follows

putations and is the first main result of the present
manuscript.

(58) The contact terms are obtained from Tr GoV (). The
only contact term is the well-known diamagnetic term

~ \/— ket ke,
Vi(k) = 2\/—6 ( W O + 2k e V2" evi'(59)  given by
V2

w A%k

B 22 ¢ ket Ee W = e GyV® = N=< / — AL (K)SAs(—Fk).
V.(k) = - vz eva® (60 enr 4 2m)2
(k) Q\Nm([k 2)6 ev2".(60) (2m)

This term is evaluated at zero frequency w = 0. The
contribution to momentum space polarization tensor is

s\w

Vo(k) =

Next we introduce a separate notation for the differen-
_ kL ot kL _
tial operators acting on e~ v2“ evZ* in Eqs.(58)-(60) as 55 = N 5z2' (65)



It can be checked explicitly that this term restores the
Ward identity (5). Direct application of Eqgs. (64)-(65) to
N filled Landau levels allows us to write the generating
functional in the leading orders in the gradient expansion

N 9
WA, =+ / d2xdt [AdA (66)
1 =9 N_ 5, 3N, e
BB — 0B — TS B(0.0E) + -] (67)

where dE; and 6B are made from the perturbations of
the electromagnetic field dA4,. We have also absorbed
the linear term pdAg into the Chern-Simons term by in-
cluding the background f_lu. Higher order terms can also
be easily obtained from (64). Finally, note that |§E|? and
B? terms do not combine into § F*¥§F),,, due to apparent
absence of Lorentz invariance. We have also checked that
Ward Identities of the Galilean symmetry studied in Ref.
[8] are satisfied.

G. Including the g-factor

For the future applications we also need to include the
effects of finite g-factor of the electron, g, by adding an
extra “Zeeman” term to the matter action

Surlwr ) = £ [ Buty. (68)

This results in the redefinition of the number current
i i g ij
I g) = ' (0) + - 0p (69)

as well as the vertices

Prlkig) = —ﬁ( 2{6;#(1——)% )(70)
Pik;g) = 2\/1€m (2\[6,@ (1-%) %k) (71)

Note that the generating functional for finite g can be
expressed in terms of the generating functional at g =0
as follows

Wi [0 40, 0As; 8] = Wi [MG T %53, SAiig = 0}

(72)
In particular, Eq.(72) implies the following relations be-
tween the components of the polarization tensor

M0(k, Qg) = T1%(k, 2;0) (73)
M (k Qig) = I +i-cTk Ik Q:0)  (74)
m
M (k,Qg) = I%(k,Q;0)
. g 157704 -0) — a0 :
+Z4mkl (6 Hnr(kvglo) € Hnr(k’Q7O))

+ (|k[*67 — k'&7) 100 (k, €;0) . (75)

g
16m?2

The g-factor will be used in Section IV to take the
LLL projection and as an extra control parameter in Sec-
tion V where we will compare the large N limit of the
non-relativistic polarization operator with a semiclassical
computation.

III. DIRAC ELECTRONS
A. Model and the “Feynman rules”

In this Section we will calculate the polarization tensor
for Dirac®® fermions in strong magnetic field, filling N
Landau levels. The action is given by

Sp = / PrT P (76)

where U is a two-component spinor, ¥ = Wi~0 and
D = ~9Dy + vpy'D;, where the covariant derivative
D,, is given by (8) and includes both constant magnetic
field and its perturbations, vp is the Fermi velocity. To
emphasize Lorentz invariance we will use the notation
d3x = dtd*z.

The Hamiltonian is

H = —i’l}F’}/O’yiDi — AQ, (77)

where vp is the Fermi velocity. We choose the y-matrices
as follows

’YO = 035 71 = i027 72 = _iala (78)

where ¢! are the Pauli’s matrices.

As in the non-relativistic case the Hilbert space maps
on two copies of the Fock space generated by a' and bf
defined in (15)-(21). The unperturbed Hamiltonian can
be explicitly written as

—pr/ﬁ(ﬂ) , (79)

Hy = TH
—vpV2Ba —u

where 4 is the chemical potential. There are three types
of eigenstates of Hy
|0, m)

,O ) ’ EOD + H = 07
. . N1 [, m)
(ii) positive energy, ’\I/nm> =5 (_ In — 1,m>) )
EDY + = +vpV2Bn.
. SN 1 |n, m)
(iii) negative energy, }\I/nm> = <+ In — 17m>> )

EP= 4+ = —vpV2Bn.
We introduce a uniform notation for all of the eigen-
states as follows

(i) zero energy, |¥g ) =

_ [In],m) _
|¥n,m) = norm(n) (—sgn(n) I(In] — 1),m>) = [¥n) @ fm) ,

EP = sgn(n)op/2BJn| - u, (0)



where it is understood that |—1,m) = 0 and norm(n) =
1/4/2 for |n| > 0 and norm(0) = 1. With this notation at
hand n € Z, m € Z4. The unperturbed Green’s function
is
aQ [Wn,m) (P m]
Go(t) = R =it ) ) )
o(?) /27‘1’6 = QO — ED +ie sgn(EPD)

(81)

The massless Dirac action is easily decomposed into
the terms free of and linear in external electromagnetic
field perturbations (about the constant magnetic field
and chemical potential),

Sp =S + S, (82)

where

; vV2Bal
Sg)):/d%cklﬁ i0o + pt vF 2Ba v,
vpV2Ba 10y + p

(1) 3 + 6140 ’UF5AZ
s _/da:\IJ <vF5Az ) v (83)

The first term gives the bare propagator,

S = / Pty w, (84)
that satisfies
Go | Wnm) = (24— E)) W m) (85)
and
Gy'Go=6(t) Y [Wi) (Ui =1, (86)

The second term gives the vertex in position space

§Ao(t,z) wpdA.(t,x
Vi(t,z) = (waﬁ(z(t,;) ng(t(, z) )) '

Note that the vertices have no explicit coordinate depen-
dence or derivatives, and it simply remains to Fourier
transform them, using (21) and (36).

Following the Section II, we wish to evaluate
Tr GoVGoV to derive the generating functional. In this
case there are no contact terms because Dirac Hamilto-
nian (and the action) is linear in external fields. Using
the results of Appendices B and C we can take the trace
over the Fock space generated by bf and over time

TrGoVGoV = /dtZ(\Ilmm(tﬂGOVGOV|\Ifn,m(t)>

(87)

C 1 [ddQ @k e
4 / 2 27 (2m)2
‘3 Vi (k, Q) Vin(—k, —Q)
OV +Q— ED +iesgn(EP) ' — ED + iesgn(ELD)’

nn’
(88)
in which the vertex operator in the momentum space is
defined as

5Ao(—k,—Q) vpdA.(—k, —Q))
5Ao(—k, —Q)

Vnn/ (k, Q) - <\I]n| (’UF(SAZ(_k7 —Q)
ktal  Ela

xe  VZe V2 |U,.).
(89)

The ie prescription is crucial in evaluating the fre-
quency integral

/dQ/ 1 1
2r U 4+ Q— EP +ie sgn(EP) QO — EL + ie sgn(ED)

g » EP <0, ED>0
0 , else

The polarization tensor IT) (2, k) is given by

_1kel?

I (k) = — =555 n/gNZ,M (F%%(E)E%nf(gk)
where
T (F) = (U, Phe Fe Y |0,)  (92)
and

1

'P%) = Vpo -, 7)12) == ’UFU2. (93)

Using (46) we evaluate the vertices I'}, (k). The
expressions turn out to be quite complicated and so we
list them in the Appendix D.

B. Dirac Polarization Tensor

In this Section, we write out explicit expressions for
the Landau level polarization tensor for Dirac fermion in
the leading order in momentum and frequency. While
Eq.(91) looks similar to the corresponding Eq.(52) for
the non-relativistic fermions we want to emphasize that
there is a difficulty in evaluating the summation, even
when we limit ourselves to some finite order in momen-
tum and frequency. The reason is that every component
of the polarization tensor, contains the sum over n’ (i.e.
the sum over the Dirac sea) from —oo to N, where N is
the number of filled Landau levels. We remind the reader
that in the non-relativistic case this sum consisted of a
finite number of terms (because the parabolic dispersion
relation has a bottom, see Fig. 4) in every order in mo-
mentum and frequency. In the present case the the sum
has infinite number of terms, however, it is convergent
and does not need to be regularized. To simplify the ex-
pressions we fix a coordinate frame in which k = (&, 0).
Leaving the details to the Appendix E we present the
leading order terms below



M3 (Q,k) = QNH/Q iQ(ky 5)26N2+iN+1 QB%%JF (04)
o®(Q,k) = — 2\[va ( ;,N+1> (95)
(k) = — 2\/—va ( N+1) (96)
n%2(Q,k) = — Q;iw < 5 N+1) kff”}FC(_%,NH)JF..., (97)

where ((s,n) is the Hurwitz (-function?®. We stress that each component of the polarization tensor is finite without
any need for regularization. The use of (-function is a convenient choice that allows to evaluate the sums analytically.
In the coordinate space the generating functional is given by

N ES
sz/d%[ +2AdA— 3t
4m 4\/§7T’I}F

— < (—%,N—F 1) |0E|? +

3[’01:‘
8\/§7r

6(N+3)*—3
8m

¢ (—%,N+ 1) 6B — (2
(98)

Eq.(98) is valid in arbitrary coordinate frame. Eq. (98) the main result of the present Section. Note that despite the
Lorentz invariance of the action (76) the generating functional is not Lorentz invariant. This happens because the
the Lorentz invariance is broken by the background magnetic field, which is held at a fixed value.

[

We can subject the above results to several checks.

First, we extract the Hall conductivity via*!
0
k)= —— k,Q
70,1 = 55 Q)<J1< Q) (99)

Second, define the finite frequency and momentum cor-
rections to the Hall conductivity via

H(Q, k) = of(0) + oL |kl)? + 0. Q% + (100)

According to the Ref. 9 there is a relations between Q2
and |k/|? coefficients of finite frequency and momentum
Hall conductivity given by

Sr?
20 402, = —
k FOQ e

where § = N(N + 1) is the relativistic version of the
Shift'® of the integer quantum Hall state of Dirac elec-
trons at filling fraction v = N. We have checked explic-
itly that Eq. (101) holds.

Next, we compare the polarization tensors for the
Dirac and non-relativistic electrons in the large N limit.
Using the results of Section II we have in the non-
relativistic case

(101)

IM2(Q, k) _m— — Qk2€23N + Q3£2N— +-
7T1)F
(102)
€N3/2
(2, k) = k%m +o (103)
3/2
k) = R (104)
(a s
3/2 3/2
22 (0, k) = 02~ 2op N (105)

’UF\/§7T_ ! 2\/§7r T

where w,. can be written in terms of Fermi velocity vg
and Fermi momentum kg as follows

_wpVB
F V2N’

where we used the relation between filling fraction and
Fermi momentum

We =

(106)

3w

p__ ki

N=_P _ Tk
B/2r 2B

(107)

where p is the non-relativistic electron density.
Using the asymptotic formula for the (-function at

large N
1 2 1\%?
S N+1)~-2(N+-= 1
¢(~gv+1) -2 (vg) (108)

we find that the non-relativistic and Dirac polarization
tensors agree in leading and sub-leading order in N, pro-
vided we replace N — N + % The latter replacement
comes up due to the contribution of the Berry phase in
the Dirac’s case. We stress that the equivalence holds
when the g-factor of the non-relativistic electrons van-
ishes and does not equal to 2 as one may naively expect.

The terms that are sub-sub-leading order in N do not
agree, which can be shown by an explicit calculation.
The agreement of the leading and sub-leading orders is
not surprising, since in large N limit, which is the case of
high density and small applied magnetic field, the semi-
classical approximation applies equally well to both sys-
tems, however Dirac theory has an extra Berry phase
contribution. We will study the large N limit in more
detail in the Section V.
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FIG. 3: The linear response of the LLL is universal. The
generating functionals of non-relativistic and Dirac (upon dis-
carding divergent terms) electrons differ from each other by
a factor of % to all orders in the gradient expansion.

IV. UNIVERSALITY OF THE PROJECTED
LOWEST LANDAU LEVEL

In this Section we will show that the exact electro-
magnetic linear response functions of the lowest Landau
level of non-relativistic and Dirac electrons agree to all
orders in the gradient expansion, in the limit, where the
transitions to higher Landau levels are neglected. In the
non-relativistic case this limit is accomplished by taking
m — 0, keeping magnetic field fixed. Generally, this limit
is not well-defined since the exact degeneracy of the LLL
is split in inhomogeneous magnetic field, however when
g = 2 the LLL is exactly degenerate for any smooth,
inhomogeneous background of magnetic field. In the rel-
ativistic case this limit is taken via sending vp — oo.
Both limits send the spectral gap to infinity supressing
the contributions of the higher Landau levels. Note that
LLL means N = 1 for the non-relativistic case and N = 0
for Dirac.

It was demonstrated in Ref.[11] that the non-
relativistic action (7) reduces to (76) in the limit m — 0,
g = 2 and provided that transitions across the gap are ne-
glected. This argument was used to deduce the following
relationship between the generating functionals

/ AdA .

This relation holds only in the leading order in the gra-
dient expansion. We will show that there is an exact
version of this relation which reads

Winl0A,] — S [64,] =

W [0A,] = Wrl5A,] (109)

WpldA,] = Wie[6A,] .

(110)
Eq. (110) can be understood as follows. Completely
filled 0-th Landau level contributes W,,,[0A,,] to the lin-
ear response, however the filled negative energy bands
contribute total of —5W,,.[0A,], which leads to exact
relation (115). To prove (110) we first turn to the non-
relativistic generating functional. In the leading order we
have

Woe[54,] = — / d2adt [AdA
™
1 - 2 — 3
+ 6B — Z—B5B% — 2B 25p(0,6E;) + ... | (111)
We 2m
In the limit m — 0,g = 2 we find
W04, /AdA— —(*6B(0;0E;) +... . (112)
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In fact, by dimensional analysis and the regularity of
the massless limit only the terms linear in the electric
field survive??. These terms contribute to the (momen-
tum dependent) Hall conductivity, which can be calcu-
lated exactly at zero frequency'?

or 1 1
OH (k) = % |I€€|28(k) )

(113)

ke .
where s(k) =1 — e~ is the static structure factor!3

Eq.(113) agrees with the results produced from (64) upon
setting the frequency w = 0.

The Dirac electrons are more tricky since in addition to
the contribution of the LLL there are also, in principle,
contributions from the transitions across the Dirac sea
as illustrated on Fig. 4. We have checked that these
transitions sum up to zero in |kf|°, |k¢|?, |k€|* and |k£|S
orders of the momentum expansion. If we assume that
these transitions do not contribute to all orders in the
gradient expansion then the Hall conductivity is given
by (using (91)-(92))

‘ke‘z 9—n-— 1 (1—6_%)
D e 2n—2
k) = k =
(k) 27 ngl n! Ik 4 |kL)?

(114)

which leads to the exact relationship

1 nr

oB (k) = 5t (k) (15)

which is equivalent to (110), provided we neglect the LL
mixing (that is take g = 2,m — 0 in the r.h.s. and
vp — oo in the Lh.s.).

There is, however, a subtlety as we have not explained
how to take the infinite gap limit of the Dirac generat-
ing functional (98). Since the energy levels are given by
E, = +vpV2Bn we should take the limit vp — oo which
removes all of the energy levels except Ep. In this limit
the term quadratic in the electric field indeed vanishes
and the term linear in the electric field survives, how-
ever the term quadratic in magnetic field diverges lin-
early with vp. In the non-relativistic case this term was
removed by an appropriate choice of the g-factor g = 2,
but in the Dirac case there is no such mechanism. Thus,
in order to ensure the regularity of the vy — oo limit we
must subtract this term “by hand”. The regular part of
the generating functional for Dirac electrons then satis-
fies (110).

V. UNIVERSALITY OF THE LARGE N LIMIT

In this Section, we calculate the polarization tensor in
the large N limit and then re-derive it using the semiclas-
sical approximation. The result of the semiclassical cal-
culation agrees with previous work, but we will present
a simpler method of calculation. Furthermore, we show
that in the large NNV limit, the result of the RPA calcula-
tion agrees with the Fermi liquid theory!® 17,
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FIG. 4: Left, Spectrum of Dirac operator in magnetic field. Dashed lines illustrate the transitions “across the Fermi sea”, while
solid lines illustrate the transitions between LLL and the excited levels. Total contribution to the linear response of the LLL of
Dirac electrons from the transitions “across the Fermi sea” adds up precisely to 0, leading to an exact relation (110). Right,
Spectrum of non-relativistic electrons in magnetic field. Transitions that contribute to the electromagnetic response of the LLL
are qualitatively the same is in the Dirac case. The presence of the filled Dirac sea results in the overall factor of 1/2 in the

Hall conductivity of Dirac electrons.

A. Large N Limit of RPA

Working at large filling factors N means that we con-
sider a regime in which the density of electrons is much
bigger than the external magnetic field

b
B/2w

> 1. (116)

Non-interacting electrons in a weak magnetic field form
a Fermi sphere. Furthermore, large filling also implies
krl > 1. Therefore the gradient expansion in k is valid
in the range of momenta that satisfy k¢v/N ~ 1, which
is the right regime for Landau’s Fermi liquid theory.
First, we will explicitly take the large N limit of the
RPA result (64). We will use the asymptotic form of

ga.b k k/

UK P4k ((kly)n
e 4 e —
n—w

(kED)™ k2 k'R0
+n+—w)Jn<2 NEE >Jn(2 NEE >

Laguerre polynomial (valid in the leading order in N)

No/2 s
N L) ~ e

Jo(2VNz). (117)

In the expression (64) only the terms for n = n’ con-
tribute to the final result. This remains true for any N.
Thus in the following we will use approximation

n'l 1

—_— 118
n!l ~ Nn—n'’ (118)

that is valid for n ~n’ ~ N.
The generating function G**(k, k',
limit takes form

N) in the large N

in

n=1

where w is the dimensionless frequency.

The asymptotic form of generating
G*(k,k',N) agrees with the exact generating func-
tion G(k, k', N) up to sub-leading order in N, which can
be checked order by order in the momentum expansion.
We choose a frame where k = (k1,0), in this case
k =k = k;. It will be convenient to use the rescaled
momentum ¢ = ki /2N = kikpl?.

Finally, using Eq.(119) together with (64), we obtain

_ L 119
(kk)n/2(k/k/)n/2 ’ ( )
[
the polarization tensor for any g-factor
function = s 4 2
11 _ P W [Jn(9)]
I (¢q,w) = m + nZl 27N (w? — n2)7 (120)
—  Nn? Wc In— 1( )_Jn+1(Q)]2
H22 _ _ 7 _
> n? Weq [Jnfl(Q) = JnJrl(q)] Jn(Q)
& Z 4m(w? — n?)
n=1
ey bl o)
32N7(w? —n?)’
12(g, Z iNnwwedn(@)q [Jn-1(q) — Tns1(9)]

— m(w? —n?)



Note that using Eqs.(73)-(75) one can restore all of the
components of the polarization tensor at vanishing g-
factor.

Remarkably, the infinite sums for each component of
the non-relativistic polarization tensor can be evaluated
in a closed form. The details of the calculation are pre-
sented in the Appendix F. The results are written for
the conductivity tensor (6)

ll(q,w) _ g (_;‘)_2 + WW2°2]w(q J—w(q)> , (123)

(-H

iN

0**(q,w) =

q_2 q2 sin(mw
FJH;H 7;2 - ) * 8s1n (w) aq [ (q)J -0 (q)]
_GZgﬂqvw (1 sm(m) Jw(q)J-w(q)) (124)
M) = ;Jsm(l w) dq : 7 T (@7 ()
+5;£7T <1 s1n(7rw) (@) - (g )) : (125)

Eqs.(123) - (125) are the main result of this Section. Next
we will compare these results to a semiclassical compu-
tation.

B. Semiclassical Computation

1.  Review of the Fermi liquid theory with a g-factor

In this Section, we review the derivation of Boltz-
mann’s equation mostly to fix the notation. The
derivation follows closely to the bosonization of Fermi
liquid*® 21, We assume a system of two dimensional non-
interacting spinless fermions with Fermi momentum kg
and mass m in magnetic field B(x,t) = B + b(x,t) and
clectric field E(xz,t). We will assume that b(z,t) and
E(z,t) are weak and slowly varying. We denote the dis-
tribution function as f(K,x,t). The collective modes are
described by the perturbation of distribution function

fK,x,t) = fO(K) +6f(K,x,1).

The perturbations of the distribution function caused by
weak fields are also assumed to be weak. Where the
unperturbed distribution function is

FU(K) = 6(kr - K]),

where O(z) is the step function. Employing the colli-
sionless limit of the Boltzmann equation?? 24, we obtain

the time evolution equation for the distribution function
F(K,x,t).

(126)

(127)

x,t)) - Vi f(K,x,1t)

207

12

FIG. 5: Fluctuating Fermi surface. The function wu(z,6,t)
describes the fluctuations of the surface in space and time.
The harmonics un(z,t) describe the dipolar, quadruploar, etc.
deformations of the Fermi surface.

where U(K) = Vkex is the group velocity and ek
is the non-relativistic dispersion relation. We also in-
troduce a vector, normal to the Fermi surface via
7(K) vpitp.  Note that we included the term
ﬁ%xB(x, )V f(K, x,t) which is necessary to account
for the finite g-factor.

In the low energy limit we take the momentum to be
|K| = ks +u(z,0,t) (see Fig. 5). Then the perturbations
of the distribution function occur only close the the Fermi
surface

0f(K,x,t) =u(d,x,t)0(kr — |K]), (128)

where 6 is the direction of K on the Fermi surface.
Then Boltzmann equation takes form%2°

Au(0,%,t) + vpits - Vyu(6, x, t) — wedpu(f, x, 1)
. g o _
g - (E(x, )+ 1= VB(x, t)) —0, (129)

where vp = % is the Fermi velocity, and 7y is the nor-
mal vector to the Fermi surface. We ignore terms that
are second order in E(x,t), b(x,t) and 6f(K,x,t). The
charge density of the electrons can be written in terms of
u(0,x,t) as follows

d’K kp
p(x,t):/ f(th)*p—l—/d@ u(f,x,t),
(2m)? (2m)?
(130)
where the background charge density is given by
*k k32
b= K)=-L£. 131
i [ e ) = (131)

At nonzero g-factor the current density is defined as
(cf. Eq. (69))

JH(x,t) :/

d2K g
S 9.
(2m)? e

1K %, 00 (K) + 2

(K) +



Which in terms of u(f,x,t) is given by

kFUF de
o /2—n9u(9 x,t)

g kF ”8/—u9xt (132)

The equation (129),(130) and (132) are the key ingredi-
ents for the semiclassical calculations.

J(x,t) =

2. Semiclassical calculation for the mon-relativistic
polarization tensor

We will work in the temporal gauge Ap = 0. In this
gauge the electric field is given by F;(q,w) = iwA;(J,w).
We decompose u(f,x,t) into Fourier modes

dQd?k o ,

u(97 X, t) _ / (27T)3 n;m un(k, Q)ezneezk»xe—zﬂt )
(133)

Next, we will fix the frame where k = (k1,0) and intro-

duce the notation
q = kilV2N =k kpl?.

Then Boltzmann equation (129) takes form

(134)

L i (g w) + tni (g, w))

2
q2

(W + n)un(g,w) =

- (A —i—g32—;(A —Az)ﬂ =0. (135)

The solution of the above equation of motion for

Un (g, w) with n >0 and n <0 is
un(q,w) = F(q,w)Jntw(q)  (n>0) (136)

un(q,w) = (=1)"G(qw)Jn-wlq)  (n<0) (137)
where J, (z) is the Bessel function of the first kind. The
functions F(¢q,w) and G(¢,w) depend on the external
field and are not fixed by the equations for |n| > 1. We
will fix these functions using the equations of motion for
U—1,UQ, U1-

The equation of motion for ug(g,w) gives us

wito(g,w) = 3 (F(g,0) 11 (0) — G(g.0) 1-u(a).
(138)
Using (136),(137) and (138) in the equation of motion for
u1(q,w) and u_1(q,w) we find

e 2

ey (0 (4 + e
sheala) (Ao (a - 49 ).

2
o g
Gla0) = s (Tl (4: + e

(o) (A o4 - 4) )

Flg,w) = (4. - 49)

(139

~

(4.~ )

(140)
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where we used the following Bessel function identity

4w sin(mw
J1—w(@)S14+0(q) = J-1-w (@) J-140(q) = #
(141)
Functions w1 (¢, w) and u_1(q,w) are then given by
Uy (Q7w) = F(Quw)‘]l-l-w(Q)v —l(quw) = _G((Lw)f]l—w(Q) .

(142)
To calculate the response functions in terms of the ap-
plied electric field, we write equation (132) in terms of
the Fourier modes

N C N c ] C
Jl = o (U1+u71), JQZ LYW (ul—u,l)—lng 05
2T 2m 8T
(143)
where N = k%.(? is the number of filled Landau levels.

Using Egs. (142) we can derive the current density in
terms of vector potential in the usual form

Ji(q,w) = Hij(qvw)Aj(qvw) )

from where we can extract the polarization tensor which
is again given exactly by (123)-(124) combined with Egs.
(73)-(75). Reducing Eq.(144) to the form of Eqs. (123)-
(124) involves non-trivial manipulations with the Bessel
functions. We leave these details to the Appendix F.
We conclude that the RPA approximation in the large N
limit is equivalent to the semiclassical approximation for
any value of the g-factor.

(144)

VI. CONCLUSION

We have calculated the electromagnetic response of the
IQH states of non-relativistic and massless Dirac elec-
trons to all orders in the gradient expansion. In the
non-relativistic case we obtained a simple closed form
expression (64) wich agrees with the one loop calculation
from the previous work! for non-relativistic electrons as
well as general (non-linear) structure of the generating
functional?®27. The method we used is extended nat-
urally to the massless Dirac theory in magnetic field.
We explicitly check that the polarization tensors of non-
relativistic and Dirac electrons match in the large N limit
up to substitution N — N +1/2. The extra 1/2 is due to
the Berry phase of the Dirac cone. Furthermore, in the
Dirac case, we checked that the Q2 and k? corrections to
the Hall conductivity satisfy the relation (101) imposed
by the Lorentz invariance’.

We have used the semiclassical approximation to cal-
culate the electromagnetic response function of the Fermi
liquid in weak constant background magnetic field, the
polarization tensor can be written in a closed form, given
in terms of Bessel’s functions, and agrees with the previ-
ous work', however we have used a simpler method of
calculation. Our computation can be easily modified to
include the effect of short range interactions via introduc-
ing the Landau parameters®®. The results, which include
short range interaction, can still be derived in a closed



form. Next, we showed explicitly, that the large N limit
of RPA calculation in the non-relativistic case matches
the semi-classical approximation at the leading and sub-
leading order in N, without including the short range
interactions. The agreement implies the equivalence of
Fermi liquid theory in a weak background magnetic field
and large N limit of RPA calculation. Finally, in view of
the previous result we see that the Fermi liquid theory
must be modified by the Berry phase effects in order to
work for the Dirac fermions. This effect can be easily
incorporated via the substitution N — N + 1/2.

We expect that our computations will find many ap-
plications to quantum Hall physics. The explicit expres-
sion for the polarization tensor is necessary in composite
fermion! and boson? approaches to fractional quantum
Hall (FQH) states. These results can also serve as a start-
ing point to accounting for lattice, quenched disorder and
weak interactions corrections to the linear response the-
ory. Moreover, some of the gradient corrections to the
transport coefficients, under certain symmetry assump-
tions, cary universal information about the quantum Hall
states®12:28730 thus the knowledge of these corrections as
well as general method of their computation is of its own
interest. The large N results should be useful in the re-
cently proposed theory of composite fermions'!, where
the latter are viewed as neutral Dirac fermions interact-
ing with an internal gauge field. Finally, all of the exact
results are useful in testing the recently discovered set of

Gla.dsN) = Y, (-1
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dualities in 2 4+ 1 D333,

The methods used in the present paper are suitable
for the calculation of the gravitational (or viscoelastic)
and mixed electromagnetic-gravitational response func-
tions of quantum Hall fluids in curved space!'®343% as
well as more general Newton-Cartan®® 38 backgrounds.
We will present the detailed computations of these re-
sponses in a separate publication.
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Appendix A: Generating functional summary

For the reader’s convenience we list together all of the
final expressions derived in the Section II in terms of

— < (qq)" ™

nl\n—-—n—-w
n>N,n'<N

The vertices are given by the following relations

Pula) = 1, (A3)
Pale) = 575 (2~ (1-8)a) . (a9
(45)

where we have also added the dependence on the g-factor
that describes the non-minimal coupling of the electrons
to the magnetic field due to the intrinsic magnetic mo-
ment. The polarization operator is given by

My = e 1 lim Pu()Pu(q)Gla.qs N) + T
™ q——q
(A6)
and
Nw d2q
2 _ c 4q A>3 0)12 A
W = 2 [ SLsAGOR (a7

dimensionless momentum ¢ = % and for arbitrary g-
factor.

g 2 t
0SSy = —— [ dtd“zB . Al
o= [ dtaanuty (A1)

The generating function is given by

(qg')" " AU —a
Ln/ n M Ln/ n Ml , A2
+ n—n'+w " 2 " 2 (A2)

Appendix B: Derivation of (50)

a. Summation over b subspace

The first step in evaluation of (50) is to perform the
summation over the Fock space generated by b, b' opera-
tors. This can be done easily because the b, b operators
completely factorize from the expression for the vertices
(38)-(37), because the perturbed action does not depend
on b and (a,a’) commute with (b,b"). We compute the
trace over the Fock spaces (suppressing the frequency in-
tegration)
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Tr o3, GoVIG VWL = Z (nm|Go|nm) (nm|V® [n'm") (n'm!|Go|n'm) (n'm! |V V| nm)
= Z ! #<nm|V(1)|n’m’)<n'm'|V(1)|nm> (B1)
w—F,w —E,

n,n’ ,m,m/’

The matrix elements (n'm/|V 1) |nm) factorize as

(n/m/|Vﬂ(1)|nm> = <m/|6_% e%

| VDI 64, (B2)

because a commutes with b. In Eq. (B2) (m|X|m’)

, means that the average value of operator X is computed in the

Fock space generated by the bf. Then

1 1 (m| _kty kL
——(mle v2ev2
w—F,w —E,
n,n’,m,m’,k,q

b

TrapGoVIIG V) =

Tl
(m'le 2

(' [V |n)

X

a¢ gyt
5 m)|, GVl 64, ()54, (q)

a
1 1 _kty Eept _aly algt
= E ——————(mle V2'evz e V2 eVv2 |m>‘
— w—F,w —E,
n,n’,m,k.q

W/ VDIm)| ' Vn)| 64, (k)64 (q) (B3)

b

X

where in the last line we have used that |m) form a complete basis in the Fock space generated by b.
> mym'| =1, (B4)

where 1; is an identity operator in the Fock space spanned by b operators. We have, thus, established that in all of
the components of the generalized polarization operator the summation over m can be done explicitly and amounts
to the computation of the sum

In the first line we replaced the summation in m with integration over the coherent states (we explain how to do it

in the Appendix C). In resume: for any component of the polarization tensor summation over m can be replaced by
2
i—ge_ 2552 (k+ ¢g). This delta function is the manifestation of the momentum conservation - after b-summation the

fully filled Landau level looks translationally invariant.
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b.  Frequency integral

Next we perform the trace over time and frequency

Tr 1 GoV GV = (t|GoV GV )
t

= 3 (tw)w|Golwhwlt') [V, )t [ o | Golw ) ! [£) (HV, ) |£)

tw t/w

1
_ it(w—w’)  —it’ (w—w’) (1) (1) 1y
- ZZZG e w—E Vnn’(t)w/_En/Vn’n(t)

n,n’ tw t’',w’

_ 1t(w w'fQ) —it'(w—w'=Q") L (1) 1) 1oy
Z Z ZQ w—FE, Vnn/ (Q)w/ — B,y Vn’n(Q )

n,n’ t,w,Qt w’

_ L m 1 (1)
=3 Y D dw-w - (w—w - Q’)w & Vo (Q)mvn,n(m

n,n’ w,Q w’ ,Q

= (1) Q (1) —Q
;% w—i—Q Vn"/( )w_ n,Vn'n( )
dQ) dw 1 ) @
- ’ Q ’ —Q
Z/27T27T w—l—Q) Enw—En,V"”( Wi (=€),

where we have introduced a shorthand V,,,,s for matrix elements (n|V|n'). To perform the frequency integration we
rewrite the fraction as a sum

1 1 1 1 ~1 (B7)
W+ -FE,w—Ey \(w+Q—-E, w—-E,)Q—(E,—E)’

and take only first IV poles in the integral over w. This integration will project onto Hilbert space of the first N
Landau levels. When this is done we have

42 (g~ oN — )V @V o — )V (—ovi(Q)

2 B

T W) — /
GV GV En — E, —Q Ey — E, —Q

s

it <v,§33 DV (=) v,f%,Zm)v;i?(—m)
n<N,n'>N

o E,—E,—Q E, —E, +Q

This is the final outcome of the computation (we have suppressed the dependence on the momentum). This compu-
tation yields (50).

Appendix C: Coherent states an arbitrary element of the algebra is given by a linear
combination

In this Appendix we will describe the coherent states W =4s-1+ an — qa, (C2)
that will be useful for multiple calculations. Here we

follow Perelomov?, but customize the notations to agree ~ Where s is real and ¢ is complex.
with the main text. We want to exponentiate the algebra into the group.

Arbitrary Heisenbrg-Weyl group element is given by

; t_g is gal —da —Llgat —a
W = is. a0’ mda _ gisgqa’ g—Ga—3lga’,—qal
la|? T
. iS — qa' _—qa
. =efe” 2 el e C3
1. Heisenberg-Weyl group ’ (C3)
where we have used eAT8 = ¢=2[4.BleAeB | which is true

We define Heisenberg-Weyl algebra via relations for linear combinations of creation/annihilation opera-
tors. We also denote

a,al] =1, [a,1]=[al,1] =0, (C1) D(q) = e’ (C4)



These operators form a representation of the Heisenberg-
Weyl group. Representations for different values of s are
inequivalent. For fixed value of s all representations are
unitary equivalent. So from now on we fix s and drop e’*
factor.

We can freely switch between D(q) and e1a’ ¢~ at the
cost of an exponent, that is

lal? T

D(q) =e 2 1% 1%, (C5)

Operators D(q) have the following multiplication rule
D(g)D(k) = ¢ D(k + g). (C6)
This can be checked using the following simple identities
e f(ah) = fla" +c)e,

C(ZT CG.T
e“ fla) = fla—c)e™ .

These relations can be used to prove the multiplication
law. The latter can be obviously generalized as follows

=1 M
[] Dl@) = > Im@mp <Z ‘Ji> '
=M =1

The multiplication law implies the permutation rela-
tion

(C9)

D(q)D(k) = #™@ D(k)D(g).  (C10)

2. Generalized coherent states

Operators a, a' naturally generate a Fock space H with
an orthnormal basis

al
). (1)
where |0) is defined via a|0) = 0. Consider an arbitrary
state |¥o) € H. States of the form

D(q)|%o) = |q)

are generalized coherent states. One gets usual coherent
states choosing |¥g) = |0). Most of relations for coherent
sates hold for any |¥g). The overlap of the coherent sates
is

n)

(C12)

(alk) = D (o[ D(k — ) Wo)  |(glk)[* = plk — q)
(C13)
Also we have

D(k)|q) = M FD [k +g) (C14)
Since the Fock space H is projected D(k) acts on the g-
plane by translations. Therefore an invariant (under the

action of Heisenberg-Weyl group) measure is
du(k) = Cdkydks , with

k =k +tke, (015)
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where C' is arbitrary constant to be fixed momentarily.
Consider an operator

A= [ du) ) 4]

We find that for any k we have [D(k), A] = 0, thus A =

Al due to Schur’s lemma. We also can always choose C'
to set A = 1. We take C' = % then resolution of identity
takes form (this particular value of C' will be explained

shortly)
/ dkrdk k) (k| =1.

™

(C16)

(C17)

We now present some relations that are valid only for
[Wo) = |0).

D(q)aD(q) = a+q. (C18)

and

alk) = klk) . (C19)

Similarly we have

k|2

) = DO = e F ek'l0) = 35 b (C20)

Using the last relation we find

|(klg)? = plg—k) = e 1"
(C21)
Noticing that (C17) is equivalent to [ du(k)p(k) = 1 we
find that C = % as advertised.
We want to be able to evaluate traces in H. In the
Fock basis we have

110 = S(ulOk) = Y [ dutk)dta)aln) (nl1) (410l

n

|(k]0)2 = p(k) = e 1"

[ dntwyduta)a)#Ola) (c2)

Using resolution of identity

10 = [ du@lal0ln) = [ duta)e " oler0c o)

(C23)
So we have derived

0=t / dagydgs (7197 (0l Ot |0))  (C24)

Consider a matrix element of D(k)

Gk, 4;p) = 3 (FF+19) (4 D(p) ) = e cFotho—v
(C25)
Inserting resolution of unity in terms |n) we find
(C26)

G(Ev Q;p) = Z am(k)un(Q)Dmn(p) s



where

km
vm!
G is a generating function of the matrix elements of

Dyn(p). The latter are obtain expanding (C25) in se-
ries in k£ and q.

un (k) = (nlk) = (C27)

Dun(p) =\ e L (o), m > n(C2)
Dunlp) =\ e oy L oy > m
(C29)
We also find simple relations for the traces
Tr D(p) = 5 (p) (C30)
Tr [D(p)D~H(9)] =76® (p—q).  (C31)

3. Application: Trace over b-subspace

We want to evaluate trace of a product of local opera-
tors

M
= / k] | | [Trb [ei 2 ki"”] Oi(ki)} ;

i=1
(C32)
where we have introduce a shorthand notation [dk] =

TI‘b

=1

Hiwl (QW)QM and O;(k;) is understood as a Fourier trans-

form of O;(z;). Now we re-write the exponent in terms

of a and 0.

ezjafanefquJrqb
(C33)

where we introduced ¢ = f’ so that [dk] = (%) [dq].

We have for the exponent

la|?

X * = Dy(—q)e” = e —' gab (C34)

Now, we plug this back into the trace
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To proceed we use (C24)

g. bt eqib‘|

s M
-5 1% /d2p [e—p2<0|epbHe—qib*eqibepbwm]
i=1
We want to normal order the product. In order to do
this we use permutation relations

TI‘b

= —e

M
- _abt o i
epre @ib' paibepb’

i=1
M
: eﬁb H 67‘71'5T eQibePbT . 6|P|Qezi>j _Qi‘b‘e*ﬁzi @i pP > i )
i=1
Denoting ), ¢; = @ and using
M
5 —abt aib pbt
(Of : ™ [ e~ ewbe?" : |0) =1 (C36)
i=1

we have

M la; 12

(i 00 / d?pe 2R (C3T)

The latter integral is a d-function

1 —PQpQ _ 5(2) A g
— [ dpidpee ™ P%ePY =759 (Q) =7 | —=e .
T (2m)?
(C38)
We also use ¢;q; = qi - qj + iq; A q;j, where aAb =
arbs — ashy. As well as
Zlqzl2+2ql q,— = (C39)
i<j
then

Trb[He 5

b eq’bl =Te

(2)M ﬁ/[dq]D ) [Trb |:e_qi22€_‘ZibJre‘Zib:| O-(q»)} (27)2
B/ oS (C40)
(C35) We have proven that
J
M 9\ M 2y M _ ‘
Try H Oi(wi)| = <l2> / H/ —qi)e™ 4 0;(q:)] et iy WA (C41)
=1 i=1
Finally using
Da(_QI) S Da(_QM) = eizi>j qi/\qJ'Da(—ql — .= qM) = eizi>j Qi/\qJ'Da(—Q) (042)



we arrive at the trace formula

TI‘b

M
H O, ()

()

IV faa [ ouitan]
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(C43)

This is the generalization of the b-summation formula that was used in Appendix B to arbitrary number of external
legs. This formula is useful if one is aiming to evaluate the generating functional to arbitrary order in external fields.
[

Appendix D: Vertices for the Dirac polarization
tensor

In this Appendix we explicitly write out the vertices
These are obtained

for the Dirac polarization tensor.

2o In'I=In| 5
L1 n|l [ ke e
P (F) = 5 ( | ’||! (ﬁ) Ly~ (l 2| ) + sgn(n)sgn(n’)

+sgn(n)

n| —1)!
-samtoy B

!
o

(In"])!

by straightforwardly combining (80) with (92) and using
(46), for |n/| > |n| >0

() e ()

l=nl-1 k|2 v
) e (o)
(nl =1 (j—é) n|'—|n|+1 L}:;tlln‘ﬂ (@) ), (D2)

T n'|—|n|—1
% [n/|=In] L\ﬂ/|—|n\—1 |k€|2
V2 In] 2

k_ﬂ) [n]' —|n|+1
V2

Ll (@)) . (D3)

For the case |n| > |n/| > 0, the expressions for the vertices are obtained by using (47) instead of (46).

For the case n =0, |n/| >0

(D4)

.zl (@)) , (D5)

For the case [n| >0, n' =0

o= (i () (49)

(D7)

1 N vp 1 —kl Inl—1
L' pno(k) = 7 (Sgn(") =10 (W)

x Lt (@)) : (D8)

1 AN
—ﬁ(sgnm’ arm (79)

x LMt (@)) (D9)



we can write down the explicit form of equation (91) as
the summation of product of Laguerre polynomials for
each pair of indices p and v.

Appendix E: Evaluation of the infinite sums

In this Appendix, we again use k= (k1,0) . The
components of polarization tensors can be obtained from
equation (91) and the explicit form of vertex operator

T2(Q, k) = iQI2 4+ iQK2TIL? +iQ°TIR2 + - (E1)

3 = i < i [42n+1)(Vn+1— v/n)?

64
n=N+1

o= )V - V=2 -

—4@2N - 1)(VN+1+ VN2 + N(VN +1+ VN 1)

2 = ir? <§: (Vi — v D)t -

167T’UF o
+(VN+VN+1)). (E4)

The summations are convergent and can evaluated I1}2,
132 and I11? to obtain

N +1/2 6N2 +6N +1
'2(Q, k) = Q—i_i/ Z’Qk2[2#
167
(2 8N?2 +8N +1
jop O BNT AN AL (E5)
vF 8
We derive similarly

Mp (2, F) = QM + -+, (E7)
N%E(Q, k) = Q22 + 212 + - . (E8)

There is no k7 term in Hll(Q,E) and no 92 term in
I1°°(9, k), we can calculate the coefficients

00 __ y711 _ 722 __
1_[1 _Hl _Hl -

! (i (VAT = Vi) + (Vi —

Sﬁﬂ-vF n=N+1
+(VN+ VN £ 1)3) .

n—)]

(E9)
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where I1}2, 1132 and 132 are the result of Taylor expansion
of (91) at specific order of w and p, --- represents the

higher order of frequency and momentum. The explicit
form of 132 is

o0

H}2=8—7T< o [(Wn—vn=1) -

n=N-+1

+(VN +VN+12), (E2)

(Vn+1—+n)?]

the first two terms come from the summation with n’ < 0
and n > 0, the last term is from n,n’ > 0. Similarly,

—4(2n - 1)(v/n—+vn —1)2
(n+1)(Vn+2-vn)?]

(Vn+1-+vn)"

+(N+)WNF2+VN)) L (E3)

The summation is convergent and is given by

oo

> (Wn+T1-vn)P+(Vn-

n=N+1

n — )]
—(VN ++/N )—12<(——N+1)

where ((s,n) is the Hurwitz (-function, which is defined
as

(E10)

oo

1
¢(s.) —;7(n+q)s. (E11)
As the result, we have
m - == -2l vin. ()
2 2mup 2

The coefficient T13% can be also calculated similarly
22 36’0}7
2 4\/—

We summarize these results in the Section III.

((~5 N +1). (E13)

Appendix F: Evaluate the summations of
non-relativistic polarization tensor at large N limit

In this Appendix, we will show the explicit calculation
of polarization tensors in the Section V A. The following
Bessel function identities will come in handy

4w sin(mrw)

J1-w(@)J14w(q) — p—

Jo1-w(q) 140 (q) =
(F1)



wJo(q) = 5 (J140(0) + J-140(a)) (F2)

l\DI»Q

wloo(q) = =3 (h-u(@) + J1mul)  (F3)

The summations (120),(121) and (122) can be recast as

Nwe S 2Nndw. [n(q))?
11 _ c _ oot e lni\d)l
II (Qaw) = o + ngl qu(wz _ n2) (F4)
Nwe & Nnlwe[Jno1(q) — Jnsr (@)
H22 _ c _ c n n
(0:0) == 55+ 2w =)

> n2weq [T —Jn JIn
—g Z:l ql 4;(((132 - n;—)l (9)] Jn(q)

2= ¢Pn2we [Tn(q))?

~8 — 32N7(w? —n?)

_ Nw.  Nuw i 02 [Ju-1(q) = Jus1(q))’

2 2m (w? —n?)

n? [Ja(g)]”
"Gy L Tl — )

o0

2 q2n2wc [Jn (Q)]
— 32Nm(w? — n?)

2
- g

__Nwe Nuwc i —4n2Jn—1(q) Jns1(q)
27 2m —~ (w? —n?)

4n4Jn(Q)Jn(Q)]
¢*(w? —n?)
0 o~ 1 (@)
B gwcq[)_q ngl 4m(w? —n?)
2 — q2n2wc [Jn(Q)]2
-8 g 32Nm(w? — n?)

2Nwe o= 12T 1(q) Jns1(q)
_7rll c n n+1
_H (Qaw) + Z (OJ2 _ 7’L2)

n=1

— A7 (w? —n?)

2= *nPwe [Jn(q))”
= 32Nm(w? — n?)
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i iNn? WWe n( ) [Jn—l(q) B Jn+1 (Q)]

H12
(. Taw? — n2)

e Z iwn®w, [Jn(q)]*

4m(w? —n?)

RQJH(Q)Jn(Q)
(w2 %)

n=1
 iNwwe 0 i
q 6(] n=1

> iwnZwe [T, (q)]?
4mr(w? — n?)

n=1
(F6)
where we used
0 1
%Jn(x) = E(Jn—l(x) = Jnt1(2)). (F7)
Using the identity
o ) ) $2
S @) = - (Fs)
n=1

we can rewrite IT'! (¢, w) as

2Nw?w, i n? [Jn(q)]2 (F9)

@ 2 (@ —n)

Hll(quw) = -

n=1

Next we need to evaluate

n=1 w? — nQ) n=1 (w2 o nQ) n=1
(F10)
n%J,_1(q) n+1 QZ n+1 (9)
2
n=1 (w
_ZJn 1(q) Tyt Q) (Fll)
to derive the closed form of II¥(p,w). Both of the

above summations can be evaluated using the tricks in
reference'*, which gives us

© 9 2 W
3 M Sl ™ () (F12)

2sin(rw)

17°Jn—1(¢)Jn+1(q) _ . Tw

(w? —n?2) 2sin(7w) Ti-u(@) T (0)

(F13)




We therefore can derive the closed form of polarization
tensor

n'(qw) =

Nw?w, 1 Tw
mq?

)Jw(qu(q)) ,
(F14)

sin(mw

iNow, 7w 0

'%(qw) = — g Wa—q[Jw(Q)Jw(Q)]

. JWle W
1—
o 8w ( sin(7mw)

Jw<q>J_w<q>) |
(F15)

Nw?w, mw
12 (q,w) = Tq2 (1 N sin(7w) o (Q)J_w (q)>
_%Jl,w(q)hw(@

gqwwe 0O
_ma—q [JM(Q)J—w(q)] +

2qPwe w
+96§7TN (1 ~ sin(nw) @) (q)> '
(F16)
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Since the closed form of polarization tensor is obtained,
we can derive the large N approximation of conductivity
and compare with Fermi liquid calculation.
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