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We consider a one dimensional spin 1/2 chain with Heisenberg interaction in a disordered parallel
magnetic field. This system is known to exhibit the many body localization (MBL) transition at
critical strength of disorder. We analyze the response of the chain when additional perpendicular
magnetic field is applied to an individual spin and propose a method for accurate determination
of the mobility edge via local spin measurements. We further demonstrate that the exponential
decrease of the spin response with the distance between perturbed spin and measured spin can
be used to characterize the localization length in the MBL phase. We also studied effect of the
quench on statistics of the entire energy spectrum. We demonstrate that the quench introduces
level repulsion between energy states corresponding to different eigenvalues of the total spin in the
delocalized regime, while level spacing is described by the Poisson statistics in the localized regime
even at strong quench.

I. INTRODUCTION

Theoretical studies of localization in many body sys-
tems were originally focused on interacting electrons in
disordered metals [1]. Even though the localization en-
dures through high temperature limit [2], an experimen-
tal observation of localization is a challenging task due to
electron-phonon interaction that effectively spoils many-
particle states of the electron system in real metals [3].
The interest in observation of many-body localization
(MBL) has shifted to artificial quantum systems well iso-
lated from their environment such as ultra-cold atomic
gases [4], trapped ions [5, 6] and superconducting cir-
cuits containing many interacting spins [7]. These sys-
tems have highly configurable Hamiltonians and their
observables can be measured with high precision, which
gives another advantage to artificial quantum systems
over their solid state counterparts for studies of MBL.

Recent theoretical studies were focused on numeri-
cal and analytical studies of interacting one dimensional
spins chains or one dimensional fermion systems [8–22].
Spin chains can be simulated numerically by exact diag-
onalization of corresponding Hamiltonians for relatively
small number of quantum particles or by approximate
methods with controllable accuracy. These studies have
shown that spin systems containing more than ten spins
and involving thousands of many-body eigenstates ex-
hibit the MBL behavior in sufficiently strong disorder.
The MBL phase can be characterized by the existence
of infinite number of local integrals of motion [8–11, 20],
the entanglement [12–17], as well as the spectral proper-
ties of eigenstates[2]. While these characteristics can be
measured in principle, the corresponding experiments are
extremely burdened as they require either a full quantum
tomography or full energy spectroscopy.

In this paper we propose an alternative strategy to
identify the localization in a disordered system of inter-
acting spins. We analyze the response of a pure state of
a Heisenberg spin chain in random magnetic field along z
axis to a sudden application of a magnetic field (quench)
perpendicular to z that acts on a single spin. We evalu-
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FIG. 1. Sketch of the one-dimensional spin-1/2 chain with
periodic boundary condition. Along the chain, each spin is
subject to a random onsite field hi along z direction and the
spins are coupled by nearest neighbor Heisenberg interactions
with strength J . At time t0 when the local quench is turned
on, a transverse magnetic field f is applied to one of the spins,
labeled by i = 0.

ate the inverse participation ratio (IPR) of an eigenstate
of unperturbed Hamiltonian in the basis of the quenched
Hamiltonian. The IPR is small in the delocalized, or er-
godic, regime when the initial state overlaps with many
eigenstates of the new Hamiltonian. In the localized
regime, an application of a quench does not affect ma-
jority of eigenstates and the typical value of the IPR is
about unity. Points at which the IPR starts increasing
sharply form a curve in the energy vs disorder strength
plane and define the mobility edges. We note that due
to finite size of our system, the mobility edge cannot
be defined rigorously and instead has to be treated as a
crossover region. Recently, the authors of Ref. [18] argued
that even in infinite system MBL and ergodic phases are
separated by a crossover region.

Since the IPR is not easily measurable in experiments,
we also investigate correlations in single spin measure-
ments before and after the quench. The covariance be-
tween these two measurements is small for delocalized
states, but rapidly increases for localized states, as the
quench only weakly affects configuration of far away
spins. The mobility edge obtained from the covariance
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FIG. 2. (Color online) Average of log2(IP R) over disorder
realizations as functions of disorder strength W and energy
density ǫ for a system of L = 12 and 2000 realizations. The
quench strength is fixed at f = J = 1. Marked by gray area,
the many body mobility edge encloses a region of delocalized
states (black area) with IPR ∼ 2−L.

is consistent with the mobility edge obtained through
the IPR, as well as through analysis of the entanglement
entropy [23, 24]. Moreover, at strong disorder in the lo-
calization regime, the spin response to the quench de-
creases exponentially as a function of the distance of the
monitored spin from the quenched spin. We utilize this
exponential decay to evaluate the localization length as
a function of disorder and demonstrate that the local-
ization length exceeds the system size near the mobility
edge.

We also analyze statistics of energy level spacing in re-
sponse to a quench. The level spacing is determined by
the matrix elements of the quench connecting two eigen-
states of the original Hamiltonian. Such connectivity be-
tween states in the phase space acts as a probe of localiza-
tion. As shown in Ref. [9], a local conserved quantity for
MBL states are the local spins, dressed by their neigh-
bors with strengths set by the many-body localization
length ξ. If ξ is comparable to the lattice spacing, local
spins are oblivious to each other, so that different spin
configurations are weakly connected in the phase space.
On the other hand, the local operators become extended
once the localization length increases to the system size.
Above arguments imply that the entire spectrum of a
finite size system responds differently to quench in local-
ized and ergodic regimes. The response to quench distin-
guishes the two phases and can be seen as a reminiscent
of its non-local response that forms a rearrangement of
local conserved quantities. In the thermodynamic limit,
the two phases can be recognized if there is the orthogo-
nality catastrophe due to small changes in the amplitude
f . Unfortunately, this limit cannot be investigated nu-
merically and calls for future work.

II. SYSTEM WITH A LOCAL QUENCH

To be specific, we consider a 1D Heisenberg spin chain
of length L with random on-site field in the z direc-
tion with periodic boundary condition, described by the
Hamiltonian, see Fig. 1:

H0 =

L−1
∑

i=0

hiσ
(i)
z + J

L−1
∑

i=0

σ
(i) · σ(i+1), (1)

where hi on each site is a random variable distributed
uniformly in the interval [−W,W ] and σ

(i) is the vector
of Pauli matrices for spin at site i. Throughout the paper,
we use J as a fundamental unit and set J = 1. We
denote eigenstates of H0 by |αSz

〉, where the total spin

in z direction Sz = (1/2)
∑

i σ
(i)
z is conserved for a system

describe by Hamiltonian (1).
Previous numerical [9, 17, 25] and analytical [26] stud-

ies were focused on the subspace defined by energy states
|α0〉 with Sz = 0, where the MBL phase develops at
W & 3.4. In this paper, we study the effect of the sud-
den quench

V = fσ(i=0)
x , (2)

applied to Hamiltonian (1) at site i = 0, see Fig. 1. The
new Hamiltonian H̃ = H0 +V breaks the conservation of
Sz, and system dynamics occur in the full 2L dimensional
space with the basis defined by eigenvectors |α̃〉 of H̃ .
We would like to emphasize that Ref. [9] considers a lo-
cal quench that conserves total spin in z direction, while
Ref. [17] analyzes the global quench uniformly applied
to all spins. The response of the system to this quench
is reminiscent to the quasiparticle spectral function that
appears in transport problems in disordered electron sys-
tems with interactions. [27] In case when Hamiltonian (1)
is applied to an actual spin or qubit chain, the quench,
Eq. (2) can be introduced as a microwave field in the
rotating frame approximation.

We consider a system that was originally prepared as
a pure state |ψ〉 in the subspace of states with Sz |ψ〉 = 0
and calculate its response over a long time after the onset
of the quench:

¯〈O〉 = lim
T→∞

1

T

∫ T

0

〈Ô(t)〉dt = Trρ(t)Ô = Tr{ρ
|ψ〉
DEÔ},

(3)
where ρ(t) = exp (−iH̃t)ρ(0) exp (iH̃t) is the density ma-

trix and ρ
|ψ〉
DE = ρ(t) is the time-averaged density matrix

initialized in a pure state. Then, ρ(0) = |ψ〉 〈ψ|,

ρ
|ψ〉
DE =

2L

∑

α̃

Pα̃ |〈α̃|ψ〉|
2
, Pα̃ = |α̃〉 〈α̃| (4)

and Pα̃ is the projection operator on new eigenstates

|α̃〉 of H̃ . The off-diagonal elements of ρ
|ψ〉
DE vanish af-

ter time averaging and matrices ρ
|ψ〉
DE belong to a diag-

onal ensemble [28]. In particular, we consider initial



3

FIG. 3. (Color online) The distributions of log2 IPR in the middle of the band, ǫ ≃ 0.5 for W = 0.25, 1.75 and 5 and the
different number of spins L = 8, 10 and 12. The distributions are narrow in the ergodic and localized regimes, but are broader
in the critical region W = 1.75.

states |ψ〉 that coincide with eigenstates |α0〉 of the ini-
tial Hamiltonian H0 and have Sz = 0, where the state
index α0 = 1, . . .N(L, 0) runs over eigenenergies of H0

ordered in increasing order,

N(L, S) =
L!

(L/2 − S)!(L/2 + S)!
. (5)

III. INVERSE PARTICIPATION RATIO

We demonstrate that the Hamiltonian H̃ with the
quench still exhibits the MBL phase. As an indicator
of MBL, we study the IPR defined as

IPRα0
=

2L

∑

α̃=1

|〈α0|α̃〉|4 = Tr
{

ρ̄
|α0〉
DE Pα0

}

, (6)

where Pα0
= |α0〉 〈α0|. The IPR is a measure of portion

of the Hilbert space explored by the system after the per-
turbation V is turned on [19, 27, 29]. At weak disorder,
the motion of the system is ergodic and the state spreads
over a large fraction of the Hilbert space. As a result, the
IPR is small ∼ 2−L. On the other hand, in the strong
disorder limit, the ergodicity breaks down and the evolu-
tion of many-body wavefunctions is restricted to a small
portion of the Hilbert space labeled by the local integral
of motion [8]. This behavior of the IPR was recently dis-
cussed in connection of the survival probability near the
MBL transition[30].

To investigate behavior of the IPR across the MBL
transition we performed exact diagonalization for L =
{8, 10, 12} spins and N = 2000 realizations to obtain all
eigenstates |α0〉 for H0 and |α̃〉 for H̃. We use these eigen-
states to calculate the time average density matrix after

a sudden quench ρ
|α0〉
DE =

∑

α̃ Pα̃ |〈α̃|α0〉|
2

for a system
that is initialized in eigenstate |α0〉 of H0 with Sz = 0.
The average log2(IPR) as a function of disorder strength
W and ǫ is plotted in Fig. 2. Upon disorder average,

log2(IPR)(W, ǫ) clearly reveals the existence of a mobil-
ity edge that distinguishes delocalized states to localized
states; here ǫ = α0/N(L, 0) is the position of eigenstate
within the energy band and the quench strength is fixed
at f = J = 1 throughout our computations. To justify
the nature of the mobility edge, we plot the histogram of
the distribution of log2 IPR in Fig. 3. In the weak and
strong disorder limit, the distributions of log2 IPR are
highly concentrated at either ∝ (−L) or 0, respectively.
However, log2 IPR in the crossover region is broadly dis-
tributed between (−L) and 0 with its standard deviation
∝ L so that the standard deviation diverges at the mo-
bility edge in the thermodynamic limit. We note that
similar divergence has been found in the fluctuations of
the entanglement entropy[17] and is due to similarity be-
tween entanglement entropy and IPR further investigated
in [31].

When we fix the energy density at the middle of the
band, ǫ ≃ 0.5, the standard deviation of IPR has a peak
in the crossover region at Wc ≃ 3.5, see Fig. 4(b). We
note that at strong disorder, W ≃ 5, the standard de-
viation of IPR remain of the order of unity, indicating
a broad distribution of the IPR in the localized regime.
This behavior of the IPR in the middle of the energy
band can be connected to the statistical orthogonality
catastrophe [32]. Indeed, the overlap between the states
before and after the quench varies significantly remaining
close to unity for some states, while nearly vanishing for
other states, see Ref. [33].

IV. LOCAL OBSERVABLES

A. Correlations for eigenstates

While the above approach to detect mobility edge
through IPR is suitable for numerical calculations, it
is hard to be realized experimentally because the eigen-
states for a many-particle quantum system is almost im-
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FIG. 4. (Color online) Average of the log2(IP R) (a) and
its standard deviation (b) over 1000 disorder realizations as
functions of disorder strength W in the middle of the band,
ǫ ≃ 0.5 for a system of L = 8, 10 and 12 spins. The quench
strength is fixed at f = J = 1.

possible to prepare. Instead, we study the measurement
of single spins in the time-averaged sense and investigate

the correlation of their expectation values 〈σ
(i)
z 〉 with and

without a local perturbation. Our study is motivated by
the previous observations[34] that in the MBL regime
the ETH is violated and information about the local ob-
servables at sufficiently long times can be traced back
to its initial condition resulting in correlations between
spin states before and after perturbation V is turned on.
Otherwise, in the delocalized regime the motion is er-
godic and information about initial conditions is lost.

For an interacting system, the observables set by finite
degrees of freedom can be evaluated by the reduced den-
sity matrices in which the off-diagonal elements are essen-
tially zero due to dephasing even if the system starts in
some arbitrary pure state. Alternatively, time averaged
expectation values of a local operator are also character-
ized by a diagonal ensemble of the density matrix ρDE,
see Eq. (3). One can measure such local observables be-
fore and after the quench.

Here, we consider a special case of initial states that
are eigenstates |α0〉 of H0 and with Sz = 0, although the
results remain qualitatively the same for a system that is
initially prepared in an arbitrary pure state with Sz = 0,

see below. We calculate expectation values 〈σ
(i)
z 〉 of spin

i before and after the quench at site 0:

P iα0
= 〈α0|σ(i)

z |α0〉 , (7a)

Qiα0
=

∑

α̃

|〈α0|α̃〉|2 〈α̃|σ(i)
z |α̃〉 = Tr

{

ρ̄
|α0〉
DE σ(i)

z

}

. (7b)

A good distinction between ergodic and MBL phases
can be obtained by analyzing correlations between P iα0

and Qiα0
. Running over all eigenstates |α0〉 in the Sz = 0

sector, we collect P iα0
and Qiα0

for a number of disor-

FIG. 5. (Color online) Scatter plot of (P i

α0
, Qi

α0
) for (a) the

localized regime with W = 5 and (b) the ergodic regime with
W = 1.25 for states |α0〉 in the middle of the band. Data
obtained with L = 12 and N = 1000. Open circles (filled
squares) show data for i = 0 (i = L/2−1). The corresponding
probability distribution of Pi and Qi are shown in panel (c)
for the localized regime W = 5 and in panel (d) for the ergodic
regime W = 1.25.

der realizations. In Fig. 5(a,b), we present the scatter
plot for pairs of (P iα0

, Qiα0
) of spin i = 0 (directly per-

turbed spin, open circles) and i = L/2 − 1 (the farthest
spin from the quench, filled squares) in the middle of
the band, α0 ≃ N(L, 0)/2 for strong (W = 5) and weak
(W = 1.25) disorder. In the localized phase at strong dis-
order, the local spin projection is good quantum number
P iα0

≃ ±1 because eigenstates are product states consist-
ing of physical spins |α〉 =

⊗

i |↓ (↑)〉i . Provided that
the quench is smaller than the local random field, the
eigenstates of H0 and H̃ differ by terms O(f/W ). As a
consequence, the single spin measurement with and with-
out a quench coincide with each other, see Fig. 5c for the
distributions of P iα0

and Qiα0
peaked at ±1. On the scat-

ter plot, pairs (P
L/2−1
α0

, Q
L/2−1
α0

) are distributed along the

line P
L/2−1
α0

= Q
L/2−1
α0

, indicating the two measurements
are strongly correlated. In the ergodic phase at weak dis-
order (W = 1.25), an eigenstate is a linear combination of
a large number of product states, and therefore local spin
projection is not a good quantum number. Two sets of
local spin measurements form an elliptic cloud in the cen-
ter as a result of thermalization, see Fig. 5(b). Moreover,
the distribution of single spin measurement shows dis-
parity between the two cases due to the re-equilibration
of the system after the perturbation, see Fig. 5(d).

Correlations between P iα0
and Qiα0

are characterized
by the covariance with respect to disorder realizations:

Cα0
(i) =

〈

δP iα0
δQiα0

〉

H0

, (8)

where 〈. . . 〉H0
stands for averaging over ensemble of H0,

δP iα0
= P iα0

− 〈P iα0
〉H0

with the similar expression for
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FIG. 6. (Color online) Covariance Cα0
(L/2 − 1) as functions

of disorder strength W and energy density ǫ ∝ α0 for L = 12
and N = 1000. The crossover region to the MBL regime is
shown in lighter colors.

δQiα0
. We use the covariance to map out the phase di-

agram as a function W and ǫ = α0/N(L, 0), as shown
in Fig. 6. In the ergodic regime the averaged value
Cα0

(L/2 − 1) vanishes but it saturates to 1 deep in the
MBL phase where both P iα0

and Qiα0
take almost iden-

tical values ∼ (±1). Similar to the IPR, Cα0
(i) reveals

the many-body localization, marked by the border of the
black region in Fig. (6).

B. Correlations for product states

Next, we analyze the correlations between a local op-
erator before and after the quench for the case when an
initial state is product state |ψ〉 =

⊗

i |↓ (↑)〉i with total
Sz = 0. While signatures of the localization transition
may be a bit blurry for such states, these states are more
accessible in experiments. We again calculate the expec-

tation values of 〈σ
(i)
z 〉 of spin i for a system that under-

goes long time evolution with respect to either H0 or H̃:

P iψ =
∑

α0

〈α0|σ(i)
z |α0〉|〈ψ|α0〉|2, (9a)

Qiψ =
∑

α̃

〈α̃|σ(i)
z |α̃〉|〈ψ|α̃〉|2. (9b)

At strong disorder, product states |ψ〉 are close to the
eigenstates and only one term dominates in summations
in Eqs. (9). In this sense, there is a well defined one-to-
one mapping between product state |ψ〉 to the density
matrix in the diagonal ensemble in such a way that there
is a strong correlation between the two sets of measure-
ment outcomes P iψ and Qiψ, see Fig. 7(a). Besides, the

distribution of Pψ at the farthest site i = L/2 − 1 is

FIG. 7. (Color online) The probability distribution of Pi and
Qi for the localized regime with W = 5 (a) in which the single
spin measurement with and without a quench coincides with
each other and for the ergodic regime with W = 1.25 (b)
the disparity in the distribution with and without the quench
indicates a thermalization. Data obtained with L = 12 and
N = 1000.

sharp at ±1, while the distribution of Qψ at the same
site is broadened due to the mixing between eigenstates
arising from the perturbation term. In the opposite case
when W is weak, a product state is a linear combination
of a large number of eigenstates, indicating that in the
mapping between diagonal ensemble and the initial prod-
uct state is not invertible, see Fig. 7(b). Physically, as
a prototype of ETH, this uninvertible mapping indicates
that the system is thermalized regardless of its initial
condition from the point of view of each eigenstate. The
distribution of P iψ and Qiψ are both even sharper than
the case shown in the previous subsection because the
summation over all states α̃ with different values Sz in
Eq. (9) introduces additional averaging.

This behavior can be explained intuitively as follows.
Eigenstates of H0 in the ergodic regime are represented
by a superposition of many products states, as one ex-
pects from analysis of IPR or other similar quantities.
These products states will likely have the measured local
spin in opposite directions. The projection of the local
spin along z in an eigenstate direction averages over cor-
responding product state with non-zero overlap with the
eigenstate. When the quench is turned on, the number
of corresponding product states increases even more and
the local spin projection reduces further. Notice that we
have even narrow distribution when we look for P and Q
evaluated for a product state. While at t=0, the spin pro-
jection is either ±1, the time averaging is equivalent to
taking a diagonal ensemble formed by many eigenstates.
For each eigenstate we have a value P iα0

, Eq. (7a) that
varies between ≃ (±0.5) roughly symmetrically around
zero. Performing additional averaging over eigenstates
α0 contributing to the diagonal density matrix results in
reduced fluctuations of P iψ, and after the quench is turned

on, for Qiψ.
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V. LOCALIZATION LENGTH

With increasing spatial separation between the
quenched spin and the monitored spin, we observe
smaller deviations between P iα0

and Qiα0
as the effective

coupling between the perturbed and monitored spins de-
creases fast as their separation exceeds the typical length
of an eigenfunction. On the contrary, in the ergodic
regime, the distribution of (P iα0

, Qiα0
) is insensitive to

the spatial separations between quench at site 0 and
monitored spin i, suggesting that the eigenfuction ex-
tends throughout the whole system. The statistics of
P iα0

and Qiα0
over ensemble of H0 can be used to eval-

uate the localization length ξ. Intuitively, ξ is a scale
below which a spin texture forms localized clusters and
thereby the ergodicity is broken. Deep in the localized
regime, localization occurs on atomic scales with ξ → 1.
With decreasing disorder, the localization length grows
and once the scale is beyond the system size, the entire
system cannot be decomposed into independent clusters
and the ergodicity reoccurs. The localization length is
an indicator of the onset of MBL regime that can be de-
termined by the spatial sensitivity of the response to the
local quench. The deviation between the measurement
P iα0

and Qiα0
averaged over disorder realizations is given

by “Euclidean distance”:

Di
α0

=
√

〈

(P iα0
−Qiα0

)2
〉

H0

. (10)

We argue that in the localized regime Di
α0

is an ex-
ponentially decaying function[1, 15] with respect to the
distance between spin i to the quenched spin:

Di
α0

≃ D0
α0

cosh((i− L/2)/ξ)

cosh(L/2ξ)
(11)

where ξ is the localization length. The first two exponen-
tial terms in Eq. (11) arise from the periodic boundary
condition, and the last term is a normalization constant.
We plot Di

α0
for spin i = 0 . . . 6 obtained numerically

for several different disorder strengths W = 1.5, 2.5, 5 for
α0 in the middle of the band and compare these data
points to curves defined by Eq. (11) with the localization
length evaluated as the best fit to data, see Fig. 8(a).
In Fig. 8(b), we illustrate the fitted localization length
ξ for different values of disorder W . Due to the finite
size of the system, at the critical disorder Wc ≃ 1.5 the
localization length ξ does not diverge but becomes larger
than the system size, consistent with our argument about
the crossover between ergodic and MBL phases. On the
other hand, ξ saturates to unity at strong disorder in the
MBL phase.

VI. LEVEL STATISTICS

We now discuss energy spectrum properties associated
with a MBL Hamiltonian (1) subject to the quench (2).

FIG. 8. (Color online) (a) “Euclidean distance” Di as a func-
tion of distance between monitored spin and quenched spin
(solid lines), and the corresponding fitting curve, Eq. (11)
(dashed lines). (b) The many-body localization length ξ ex-
tracted from D(i) as a function of disorder strength. The
dashed line corresponds to ξ = 1 to emphasize that the at
sufficiently strong disorder W the system is localized at the
atomic length scale.

The total spin projection Sz =
∑

i σ
(i)
z is a conserved

quantum number for H0, while the quench term breaks
the conservation of Sz. Quite generally, when the per-
turbation V is turned on, perturbed eigenstates contain
corrections set by the matrix elements of the perturba-
tion and by the differences in energies. As a consequence,
energy levels acquire correlations.

The previous analysis of the level spacing statistics was
focused on Sz = 0 subspace[2]. Here we consider full en-
ergy level statistics that include all eigenvalues of global
Sz when neighboring levels may belong to different values
of Sz and remain completely independent for the Hamil-
tonian (1). Consequently, the full level spacing statistics
will be close to the Poissonian in the absence of quench.

To characterize the mixing of eigenstates from differ-
ent eigenvectors of Sz, we examine the distribution of the
difference in indexes ∆α0 for states in the Sz = 0 sector.
Fig. 9 shows the distribution of ∆α0 for both ergodic
and localized regimes. In both regimes, the probability
to have two states with Sz = 0 next to each other is rela-
tively small: in the localized regime, only ≃ 23% of states
have neighbor from Sz = 0 sector, this fraction is even
lower, ≃ 9%, for the ergodic regime. In other words, in
ergodic regime, two adjacent eigenvalues are much more
likely from two different families of Sz , rather than from
the same value. Reduction of the fraction of neighbors
with Sz = 0 in the ergodic regime reflects the rigidity
of energy spectrum of unperturbed H0: eigenstates with
Sz = 0 appear with more regular spacings due to the level
repulsion. In this case, eigenstates of H0 with Sz 6= 0 fill
in between the eigenstates with Sz = 0 and reduce frac-
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tion of states with ∆α0 = 1 or 2, see Fig. 9.

0 5 10 15 20 25
∆α

0

0

0.05

0.1
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0.25

P(
∆
α

0) 2030 2035 2040 2045
index

-2 0 0 2 -20 -4 2 2 -2-24 -2-842Sz=

∆α
0
=1

(b) W = 5

FIG. 9. (Color online) The distribution of ∆α0 for the Sz = 0
sector of the spectrum in (a) the ergodic regime, W = 0.5,
or (b) the localized regime, W = 5. Data is obtained for
L = 12 with 100 disorder realizations. Insets: the pattern of
states labeled by different Sz in the middle of the band for one
arbitrary disorder realization. Different markers correspond
to different Sz. In the ergodic regime, states with the same Sz

are more likely separated by at least one state with a different
Sz, whereas for the localized regime, states with the same Sz

more likely appear in adjacent pairs.

Next, we consider the distribution function P (r) of the
dimensionless parameter[2, 35]

rn =
min(δn, δn+1)

max(δn, δn+1)
, (12)

where δn is the energy separation between adjacent
many-body eigenstates δn = En+1 − En. This param-
eter is dimensionless and independent of local density of
states. Thus such a distribution permits a transparent
distinction from the band edges to the dense part of the
spectrum.

As shown in Refs. [2] in the localized regime, the
eigenenergies for Sz=0 are uncorrelated and therefore
the probability distribution of δn is Poisson, which corre-
sponds to PP (r) = 2/(1 + r)2. On the other hand, in the
ergodic regime, the level spacing is phenomenologically
described by the random matrix theory, where the eigen-
values are correlated due to level repulsion. In this case
one expects the Wigner-Dyson statistics of eigenenergies
and P (r) → 0 at small r [35].

When the entire spectrum representing all values of Sz
is considered without the quench, the distribution of P (r)
is very close to that of the Poisson distribution PP (r),
see Fig. 10. Indeed, as we discussed above, both in the
ergodic and localized regimes, the nearest energy states
most likely belong to different eigenvalues of Sz and are
uncorrelated for H0 without a quench. The situation
changes when the quench is turned on. The full quantum
energy statistics unveil its localized or ergodic behavior.
To demonstrate this, we vary the amplitude of the drive
from f for each disorder realization keeping other param-
eters of the model fixed for both ergodic and localized
regimes. For each realization of H0, we compute values
of r for the entire spectrum and build histograms P (r)
for distribution of parameter r. In Fig. 10, we present
P (r) for W = 0.5 and W = 5. For strong disorder,
W = 5, even though the perturbation induce a finite ma-
trix element between states with different Sz, this effect
on level spacing statistics is minor because a considerable
portion of eigenstates are still being localized and remain
uncorrelated. Consequently from the distribution func-
tion P (r) for finite drive amplitude at small r there is no
apparent level repulsion. On the other hand for weak dis-
order, W = 0.5, the spectrum is sensitive to the quench
as its matrix elements do not vanish between different
eigenstates of H0. As f grows, signature of level repul-
sion quickly reveals at f & 0.1J , as shown in Fig. 10.

The onset of level repulsion can be quantified by look-
ing at the “maximum distance” (MD) between cumula-
tive distributions r, Qα(r) =

∫ r

0
Pα(r′)dr′ between the

Poisson, PP (r), and actual, Pa(r), distributions:

MD =

∣

∣

∣

∣

∫ r0

0

(PP (r) − Pa(r)) dr

∣

∣

∣

∣

, (13)

where Pp(r) = 2/(1+r)2 is the Poisson distribution func-
tion for r and the limit of integration r0 is chosen to
maximize the difference in the cumulative distributions
|Qa(r) −QP (r)|, i.e., the first intersection point of PP (r)
and Pa(r). The advantage of this functional distance of
the distribution functions PP (r) and Pa(r) is that the
data of cumulative distribution Q(r) is less noisy than
P (r) itself and captures well the onset of level repulsion
which drastically changes statistics of small values of r.

The dependence of MD on amplitude of drive has dif-
ferent behavior in the two phases, as shown in Fig. 11. In
our numerics, the cumulative distribution of Q(r) is ob-
tained by the labels of sorted data of r. In this manner,
even for 100 disorder realizations, Q(r) is smooth enough
for computation purposes. In the ergodic regime, the MD
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P
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)

0

0.5
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1.5
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2.5
f = 0

f = 0.05

f = 0.1

f = 0.2

f = 0.4

f = 0.6

(a) W = 0.5

FIG. 10. (Color online) The probability distribution of r for
(a) the ergodic regime, W = 0.5 and (b) the localized regime,
W = 5 with varying amplitude of perturbation f . Data is
obtained for L = 12 with 1000 disorder realizations.

quickly saturates to ≃ 0.24 at f ≃ 0.4J , while in the lo-
calized regime the MD remains constant at a small value
≃ 0.01.

It is worth pointing out that our numerical result for
the distribution of r for the entire spectrum agrees with
the previous studies of the average of r for Sz = 0 sub-
space. Namely, 〈r〉 ≃ 0.39 for Poisson distribution and
〈r〉 ≃ 0.53 for GOE. However, we prefer to use the MD
instead of 〈r〉 as a measure to distinguish the distribu-
tions is that the MD better distinguishes behavior of
P (r) at small values of r rather than by the whole range
0 < r < 1.

VII. SUMMARY AND CONCLUSIONS

To summarize, we showed that as a result of local
quench, the absence of thermalization in the MBL phase
can be characterized by the IPR of the eigenstates of the
original Hamiltonian in the basis of the quenched Hamil-
tonian. In particular, the IPR fluctuations are enhanced

at the crossover between the ergodic and MBL phases.
Meanwhile, our analysis of the single spin measurements
in response to a quench shows a plausible experimental

0 0.2 0.4 0.6 0.8 1f

0

0.05

0.1

0.15

0.2

0.25

M
D

W = 0.5
W = 5

0 0.2 0.4 0.6 0.8 1
r

0

0.5

1

Q
(r
)

Actual Distribution

Poisson

MD

FIG. 11. (Color online) Dependence of MD on the amplitude
of perturbation f for weak (W = 0.5) and strong (W = 5) dis-
order. As a measure of deviation from Poisson statistics, the
MD for the ergodic regime is sensitive on f and grows quickly
to ≃ 0.24, while for the localized regime MD roughly remains
constant at a small value ≃ 0.01. Inset: The definition of MD
is given by the maximum distance between cumulative dis-
tribution functions of r between Poisson statistics and actual
statistics.

technique to search for the mobility edge and the local-
ization length. This approach does not require substan-
tial measurements of a quantum system as compared to
more complicated measurement of many-particle entan-
glement. Our analysis demonstrated that for a system
with MBL behavior, simple single spin measurement can
reveal the indispensable characteristics, complementary
to more sophisticated routes to check the growth of en-
tanglement entropy[12, 13] or quantum revivals[36] under
time resolution.

The local transverse field couples states with different
total spin Sz along z direction and extends the Hilbert
space of the original system with Sz = 0 and dimension
N(L,S), Eq. (5) to the entire 2L dimensional space of L
spins. We also demonstrated that a local transverse field
directly probes the appearance of level repulsion in the
delocalized phase, while level spacing statistics remain
Poisson in the MBL phase with a transverse quench. In
the delocalized regime at weak disorder, this quench ef-
fectively leads to thermolization of the system in in this
extended Hilbert space, while in the MBL regime such
thermolization does not occur.
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