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We study the interplay of particle-hole symmetry and fermion-vortex duality in multicomponent
half-filled Landau levels, such as quantum Hall gallium arsenide bilayers and graphene. For the
v=1/2+1/2 bilayer, we show that particle-hole-symmetric interlayer Cooper pairing of composite
fermions leads to precisely the same phase as the electron exciton condensate realized in experi-
ments. This equivalence is easily understood by applying the recent Dirac fermion formulation of
v=1/2 to two components. It can also be described by Halperin-Lee-Read composite fermions un-
dergoing interlayer p,+ip, pairing. An RG analysis showing strong instability to interlayer pairing
at large separation d — oo demonstrates that two initially-decoupled composite Fermi liquids can
be smoothly tuned into the conventional bilayer exciton condensate without encountering a phase
transition. We also discuss multicomponent systems relevant to graphene, derive related phases
including a Z> gauge theory with spin-half visons, and argue for symmetry-enforced gaplessness
under full SU(Ny) flavor symmetry when the number of components Ny is even.

I. INTRODUCTION

In the last year, we have learnt of remarkable connec-
tions between some seemingly distinct topics in quan-
tum many body physics. Quantum Hall systems of two
dimensional electrons in a half-filled Landau level have
been related to correlated surface states of three dimen-
sional topological insulators. The latter have in turn
been related to three dimensional quantum spin liquid
phases of insulating magnets. These connections have
lead to a wealth of new insights and progress in all these
research areas.

On one end, it was conjectured by Son! that a sim-
ple way to reconcile the classic Halperin-Lee-Read the-
ory? (HLR) of the compressible state that forms in a
half-filled Landau level with particle-hole symmetry is
by imagining that the composite fermion is a Dirac par-
ticle on which particle-hole conjugation acts effectively
as a time-reversal operation. On the other end, progress
in understanding three dimensional time reversal sym-
metric quantum spin liquids lead to the discovery of a
duality®™ between the theory of a single Dirac cone (in
2+ 1-dimensions) and a different Dirac theory where the
Dirac fermions are coupled to a dynamical U(1) gauge
field. Both theories arise at the surface of the same
bulk three dimensional topological insulator (TI). The
duality interchanges the role of time reversal symme-
try (U(1) x T) and an anti-unitary charge conjugation
(U(1) x CT). This duality is a generalization of the
particle-vortex duality, familiar in interacting bosonic
2 + 1-d systems, to fermions. This fermion-fermion du-
ality clarifies a number of previously poorly understood
issues on the physics of symmetry enriched topological
orders realized at the surface of fermionic topological in-
sulators. Many aspects of the duality have since been
further elaborated®™3 and sharpened.

In the quantum Hall context, the existence of such a
dual description gives a theoretical basis to Son’s pro-
posed description of the half-filled Landau level. The

Dirac composite fermions are simply understood as the
dual fermions that arise in one side of the duality. An
intuitive physical picture of the Dirac composite fermion
can also be developed as a a charge neutral composite of
two 27 vortices bound to the electron carrying a finite
dipole moment®. The Dirac composite fermion theory
finds further support in numerical calculations'?, and
makes predictions for experiments!918 that might dis-
tinguish it from the HLR theory. For further recent work
on composite fermi liquids, see Refs 021,

Building on these developments, in this paper, we will
revisit the physics of multicomponent quantum Hall sys-
tems. These have been much studied over the years
starting from work on bilayer quantum Hall systems
and continuing to current work on graphene and re-
lated systems. We will pay special attention to the role
of particle-hole symmetry when it is present. Much of
our focus will be on bilayer electronic quantum Hall sys-
tems at a total filling v = 1/2 + 1/2. If the interlayer
tunneling can be ignored, and for small interlayer sepa-
ration, the system is in the celebrated exciton conden-
sate phaseé??23 1 We will develop a new description of
this state starting from a ‘parent’ compressible phase in
which each layer has formed a composite fermi liquid.
Along the way we will understand the action of particle-
hole symmetry on the exciton condensate phase. It has
been known for a long time that the fundamental vor-
tex defects around which the condensate order parameter
winds by 27 carry fractional electric charge of 1/2%%. We
will demonstrate that there exist vortex defects around
which the order parameter winds by 47 which are charge
neutral fermions, and moreover are Kramers doublets
under the particle-hole symmetry. These neutral vortices
are, as we show, the closest incarnation of the composite

I In addition to Gallium Arsenide bilayers, recent evidence indi-

cates the realization of this state in graphene double layers24.



fermion itself in the exciton condensate phase.

Our treatment sheds new light on the old question of
the fate of the quantum Hall bilayer at v =1/2+1/2 as
the interlayer separation d is varied. What happens to
the exciton condensate (known to be stable at small d)
as d is increased? At d = oo the two layers will be decou-
pled. Each layer is then expected to form a compressible
composite Fermi liquid. As d is decreased from oo, it has
long been recognized®? that interlayer Coulomb interac-
tions will lead to a pairing of the composite fermions. We
will review this argument in a modern renormalization
group framework (in Sec. below). The symmetry
of the pairing channel is not determined by these cal-
culations. There are important hints of a connection
between the exciton condensate and composite fermion
pairing in previous work. In particular, we have obtained
key guidance from previous numerical work?%28 that in-
dicated that interlayer composite fermion pairing in a
Dz + ipy channel is energetically preferred. Remarkably,
we find that this p, + ip, interlayer paired state is in
the same phase as the exciton condensate that appears
at small d. Thus we are lead to a possible route for
the evolution from small to large d, which is simply that
the exciton condensate is the ground state for all finite
d. However we show that there will be some striking
differences in some non-universal properties as d is in-
creased. We will see that at small d the core energy for
any vortex will be of order e2/lp (where Ip is the mag-
netic length). On the other hand, the pairing energy
scale A for the composite fermions will go to zero as d
goes to co. In terms of the exciton condensate, we show
that this implies that the core energy of the 47 vortex,
which turns out to be controlled by ~ A, is paramet-
rically smaller than the core energy of the 27 vortex.
This unusual phenomenon possibly can be detected in
numerics/experiments in the future at moderately large-
d. We caution that the precise pairing symmetry of the
composite fermions in the large-d limit is hardly a set-
tled issue. Indeed a very recent Eliashberg calculation”
found that a p, — ip, channel is energetically favored
in apparent disagreement with the numerical results in
Refs 2028 Additionally, other studies have advocated
for alternative phases to the exciton condensate beyond
some critical @395 We will not attempt to wade into
this issue here. Though the pairing instability is itself
a universal feature of the large-d limit, it is likely that
the pairing channel is sensitive to short distance physics.
Our work is thus a demonstration that there need be no
phase transition between the small and large-d limits in
some path in Hamiltonian space.

It is interesting to contemplate phases other than the
exciton condensate that might be stabilized in this bi-
layer system. Indeed several such phases have already
been proposed in the literature. As part of this paper
we will address a specific related question. Is it possible
to stabilize a gapped phase that preserves all the sym-
metries of the v = 1/2+41/2 bilayer in the lowest Landau
level? Following discussions®? (see also Ref*?) of simi-

lar questions at the surface of the related 3d fermionic
topological insulators with U(1) x CT, we will construct
a simple example of such a phase with a non-trivial topo-
logical order described by a deconfined Z, gauge theory.
We conjecture that this is the simplest such symmetry
preserving gapped state (i.e with the minimum number
of topological quasiparticles). The Z4 topological order
has a 16-fold ground state degeneracy on a torus, and
our conjecture implies that this is the minimum degen-
eracy of any symmetry preserving gapped state of the
1/2 4+ 1/2 quantum Hall bilayer.

Additionally in this work we will also explore the
cases of four- and eight-component half-filled Landau
levels, exploiting their equivalence to the surface of chi-
ral topological insulators (class AIII). In the presence
of just the Coulomb interaction, the Hamiltonian of
an N-component Landau level at half-filling will have
SU(N) symmetry in addition to charge-conservation and
particle-hole symmetries. For N even and a generic
particle-hole symmetric Hamiltonian, we will provide a
general argument for the impossibility of fully gapped
topological order that preserves all symmetries. If some
of the global SU(N) symmetry is broken explicitly by
the Hamiltonian, such a gapped symmetric topological
order may be possible. We describe such topologically
ordered states in some of these cases, obtaining them
by quantum disordering broken symmetry states. This
discussion essentially extends that of Refs#%7) by con-
sidering additional symmetries besides the microscopic
particle-hole and electron number symmetries there de-
scribed. One of our aims is to facilitate connections to
realistic multicomponent systems, like graphene, where
additional symmetries of the Hamiltonian might play an
important role.

II. BILAYER QUANTUM HALL STATES AT
v= bt}
Consider two quantum Hall layers each at filling v = %
with no interlayer tunneling. This physical situation is
realized in spin-polarized gallium arsenide (GaAs) bilay-
ers with negligible interlayer tunneling under a strong
perpendicular magnetic field?3. This system can be de-
scribed by a Hamiltonian projected to a single Landau
level in which electrons ¢ and j interact via two-body
Coulomb potentials of the form:

Vij = Vo (ri —rj) + 7775 Ve (ri = 15)
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Vo (ri = rj) + Va (ri —mj)

Vo (ri = rj) = Va (ri = 15)

where d is the distance separating the layers, and 7 are
Pauli matrices in the layer index space. There are a
number of global symmetries of this Hamiltonian that



are important. First there are two U(1) symmetries -
which we denote Uy (1) and Usz(1) - associated with the
conservation of the numbers Ny, No of electrons in the
top and bottom layers separately. In the limit when d =
0, the Hamiltonian is actually SU(2) symmetric under
rotations in layer space (known as ‘pseudospin’). This is
broken to Uy (1) x Uz(1) at non-zero d. It will sometimes
be convenient to consider the total charge N; = Nj+ N»
and the “pseudospin” N_ = N; — Ns.

Next, there is an antiunitary particle-hole symmetry -
denoted? CT - which interchanges empty and full Landau
levels of the bilayer system. This symmetry has been
largely overlooked in previous studies of these systems.
If we call the deviation from half-filling of the density of
each layer as dp; = p; — then we have

= —0p;. (2)

Note that at d = oo the two layers are decoupled and
we can do a particle-hole transformation separately for
each layer. However at non-zero d only the common CT
operation is a symmetry.

Finally there is an interlayer exchange symmetry X
which is unitary and simply exchanges the layer index.
If we call dpL = dp1 £ dp2, then

471"

CTépi(CT) ™

CTop+(CT)™t = —dpu4, (3)
Xop Xt = +6ps. (4)

It is useful to consider the symmetries of the interlayer
tunneling operator

Hiyunn = — Z

where a,b € {1,2} are labels for the electron operators
in either layer, and t; = t, (cosf,sinf,0) is a vector
in “layer space” with components only in the xy “pseu-
dospin” plane. This is invariant under a diagonal sub-
group of U;(1) x Uz(1) (corresponding to conservation
of the total charge N;). Under CT, t; — —t,. How-
ever Hyyp, is invariant under a modified anti-unitary
particle-hole operation CT = CTU;(%)Us(—%). One can
choose the action of layer exchange, X, as Xc, X! =
(ZJ_ “ T)abCp, O that the tunneling remains invariant:
t, —t,.

Bilayer quantum Hall systems of this sort have been
studied intensely over the years. In the d — 0 limit with
full SU(2) symmetry the ground state is a quantum Hall
pseudospin ferromagnet33. This ground state is realized
for a large class of repulsive interactions and it is indeed
exactly given by a fully polarized integer quantum Hall
state because the SU(2) limit is free of quantum fluctu-
ations®?. When d # 0 but is small, there is “easy-plane”

(tL - T)abChs (5)

2 In the recent literature the same symmetry has also variously
been denoted C or PH.

anisotropy, and the pseudospin points in the xy plane:
this corresponds to an exciton condensate with sponta-
neous interlayer coherence??. Therefore, at small inter-
layer distances, the exciton condensate ground state is
expected to be well described by the mean field tunneling
Hamiltonian of Eq. 3. This exciton condensate is a
quantum Hall state and has o, = 1 for the total charge
current. In the d — 0 limit, there are skyrmion defects
in the pseudospin ferromagnetic order which carry elec-
trical charge N, = 198, For d # 0 these split into two
meron-vortices which cary charge Ny = 325 As usual
isolated vortices cost logarithmically large energy.

In the limit d — oo, each layer will form a compress-
ible composite fermi liquid state. How does the system
evolve from this limit to the exciton condensate that is
obtained in the opposite limit? One of our goals in this
paper is to address this question using the low energy ef-
fective field theory of the composite fermi liquid state. In
Sec.[[TBlbelow we will review and bolster - within a mod-
ern renormalization group framework - old arguments
showing that in the large-d limit the composite fermi
liquids are unstable to interlayer pairing of the compos-
ite fermions. The fate of the system is determined by the
specific pairing symmetry. We will be guided by previ-
ous numerical studies of this problem showing that the
composite fermions of the two layers like to form a ‘pair’
condensate in the p, +ip, channel as the separation d is
decreased®™28, Interestingly, we will show the resultant
paired state is smoothly connected to the exciton con-
densate described above. We will show this both within
the framework of the Dirac composite fermion theory
and the HLR theory.

One outcome of our analysis through the Dirac com-
posite fermions will be to elucidate the role of particle-
hole symmetry on the exciton condensate which does not
seem to have been discussed in the literature. The ex-
citon condensate order parameter may be taken to be
precisely the €%’ in the interlayer tunneling operator of
Eqn. [} As described above when it acquires an expec-
tation value C7T is broken but C7T is preserved, and the
question of how the latter symmetry acts on the excita-
tions is meaningful.

Composite fermion pairing channels other than the
one supported by the exact diagonalization work of Refs.
2728 are also in principle possible. These alternative
pairing channels will not preserve particle-hole symme-
try. We will not study these other states. For some prior
work on an example of such a state, see Ref. 40.

3 The ground state with a definite and equal number of electrons
in each layer can be obtained by projecting the ground state
of Eq. (5) into such subspace. In this way one obtains the 111
Halperln wavefunction?2, This implies that the Halperin wave-
function is invariant under both CT and CT symmetries.



A. Equivalence between exciton condensate and
interlayer composite fermion paired state

We begin with two decoupled compressible compos-
ite Fermi liquid phases that are obtained in the limit
d — oo. Each such composite fermi liquid is described
by an effective theory of composite fermions forming a
Fermi surface that are coupled to a fluctuating U(1)
gauge field. The precise description is however different
in the Dirac and HLR theories, and so we will consider
the two theories separately. We will analyse an interlayer
paired state that emerges out of this parent compress-
ible state. Numerical work indicates that such a paired
state — in the p, + ip, i.e angular momentum [, =1
channel — is indeed energetically favored?™8, For the
discussion below, it is important rightaway to note that
the labelling of the angular momentum pairing channel
is different for the Dirac and HLR theories. The 7 Berry
phase at the Fermi surface in the Dirac theory implies
that angular momentum j, pairing of Dirac composite
fermions is equivalent to angular momentum [, = j, + 1
pairing of HLR composite fermions. Therefore when we
analyse the paired state below, we will consider j, = 0
pairing in the Dirac theory and, correspondingly, [, = 1
pairing in the HLR theory. We will see explicitly that
they lead to equivalent states. Of course the role of CT
symmetry is only manifest in the Dirac theory.

1. Two-component dual Dirac picture

The decoupled Dirac composite fermi liquid is de-
scribed by two copies of the action proposed by Son®,
and takes the form*

2
- . 1 1
L= ZTPI(Z@-F%)% + EA]daI + gAIdAI 4+

I=1
(6)

Here 7, ar, and A; are the composite fermion field,
the internal w(1) gauge field, and the external probe
gauge field A inlayer I 5. The - - - contain non-universal
terms including Maxwell terms for a; and long-range

4 As emphasized in Ref. [0, strictly speaking this theory should
be refined to properly take into account global restrictions com-
ing from quantization of coefficients of all Chern-Simons terms,
including those involving the external background U(1) gauge
fields. Accordingly we should regard the above action as a short
hand for the more precise version described in Ref. [9. For the
purposes of the present paper, this subtlety does not play a cru-
cial role and it is sufficient to work with the simpler action below.
Using the more precise version does not modify our conclusions.
Our convention is as follows: a Chern-Simons term for gauge
fields «, B read as: adf = "0, 0,05, z = (t,x), AF =
(¢, A), j* = =6L/6AL = (p,), V" = (oy,—t0:,i0z). The
corresponding massless Dirac Hamiltonian only involves the real-
symmetric pauli matrices: Ho = ¥T (ppoy + pyo).

w

Coulomb interactions between the layers of the form
1/2 [ drdr' jro(r)vrr (r — r)jro(r’). The particle-hole
conjugation acts on each of the Dirac composite fermions
as a time reversal operation™2%.

The layer exchange symmetry, X, can be taken to
act simply as XX~ ' = ¥4, Xaf X~ = 77,d,
where 7 denotes Pauli matrices acting on the layer in-
dices I,J (summation implied). There are two sepa-
rate internal U(1) gauge symmetries which we denote
u1(1),uz(1) (not to be confused with the global U(1)
symmetries associated with the physical charge conser-
vation of each layer). It will sometimes be convenient
to define the symmetric and antisymmetric gauge fields
afb = (a1 £as,)/2. Notice that the flux of the as, gauge
fields has the meaning of physical electron chargel, and
hence, we will need to keep careful track of the correct
quantization of fluxes of the a* gauge fields when we
work with them. The corresponding gauge symmetries
will be denoted w4 (1), and the gauge charges ¢1. Note
that ¢+ = q1 £+ go.

We consider j, = 0 pairing between the two species of
composite fermions with the special property that only
the dual u(1)4 is broken while the relative dual w(1)_
is preserved. The specific form of inter-layer composite
fermion pairing is:

0LA = igAYoyTh — igA*wTayTwz/JT
100, + v + az ) AP =l AP = Z|A[ +-o (8)

Here g controls the coupling of the fermions to the
“Cooper-pair” field A, and u,v control the shape of
the “mexican-hat” potential dictating its condensation.
Crucially, A has charge ¢+ = —2 under the symmetric
gauge field a)f = (a1, + az,)/2 but it is neutral under
the antisymmetric field a,; = (a1, — az,)/2. Under CT
and X, A transforms as

CTACT) ' =A, XAX ' =A. (9)

Therefore, this dual “superconductor” respects CT, X,
and the dual relative u(1)_ gauge symmetry. Upon pair-
ing, (A) # 0, the Cooper-pair condensate will fully gap
the gauge field a via the Anderson-Higgs mechanism®L.
In terms of the physical electrons, this means that this
phase is an electrical insulator. The flux of a™ will be
quantized to integer multiples of w. These correspond
physically to electrical charges NV} that are quantized in
units of %

However, the neutrality of A under a~ implies that
this gauge field is not subject to an Anderson-Higgs
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FIG. 1: (Color online) Schematic summary of the different
two-component phases discussed in the main text. Starting
from two composite fermion fermi seas coupled to two gauge
fields (upper left) one obtains the conventional electron ex-
citon condensate (lower left) via a particle-hole symmetric
interlayer composite fermion pairing which higgses the layer
symmetric a;f gauge field, but leaves the layer asymmetric
gauge field, a,,, gapless. Alternatively, one can induce an in-
terlayer coherent composite fermion fermi liquid (ICCFL in
upper right panel) via composite fermion exciton condensa-
tion, higgsing a,, instead of af[. If both condensations coex-
ist one obtains a fully gapped particle-hole symmetric state
with the topological order of Z4 lattice gauge theory (bottom
right).

mechanism. Additionally the CT invariance of the pair-
ing guarantees that there will be no pairing-induced
Chern-Simons term for a,,. As a consequence this gauge
field is gapless and can be described at low energies by
a pure Maxwell theory in two-dimensions.

A Maxwell theory for the a,, gauge field coupled to the
external probe gauge fields via a Chern-Simons term, as
described in Eq. @, corresponds to the dual descrip-
tion*? of an electronic exciton condensate, as argued by
Wen and Zee??. Therefore our paired state of composite
fermions is a condensate of interlayer excitons made out
of the electrons, and has a spontaneously broken U_ (1)
symmetry, which is the subgroup of U;(1) x Us(1) as-
sociated with the conservation of N_ = N; — Nj. It is
a priori conceivable, however, that this state does not
describe the same phase as the conventional exciton con-
densate described by a 111 Halperin-type wave-function,
but could instead possesss distinct gapped quasiparti-
cles. We will show, however, that the excitations of this
paired state are in one-to-one correspondence with the
topological defects and quasiparticles of the conventional
exciton condensate??.

The gapped excitations of the paired state consist of
Bogoliubov quasiparticles that descend from the com-
posite fermions, and topological defects (vortices) of the

pair condensate. As is commonly done for supercon-
ductors?¥, it is convenient to describe the Bogoliubov
quasiparticles by stripping off their a charge by writing

vy = ei% er (where the pair order parameter A ~ e'¢+).
Though the fermions €; are neutral under a, they carry
a_ charges of ¢_ = +1. Further these symmetries allow
€2 to mix with EJ{ (as is explicitly seen by writing out the
pairing term in terms of e;). Thus we will simply write
these as €] ~ €, €5 ~ €.

The topological defects (vortices) of the superconduct-
ing paired condensate have winding of the phase of the
pair field by 2nm, and associated quantized flux nm of
the internal gauge field a4. As mentioned above, these
correspond physically to total electric charges Ny = 7.
To avoid confusion we emphasize that these are vortex
defects of the pair field of the composite fermion, and
not the vortices of the physical exciton condensate. To
distinguish these two we will label the former n-defects
and use the term vortices exclusively for the latter.

As we explicitly show in Appendix [A] the BAG equa-
tions for these n-defects are formally equivalent to
those of the Fu-Kane superconductor®?, except that zero
modes at odd-strength vortices correspond to full com-
plex fermion zero modes (two Majorana modes). As a
consequence n-defects with n odd possess a zero complex
fermion mode and for n even, they do not.

Consider first the 1-defect. This has a single complex
fermion zero mode, and consequently there are two such
defects which we label V. V. is obtained from V_ by
binding an e. This implies first that the ¢_ charges of
these two 1-defects must differ by 1. Further under the
layer exchange symmetry X, e — €', as described in
Appendix [A] This in turn implies that X interchanges
V4 with V_. Thus the consistent assignment of charge
under a,, for {V;,V_}is ¢ = {—1/2,1/2} respectively.
Second, from the definition of e, it is clear that when
taken around these 1-defects, there is a phase of «, i.e,
they are mutual semions. It follows that V. and V_ are
themselves also mutual semions.

Next we turn to 2-defects. These can be obtained as
composites of the 1-defects, i.c as By = V2, fT =V, V_.
The B+ have g = +1 respectively while f‘L has g_ = 0.
Note that fT is a mutual semion with both V, and with
V_. In contrast By are local around V. Since the layer
exchange swaps V; and V_, it follows that fT maps onto
itself under layer exchange. ©

n-defects with other values of n may be discussed sim-
ilarly. Let us now interpret these different excitations
directly in terms of the electrons. We already pointed

6 Tt is interesting to discuss the self-statistics of these defects.
To do so we imagine temporarily “turning off” the coupling to
the fluctuating a— field. Then Vi, V_ can both be taken to be
bosons. The By are bosons while fT is a fermion. We can now
formally introduce fields with these statistics, and couple them
to a— according to their g— charges.



out that n-defects have electric charge Ny = n/2. Con-
versely a charge ¢— under the gauge field a,, corresponds
to vortices with 4mq_ winding for the physical order pa-
rameter of the exciton condensate 7. Consequently, the
1-defects Vi carry physical charge Ny = 1/2 and have
vorticity +27 for the exciton order parameter. They
thus correspond precisely to the vortex and anti-vortex
meron defects of the exciton condensate with positive
charge?®. The 2-defects By correspond to 47 vortices of
the exciton order parameter with total charge N, = 1.
More interesting are the two fermions fT and e. As a
2-defect fT has Ny = 1 but it has no vorticity. Recall
further that f' is a mutual semion with the basic meron
defects V1. These are exactly the same properties as the
relic of the electron in the exciton condensate. Specifi-
cally we “neutralize” the A_ charge of the electrons in

the top and bottom layers, c},cg, by writing them as
= ei%ff, c£ = e_igfg. Now in the exciton condensate
f;( and f; can mix with each other and they count as
a single common excitation f! which has N, = 1, and
which is a mutual semion around the basic 27 merons.

The € particle is a 0-defect, and hence has Ny = 0.
However it carries ¢_ = 1, and hence is a 47 vortex of
the exciton condensate. This electrically neutral 47 vor-
tex can be obtained directly in the exciton condensate by
binding a charge 1/2 meron V, to a charge —1/2 meron
denoted by V_. V_ is the antiparticle of V_, carryinig
g— = 1/2 and and hence 27 vorticity of the exciton con-
densate order parameter. V| can be obtained from V_
by binding with fT. As f1 is a mutual semion with both
V,, and V_, it follows that V., and V_ are themselves
mutual semions. It is natural then that their bound state
€ is a fermion.

This is exactly the same excitation structure as the
usual exciton condensate. Thus, as promised, we learn
that j, = 0 interlayer pairing of Dirac composite
fermions leads to a state that is smoothly connected to
the usual exciton condensate. Further as we explain be-
low we readily infer how the particle-hole symmetry acts
on the exciton condensate which, to our knowledge, has
not been discussed in the literature before.

We first recall that the relevant symmetry that is
unbroken by the exciton condensate is the C7T =
CTUL(%)U2(—3%) introduced above. The f particle is
obtained from the electron by stripping off it’s U_(1)
charge. Thus it transforms as:

criter = (10)

We know that the phase 6 of the exciton condensate is in-
variant under C7, and hence the vorticity is left invariant

7 A simple way to elucidate this connection is to imagine gaug-
ing the external layer asymmetric probe gauge field A, =
(A1 — A2,)/2 and noting that in this case the exciton con-
densate vortices in which the order parameter winds by 4mq_
would trap flux 2wg— of this gauge field.

n ez
A
B_ f’f By
V. Vi
N
- L > q_ €72
\7+. .V_
B, f B
Y vorticity = 4mq_

electric charge = n/2
Goldstone mode = a_ photon

FIG. 2: (Color online) Quasiparticle lattice of the exciton
condensate. The horizontal axis is the dual ¢g_ charge which
is in one-to-one correspondence with the winding of the phys-
ical exciton order parameter, which is 4rq_. The blue dots
designate the meron excitations. The vertical axis is the dual
flux under a+ in units of © which is in one-to-one correspon-
dence with the physical charge Ny = n/2. All quasiparticles
can be constructed as bound states of elementary merons V
and V_. Layer exchange symmetry X acts as a mirror oper-
ation for the horizontal axis, (- — —q—, n — n), and the
particle-hole symmetry CT, acts as a mirror operation for the
vertical axis , (g—- = g—, n — —n).

by CT but their physical charge N, if any, will change
sign. The merons V, and V_ are thus interchanged by
CT. Since they are mutual semions, their bound state
- which is just € - will be a Kramers doublet under CT .
This also follows very directly from the Dirac composite
fermion picture. As we have emphasized ¢ is simply the
remnant of the composite fermion (which is a Kramers
doublet under C~7') in the interlayer paired state.

The CT transformation of other excitations can now
readily be worked out. We have described C7 in the
exciton condensate using its construction from the Dirac
composite fermion theory. In Appendix [C] we give an
alternate derivation of the CT properties of this phase by
constructing it directly in terms of electrons. The lattice
of quasiparticles and the symmetry action is summarized
in Fig. 2

We describe explicit wavefunctions for the vortices in
further detail in Appendix [B] It is interesting to note
that configurations with only one vortex in the order pa-
rameter, of arbitrary vorticity, can be realized by having
different magnetic field strengths for external magnetic
fields acting on each of the two-components of interest,
for example, in the sphere the exciton condensate ground
state is realized at flux quanta N} = Ni =2N; —1=
2Ny — 1, with N1 2 = N/2, and a vortex of vorticity v



can be realized by setting instead qus = 2N; — 1+ v,
Ndz, = 2N; — 1 with Ny o = N/2, this can allow numer-
ical studies of these vortices and verify their Kramers
structure explicitly.

Let us comment on the issue of confinement. The vor-
tices will, as usual, have logarithmic energy cost due to
the phase winding of the order parameter. A weak inter-
layer tunneling term, if present explicitly in the Hamil-
tonian, will pin the order parameter phase, and will lead
to linear confinement of the vortices.

2. Halperin-Lee-Read picture

In this section we consider the same paired state
within the Halperin-Lee-Read (HLR) description. As
already mentioned in HLR a pairing channel with or-
bital angular momentum channel [, corresponds to a
spin-orbital coupled total angular momentum channel
j, =1, — 1 in Dirac picturel. Thus we study [, = 1, or
Dz + ipy, in HLR picture 8, This is also a pseudospin
triplet channel with N_ = N; — Ny = 0. Trial wave-
functions with this pairing symmetry have been shown
to display large overlaps with ground states in exact di-
agonalization studies in the regime of intermediate layer
separations d > [ 5<%,

We consider a slightly modified version of the orig-
inal Halperin-Lee-Read theory based on a parton con-
struction instead of conventional flux binding (see, e.g.,
RefY). Parton constructions have the formal advantage
of making it easier to keep track of the normalization of
the unit charges of the emergent gauge fields, simplify-
ing the task of deriving a properly quantized K-matrix
theory 9. The Lagrangian describing this theory is:

2 2
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L= E 111} (z@t +arp — p+ar) a*I) > Y1
2m

I=1 (11)
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where «; is the field dual to the boson current, con-
ventionally used in the Chern-Simons description of the
Laughlin state. Upon pairing the composite fermions
form a “superconductor”. The theory that ensues can

8 More precisely, the weak paring phase of [, = 1 channel in HLR
picture corresponds to j, = 0 pairing in the Dirac picture.

9 In this parton construction the physical electron operator in
layer I is the product of a boson and fermion: cl} = w}bl}. The
fermion carries charge —1 under an emergent gauge field ay, and
the boson carries charge +1. Additionally the boson carries the
full physical charge under the external probe field A; and forms
a Laughlin state at v; = 1/2. The composite fermions 1y do
not experience a net magnetic field and hence they form a fermi
sea type-state and are chosen as Galilean fermions in HLR. The
gauge field ay in Eq. is the dual to the boson current of by.

be viewed as the gluing of a two-dimensional “supercon-
ductor” to the Laughlin theory of bosons described by
the Lagrangian in the second line of Eq. . We willl
proceed by first describing the “superconductor”, and,
later on, we will glue it back together with the Laugh-
lin bosons. The “superconductor” is made from paired
two-component non-relativistic fermions in a p, + ipy,
N_ = 0 layer pseudo-spin triplet channel, coupled to two
internal gauge fields: a; . Such pairing can be formally
induced by adding the following Lagrangian to Eq. (11):

SLA = gAYT (pz — ipy)th + gAY 7 (py + ipy )T
160, + an+ a2 ) AP — ulAP = ZIA[ 4o (12)

After the pairing we can describe the “superconduc-
tor” as a product of a neutral sector and a charged sec-
tor under alf = (a1, + ag,)/2. The neutral sector cor-
responds to a familiar paired state in two-dimensions:
superfluid He-IIT in its A-phase with spin triplet S, =0
pairing, where the analog of the spin of the Helium atoms
here is the layer pseudo-spin degree of freedom. In mod-
ern language this corresponds to Viitaer = 2 in the Ki-
taev classification®”. Such topological order can be de-
scribed by a Chern-Simons theory with level 4. Addi-
tionally, the quasiparticles in the neutral sector carry
charges under the a, = (a1, — az,)/2 gauge field. In
analogy with the Dirac case, the BAG equation describ-
ing the vortices of this p, + ip, superfluid is formally
equivalent to two copies of the spinless p, + ip, super-
fluid studied by Read and Green?®, so that the zero
modes correspond to complex fermion modes (two majo-
rana modes). Therefore, we can write the corresponding
Chern-Simons theory for the gauge fields describing the
“superconductor” as:

Loo= 28008 + LB d(m —a2) + 5-Bud(e + -
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Let us describe the meaning of the different charges un-
der the several gauge fields. A charge [_ € Z under the
gauge field B_ labels the different quasiparticles of the
neutral sector. We denote the quasiparticles correspond-
ing to the the labels I_ = {2,1,0,—1} as {u,v,1,0} re-
spectively. Label p is a fermion, v is a vortex with its
complex fermion zero mode empty, and v is the corre-
sponding vortex with its zero mode filled. Since the layer
exchange symmetry, X, is also manifest in the HLR for-
mulation, we can use the same argument employed in the
Dirac case to infer the charge assignment for these vor-
tices under a,,. Therefore [ also determines the charge
q— = —I1_/2 under a, . This is the physical origin of
the mutual Chern-Simons term between S_ and a, in
Eq. .

The charge [ € Z under 54 labels the vortices of
the charged sector, and the mutual Chern-Simons term



between 4 and a,‘f encodes the fact that Abrikosov vor-
tices trap flux. B4 is the dual field to the Cooper-pair
current and the Chern-Simons term is familiar from the
standard boson-vortex duality*?. We need to impose a
further restriction on the allowed quasiparticles of this
superconductor: the odd strength vortices in the charged
sector have to appear in combination only with {v, o},
and the even strength appear only with {1, u}, namely
only quasiparticles satisfying (I_+1;)/2 € Z are allowed.
This can be easily accomplished by a change of basis in
the lattice of allowed charges of 3, ,_, which can be im-
plemented by redefining;:

B =B+ + B,
ﬁ? :ﬁ+ _573

and demanding that the corresponding charges 1/, =
(I+ £1-)/2 be integers. We are now in a position to
glue back this “superconductor” to the Laughlin bosons
appearing in Eq. . This can be accomplished by
noting that the a2 fields appear linearly in the Chern-
Simons action, so, one can integrate them out to obtain
at low energies a constraint between the internal gauge
fields of the “superconductor” and the Laughlin bosonic
fields. The constraint that follows is simply: B; = ay,
for I = {1,2}. Then the Chern-Simons part of the La-
grangian of our topological field theory can be written
in the form of a K-matrix theory:

(14)
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which is the conventional Chern-Simons theory describ-
ing the 111 Halperin state*?.

Let us close this section by contrasting the HLR and
Dirac pictures of the exciton condensate as an interlayer
paired state of composite fermions. In the HLR pic-
ture the existence of a gapless mode for the a~ gauge
field can be viewed as the result of a cancellation of two
self Chern-Simons terms of apparent different origin: a
“background” Chern-Simons term arising from the flux
binding and a Chern-Simons term induced by the specific
Dz +ipy pairing channel under consideration. Notice that
the cancelation occurs for this specific pairing channel,
and would not occur if instead we had paired the com-
posite fermions in the p, — ¢p, channel, in which case a
net self Chern-Simons term for ¢~ would remain endow-
ing the gauge field with a gap and hence not leading to a
broken symmetry state in the physical electron degrees
of freedom. Such p, — ip, pairing had been considered
in Ref* and was shown to lead to a (3,3, —1) Halperin
type state, which is clearly topologically distinct from
the exciton condensate.

The p, +ipy channel in HLR corresponds in the Dirac
picture to a pairing channel which manifestly respects

the particle-hole symmetry of the bare electrons, be-
cause, such symmetry is implemented as a time rever-
sal operation on the composite fermions. Given that the
exciton condensate retains the CT symmetry, the Dirac
picture thus gives a simple route to reach it through
composite fermion pairing in a way which manifestly pre-
serves this symmetry.

8. Equivalence from explicit wave-functions and connection
to previous numerical studies

Previous studies have found that trial paired states
of the type considered here have large overlaps with the
exact ground state at intermediate interlayer distances
d > 2028 Tp this subsection we show a way to re-
write a trial paired wavefunction in a form that shows
its exciton condensate correlations more explicitly. We
begin by noting that in the symmetric gauge the canoni-
cal wave-function describing the exciton condensate can
be written as a Halperin wave-function of the form:

Uy = H(Zz - zj) H(wz — wy) H(Zz —wj;),  (16)

1<j 1<j 1,J

where we have written a wavefunction with a definite
number of particles, N/2, in layer 1 (2) with coordinates
z; (w;) and we have omitted the ubiquitous exponential
factors of the Lowest Landau level. On the other hand a
trial wavefunction for the interlayer paired state can be
motivated to be:

\ijair =

det [ _le] [T — 2 TLws = wy)®

where a projection into the Lowest Landau level is im-
plicit. The first product of factors that involves only the
absolute values of interparticle distance is intended to be
a variational factor that controls the probability ampli-
tudes but not the phases of the wavefunction, we leave n
and m as arbitrary parameters at this point. The prefac-

tor det [ﬁ} describes a p,+ip, BCS wavefunction for
layer pseudo-spin triplet with N_ = 0, and the Laugh-
lin bosonic Jastrow factors describe the correlation-hole
associated with intra-layer two-flux binding. The fac-
tor [, ; |z —w;|™ also regularizes the probability of the
wave-function as w; — z;. Now, by making use of the
Cauchy identity:




we can obtain the following expression for the paired
wavefunction (up to an overall sign):

v Ot B | (19)
ir = _ 111-
par Hi,j |Zz _ wj|2 m

The above relation shows that if we view a particle z; as
an “impurity” moving in a many-body sea of vortex-like
objects described by z;’s and w;’s, it acquires the same
phases in both wavefunctions when moving around those
vortices, and the difference is only the probability ampli-
tude with which it approaches the cores of those vortices,
and also in the probability with which vortex cores ap-
proach each other. Such factors are non-universal and
are dictated by the specific choice of wavefunction we
made. It is non-trivial to elucidate the effect of the Low-
est Landau Level projection on these wave-functions, but
this rewriting is further strong evidence that the two
wave-functions are specific realizations of the same un-
derlying phase of matter.

Apart from the numerical studies described in
Refs 2728 that have been essential in motivating us to
focus on the p, +ip, interlayer channel, other numerical
studies had previously encountered interesting persistent
aspects of exciton condensation physics to large inter-
layer distance, which contained important hints of the
physics we have discussed. In particular, Ref?? found
numerical evidence of the persistence of the linearly dis-
persing Goldstone mode up to large interlayer distance.
We also note that other numerical studies have advo-
cated the possibility of the disappearance of the exci-
ton condensate at interlayer distances beyond a criti-
cal value?* 34, In particular, one simple yet non-trivial
test that any particle-hole symmetric state must satisfy
is that the shift in the sphere must be S = 1 Ref-
erencé?’ argued that this shift persists to intermediate
distances. Other studies®¥3* have countered this by ar-
guing for the possibility of a phase transition at which
the shift changes. We hope that our work motivates fur-
ther numerical studies that attempt to settle the nature
of the ground state at intermediate interlayer distances.

B. Pairing instability

It is of course an energetic question whether any com-
posite fermion pairing at all occurs at large d, and if so
in which channel. Here we address the following ques-
tion. In the limit of very large-d, is the state with two
decoupled composite fermi liquids stable to the weak in-
terlayer Coulomb interaction? Previously this was ad-
dressed by Ref20. Here we revisit this issue within the
framework of modern renormalization group treatments
of such questions®”. We will see that arbitrary weak
interlayer Coulomb interactions causes a pairing insta-
bility. This calculation however cannot determine the
specific pairing channel.

The composite Fermi liquid bilayer is unstable to in-
terlayer pairing through a mechanism dependent on the
asymmetric gauge field a~. First, in contrast to the long-
ranged Coulomb kernel of the total-charge gauge field
a™, the asymmetric a~ gauge field couples to imbalances
of the layer charges, and so its Lagrangian has a shorter-
ranged kernel, associated with the dipole coupling be-
tween regions of local charge imbalance. Therefore, a™
loses the fluctuation-stabilizing effects of the long ranged
Coulomb interaction, instead fluctuating quite freely and
providing non-Fermi-liquid behavior. Second, composite
fermions on the two layers couple to ¢~ with opposite
charges, resulting in Amperian attraction rather than
repulsion, and hence a strongly enhanced pairing.

To set up the renormalization computation, let us
study these two ingredients in more detail. First we ob-
serve the propagator for each of the two different combi-
nations of gauge fields, which is set by the microscopic
interactions between electrons. Because of flux attach-
ment, in either the HLR or Dirac pictures, the electron
Coulomb interaction Eq. 1 can be rewritten as a long
range interaction between fluxes of the gauge field. The
at, a= gauge field self-interactions are

= ar)[ri e/e ay)lr;
L= STranlil e (Tl
o2
= (VXaJr)[m}elr;l_m(VXa*)[rj]
o2
+ (Vxa™)[r)2falr: — rj]?(an*)[rj] (20)
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The long range 1/r Coulomb interaction can stabilize
the gauge field against strong fluctuations, allowing the
composite fermions to be preserved as long lived quasi-
particles with a sharp Fermi surface, albeit with cor-
rections expected for a marginal Fermi liquid. However
here only a™ enjoys a long ranged Coulomb interaction;
in contrast, a~ couples to electric dipoles rather than
electric charges, and therefore exhibits a short ranged
interaction, decaying as 1/r3 at large distances.

Second, we may observe the form of the coupling be-
tween the composite fermions of each layer and the two
different combinations of gauge fields. The coupling of
the Fermi surface to the gauge field can first be written
as a sum over decoupled patch actions, each describing
a pair of opposite (antipodal) patches of the Fermi sur-
face. Let z be the axis separating the patches, ie T is
normal to the two patches. The lagrangian for each such
pair of antipodal patches, denoted as n = 4, contains



the following coupling between fermions and gauge field,

2
L.= Z Z nmp}n(—iax +ar)Vr, (22)

n=+I=1
2
= > e | Yo vl (<id)un
n==+ I=1
+ ajwinwln + a:wgann
+ a;QzZ)Jlrnq/)“] - a;w;ﬂ/@n] (23)

Observe that the two layers couple with the same charge
to the symmetric gauge field, but with opposite charges
to the antisymmetric gauge field.

The RG procedure can then be performed follow-
ing Ref. 60. The full action is composed of the La-
grangians L, and L. plus the remaining fermion ki-
netic term Ly = 3 ; w}n([% — vpd2 /2K )Y, with
K the Fermi surface curvature. L, may be written
for the patch theory with renormalized couplings g as
Lo ~ |ql(af)?/g" + ¢*(a;)?/g~. Here g—, associated
with the bare |g|? interlayer interaction, captures the an-
alytic ¢* term which is automatically generated by |q|>
and is more relevant; its UV value is g~ = Ip/d. The
resulting a* and a~ static gauge field propagators have
the form D*(0,q) ~ g+ /|q| and D=(0,q) ~ g~ /q>. [See
Ref. 50l for intermediate-energy constants; & there is g
here.] The effective couplings §* between the fermions
and the a™ gauge fields are found to obey the following
RG flow equations,

5+
O =y (24)
i (25)

The coupling g is proportional to the square of the gauge
charge, so g= > 0, and g flows to zero logarithmically,
controlled by the long range Coulomb interactions. In
contrast, the coupling to the strongly-fluctuating mode
a~ flows to a finite value g, = 1/2.

Now we may consider the flow of the four-fermion BCS
scattering vertex V', which couples different patches of
the fermi surfaces. The BCS four-fermion vertex V can
be decomposed into angular momentum pairing chan-
nels V,,,; each is found to show the same independent
flow. Denote the BCS pairing as V' for pairing between
patches in the same layer, and V'~ for pairing between
patches in opposite layers. The pairing RG flow equa-
tions are found to be

av+ it L A
=~V +i" +g (26)
dv -~ N2 At e
W:_(V P +gt -3 (27)

The first term in each line is the usual Fermi liquid re-
sult, while the § terms arise from the Amperian repul-
sion/attraction set by the relative sign of the fermion
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charges under the gauge field. Since the gauge coupling
fixed point is at g& = 0 but g = 1/2, it is clear that
the intra-layer pairing V+ flows to repulsive interaction,
while the inter-layer pairing V'~ flows to attractive inter-
actions, enforcing an instability to an inter-layer paired
state at low temperature.

There are two things to note about this instabil-
ity. First, the RG flow does not determine the pair-
ing form of the instability, since all interlayer channels
have the same diverging flow; rather, the pairing chan-
nel of the strongest instability is determined by short
distance physics. Second, we note that the short ranged
1/r® bare form of the a~ interaction leads to uncon-
trolled non-Fermi-liquid physics. Indeed, the RG proce-
dure can be controlled®? by a double expansion®! in the
number of fermion species N and in the range e of the
a~ interaction written as 1/r1*¢. The temperature scale
at which the non-Fermi-liquid physics is expected to be
seen is here nominally of the same scale as the pairing
instability gap, even at large-N. However, the a~ kernel
can be modified by hand to 1/r'*¢ form, furnishing a
control parameter ¢; in the small-e regime where non-
Fermi-liquid physics is controlled, the pairing instability
is unavoidable and preempts destruction of the Fermi
surface. This qualitative behavior may then be expected
to carry over to the present uncontrolled case, leading
to a pairing instability at any d. We also observe that
while the result for strong interlayer pairing instability
is strictly robust only within the double expansion, the
intuition associated with the two necessary ingredients
(opposite a~ charges and strong a~ fluctuations) sug-
gests that at € ~ N ~ 1 the interlayer pairing channel
will still show a strong instability.

C. Some physical consequences

Let us now consider some of the physical properties of
the exciton condensate as d is decreased from oco. The
existence of a weak coupling instability to pairing in the
d — oo limit discussed in the previous section, and the
numerical evidence for a ground state with large overlaps
with interlayer paired trial wave-functions of the p, +ip,
types™28, suggests the conjecture that the ground state
for a disorder-free quantum Hall bilayer does not un-
dergo a quantum phase transition at any finite d. It is
possible, therefore, that there is only a smooth crossover
from large to small d, though the non-universal physi-
cal properties could change quite significantly. A close
analogy exists with the celebrated BCS-BEC crossover
of fermions with an attractive interaction. The large-d
limit corresponds, in this analogy, to a BCS-like state
of the composite fermions, and the small-d limit to the
BEC state. There are however some striking differences
in the interpretation of some of the phenomenology.

In the large-d limit, the pairing scale A (which
also sets the energy scale for the Berezinski-Kosterlitz-
Thouless transition out of the exciton condensate,



Tprr ~ A ) will be parametrically small in the ratio of
the interlayer and intralayer Coulomb interactions, d/ip
where [p is the magnetic length. Following the RG flow
equations from the small UV value §~ =~ lg/d at large d,
one finds (in both the controlled small-¢ regime as well
as in the physical regime) that the resulting pairing gap
A decreases with layer distance as A ~ (1% /d?)e?/lp. In
contrast, in the limit of very small d, the interlayer and
intralayer Coulomb energy scales approach each other,
and A ~ Tgxr ~ €?/lg. This behavior of A is shown
schematically in Figure

This has a very interesting consequence. Consider the
large-d limit. The composite fermion pairing scale A
may be taken to be the energy gap of the e particle
within a mean-field description which ignores the cou-
pling to a=. But this particle has the physical inter-
pretation of being a neutral 47 vortex in the exciton
condensate. The gap A is properly then viewed as the
core energy of this vortex. The energy cost associated
with the coupling to the a™ is the usual logarithmic en-
ergy associated with the phase winding of the exciton
condensate order parameter. The coefficient of this log-
arithm is proportional to the phase stiffness; since we
are interested in its partially-renormalized value at the
intermediate scale R associated with the vortex pair dis-
tance (see below), we may approximate it by its T'= 0
value even at temperatures nearly as high as the transi-
tion temperature. The T = 0 stiffness can be estimated
in mean-field®” to be €?/16v/27lp at d = 0, decreasing
at larger d as e2l%/8md3. What about the 27 vortices?
In the large-d limit these are obtained as vortex defects
(the 1-defects) of the composite fermion pair order pa-
rameter. A standard argument shows that they will have
core energy set by the composite fermion Fermi energy
~ €2 /lg. Thus the core energy of the neutral 47 vortices

d

~

FIG. 3: (Color online) Schematic of the pairing gap A as a
function of interlayer distance d. For large interlayer separa-
tions d > I, the pairing gap A (and the associated transition
temperature) decrease rapidly as A ~ l2B/d2. For small d, the
gap A approaches the Coulomb scale /1. The gap A also
sets the core energy of the 47 vortex; at large d, even fairly-
separated pairs of 47 vortices will be cheaper than their 27w
counterparts.
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is much smaller than that of the 27 vortices in the large-
d limit. Of course as usual the phase winding energy is
smaller, by a factor of 4, for the 27 vortices.

As d decreases the core energy of the 47 vortex will
increase and at some point become comparable to that of
the 2m vortex (Ce?/lp with some numerical coefficient
C). If we create vortex-antivortex pairs separated by
a distance R, the total energy is the sum of core and
phase winding contributions. For sufficiently large R at
any d, 2w vortex-antivortex pairs will be cheaper than
their 47 counterparts. However at large-d, there will be
a range of R > Ip where it will be cheaper to create 47
vortex-antivortex pairs than 27 ones. In the mean-field
estimate this scale R is exponentially large in d2,

3

Ce?/lp — A d
¢/ls ]leexp{C'l%] (28)

R~ ZB exp |:(22—12)7rps

and can become effectively thermodynamically infinite
at large d. This may reveal itself near the finite temper-
ature phase transition, where the stiffness may be un-
usually renormalized as a function of temperature, when
d becomes sufficiently large such that 47 vortex pairs
become cheaper than the fundamental 27 vortices.

In particular, observe that at large d, there is a sepa-
ration of energy scales mp, < A < Ce?/lp between the
stiffness, the 47 vortex core energy and the 27w vortex
core energy, respectively. Thus the finite temperature
transition into the exciton condensate is expected to re-
main a continuous Kosterlitz-Thouless transition. The
transition will still be associated with a discontinuity in
the stiffness ps at T,, jumping from ps; = 0 up to the
diagonal line p; = (2/7)T. Here, however, as ps con-
tinues to rise with decreasing temperature, there is also
expected to be a rounded singularity reaching up to the
diagonal line ps, = (8/7)T, associated with the pairs of
47 vortices. This additional sharp rise in p, should oc-
cur at T quite close to T.. If the length scale R above
is increased (say by increasing d) up to the finite size L
of the mesoscopic system, the 8 /7 jump would become
fully singular, and would occur precisely at T, through a
double-vortex continuous Kosterlitz-Thouless transition.

These observations do not rely on the presence of
particle-hole symmetry. If this symmetry is present, as
we argued, the neutral 47 vortex will be a Kramers dou-
blet. It will be interesting to find a way to create and
probe the associated two-fold degeneracy. Our discus-
sion ignores the impact of disorder in this phase. Numer-
ical studies suggest that the exciton condensate is stable
against weak quenched disorder and indicate the possi-
bility of an intervening glassy phase at finite disorder
strength in which the exciton superfluidity disappears
but the system remains an insulator in the bulk with a
quantized Hall conductivity before the system turns into
a gapless state at stronger disorder®Z.



III. SYMMETRY RESPECTING FULLY
GAPPED Z,; STATE AT v = + 3

Though the exciton condensate is potentially a stable
phase at any d, it is interesting to ask about other pos-
sible phases that might also be stable at intermediate or
large d. Of particular interest to us here is the possibil-
ity of a gapped phase which preserves all the symmetries
of the Hamiltonian. We will construct what we conjec-
ture is the simplest example of such a phase and show
that it has topological order described by a deconfined
Z4 gauge theory. This state has a 16-fold topological
ground state degeneracy on a torus, and our conjecture
implies that this is the minimum possible degeneracy if
all the symmetries are preserved.

This state has, to our knowledge, not been previ-
ously described within the quantum Hall literature but
it is closely connected to the gapless exciton conden-
sate state we just described and also to the Interlayer
Coherent Composite Fermi Liquid (ICCFL) state pro-
posed in Ref¥, We are interested in obtaining a fully
gapped topologically ordered phase, therefore, we wish
to gap out the a,, photon, which is the linearly dispersing
Goldstone mode viewed from the electron exciton con-
densate perspective. To achieve this while keeping the
microscopic symmetries of the bare fermions we proceed
by condensing a field that carries charge under a, 10,
In other words, in addition to the composite fermion
cooper pair, we condense a dual exciton bosonic field,
¢ = ¢g + i¢y, made from a composite fermion particle-
hole pair, which can be done by adding the following

Lagrangian to Eq. @ or Eq. :

5Ly = g0 (Tada + Tydy )b
+ (i, + ar — az,) 8% — s|¢]? — g\sﬁl“ 4o (29)

where gg4,s,r are parameters controlling the coupling
of ¢ to the fermions and its condensation. Under the
particle-hole (CT") and layer-exhange (X) symmetries, ¢
transforms as:

CT)(CT) ™" = ¢, XoX 7' =9¢". (30)

Therefore the condensation respects CT. Since ¢ carries
charge 2 under a,, its condensation gaps the fluctuations
of a, via the Anderson-Higgs mechanism®. The interac-
tion between a,, charges becomes short-ranged and they
become fully deconfined. The charge under a,, in the ex-
citon condensate picture implies that ¢ is an 87 vortex of
the order parameter. Therefore this transition can also
be viewed as a form of vortex condensation in a super-
fluid analogous to that occurring in the superconductor

10 In the present work we describe the low energy theory of the
resulting phase without focusing on the specific microscopics
that might make it energetically favorable.
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at the surface of a two-component AIII topological in-
sulator described in Ref“®. In the resulting phase the
fundamental vortex of the condensate of ¢ that traps =
flux of the a,, gauge field at its core also becomes decon-
fined. This quasiparticle is charge neutral N, = 0 under
the external symmetric probe gauge field A:, and has
fractional layer-charge-imbalance charge N_ = 1/2 un-
der A, = (A1, — Az;,)/2. In the reminder of this section
we will describe the properties of this phase both within

the Dirac and HLR pictures.

A. 7, ordered state from Dirac picture

We start from the dual description of the exciton con-
densate in the Dirac picture described in Section
We induce a phase transition starting from a parent exci-
ton condensate by condensing an 87 vortex of the exciton
order parameter which can be viewed as a pair of com-
posite fermions ¢ ~ €2. This object carries charge ¢_ = 2
under the a, field, and has no physical charge (i.e. it
carries no flux under the af{ field). This dual exciton
condensate field, ¢, must not be confused with the phys-
ical exciton order parameter which has disappeared in
the present phase since the long-range order is destroyed
by vortex condensation. The condensation allows for
vortex-like topological defects of the dual exciton con-
densate, ¢, to become stable quasiparticles. These new
defects can be labeled by an integer m. Around an m-
defect the pair field ¢ has a phase winding of 2mm, and an
associated quantized flux mm of the internal gauge field
a~. As mentioned before, this flux corresponds physi-
cally to a total layer charge imbalance of N_ = m/2.
Let us denote the elementary m = =1 defects 5, and
3 respectively. ( is the antiparticle of 5 and both ob-
jects have bosonic self and mutual statistics. The § vor-
tex does not carry non-trivial zero modes, and hence its
transformation properties under layer exchange, X, and
particle-hole, CT, symmetries follows simply from the
fact that the a~ flux is odd under either of these trans-
formations and that the vorticity of ¢ is also odd under
these transformations (which follows from Eq. (30))):

CTBCT ' — B, XBX~! = 5. (31)

In this phase we have relics of the meron quasiparticles
which we will denote by the same labels as in the exci-
ton condensate {V,,V_,V, V_}. Importantly, in the
present phase the relics of the merons become fully de-
confined finite energy excitations because their charge
under the a_ field is screened by the ¢ condensate. How-
ever, in spite of their a_ charge being screened, they still
experience a long-range statistical Aharonov-Bohm-type
interaction with the vortices carrying a_ flux, namely
with the 8 defects described in the previous paragraph,
much like in the case of quasiparticles in superconduc-
tors. Consider for example Vi . Since this excitation
carried ¢— = 1/2 under a~ in the exciton condensate,



this implies there is a phase of /2 when it completes a
full braid around . Both of these quasiparticles have
bosonic self-statistics and therefore they behave like the
anyons of Z, gauge theory. As we will see, any other
excitation can be expressed as a bound state of these
two quasiparticles modulo local excitations, therefore
the present state has indeed the topological order of Z4
gauge theory.

Let us denote the physical electron quasiparticles in
the top and bottom layers by {ci,cg} respectively. cf
carries physical charges Ny = 1 and N_ = (—1)¢*L,
The quasiparticles 8* and Vf can be viewed as local

bosons, indeed, 5% ~ cJ{cQ, and V_ﬁ ~ cic; Therefore,

for purposes of describing the quasiparticles it will suf-
fice to keep track of the electron operator only in one
layer since ¢b ~ B4, The electron is local with re-
spect to all excitations, and since  has bosonic self-
statistics, it follows that 32¢] is a fermion. This fermion
has a global physical charge Ny = 1, but has no layer
charge imbalance, N_ = 0. Additionally, BZCI acquires
a phase of —1 when it completes a full braid around
the Vi meron, meaning that they have mutual semionic
statistics. Therefore, this quasiparticle is the relic of the
bogoliubov-like fermion of the exciton condensate, fT,
described in Section We will keep the same la-
bel for this quasiparticle in the Z, state, namely we call
f1= 5.

The identification fT = B2¢! allows to identify all
the relics of the exciton condensate quasiparticles in the
present order because they can be constructed as bound
states of {V, V., fT, f}. The relic of the meron with the
same physical charge but with opposite vorticity of V,,
labeled V_, can be obtained as V_ = ffV, = Bzfﬁ_c]{.
The relic of the composite fermion particle € can be ob-
tained as e = V, V_ = ﬁQVfcl, which can be seen to be a
fermion (32V2 has bosonic self-statistics) and carries no
physical charges Ny = N_ = 0. From this identification
we can specify how V. transforms under CT and X:

CTV.CT ' V.=V, 5%,

_ (32)
X VX' 5V, =V, 3%l

Notice that the since V; and V_ are swapped under
CT and they are mutual semions, it follows that e =

V4, V_ is a Kramers fermion. This is consistent with the
assigment in the exciton condensate C77'2 = —1, since

C~T2 = CT? for any quasiparticle that has no layer charge
imbalance N_ = 0.

A consequence of the anti-unitary nature of C7 sym-
metry is that the super-selection sectors related by this
symmetry must have topological spins which are com-
plex conjugates of each other. Z, topological order con-
tains only fermions, bosons, semions and anti-semions.
Then, this rule implies that fermions map into fermions,
bosons into bosons, but the semions must be mapped
into anti-semions. Table[[]lists the topological spins and
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TABLE I: Topological spins of representative quasiparticles
of the four distinct semion superselection sectors of Z4 order
in quantum Hall bilayers. Transformation rules under layer
exchange X and particle-hole symmetry C7T, and their total
charge Ny = N; + N2 and layer charge difference N_ =
N; — N» are also listed. The electron operators in the two
layers are related by c£ ~ 5401{.

ViB Vi V4B V4B
0 —1 ) —1 i
X ViBcy ViBe] Vifer VipBe
CT VifBer ViBea ViBel VipBel
Ny 172 1/2  —1/2 —1/2
N. 12 —1/2 —1/2 1/2

the transformation rules of representative semions be-
longing to the four distinct semion sectors of Z, order.
It is noteworthy that X exchanges topological sectors of
the semions but leaves the topological spin invariant by
binding a physical electron. On the other hand CT leaves
the topological sectors invariant, but binds a physical
electron to the semions changing them into anti-semions
and viceversa. From this one can infer that the action
of CT is to fill a single physical fermion zero mode, and,
therefore it follows that CT? is well defined on these
semions and can be taken to be CT2 = 1.

B. Z; ordered state from HLR picture

A K-matrix theory for this phase can be obtained fol-
lowing a similar reasoning as in Section In this
case we begin by striping-off the neutral sector entirely

from its a, charges, by introducing a field, S_, which

is dual to the ¢ boson current and enforcing the cor-
responding Meissner effect for the vortices of such con-
densate, in exactly the same fashion as we did for the
Cooper pair field in the charged sector of the supercon-
ductor. Therefore, instead of Eq. , in the present

case we write

11 Another way to arrive at this Lagrangian is by writing the HLR.
composite fermion as the product of a fully neutral fermion, u,
and bosons, dj, which carry the ajy charge: 1/}} =pu d;. © and
dy carry unit charges under an internal Z» gauge field?%. For
Pz + ipy pairing the u fermion forms a U(1)4 topological or-
der, corresponding Vi irqen—2 in Kitaev’s classification?”. Both
bosons condense, (d;) # 0, and vortices of these condensates
carry unit charges under fields 8; which are dual to the d; cur-
rents. The gluing condition is that the neutral vortices must
be accompanied by odd-strength m vortices of both boson con-
densates. This leads to the topological superconductor action of
Eq. with the identification S+ = B + Ba2.



1 1
gﬂ,d(al — (12) + %ﬁ+d(a1 + ag).

(33)

1
»Csc = 7ﬁ0d50 +
m

where now a charge ly € Z mod(4) under the gauge field
Bo labels the different quasiparticles of the fully neutral
sector, so that the labels o = {2,1,0,—1} correspond
to {p,v, 1,0} respectively, which have the meaning of
a complex fermion (p) and vortices with a zero mode
filled or empty (v,v) as discussed in Section On
the other hand, a charge [+ € Z, under . labels the
two kind of vortices of the A and ¢ condensates, respec-
tively, that trap flux wl4 of aff respectively. Addition-
ally, vortices of the neutral sector need to be glued to odd
strength vortices of either of the charged sectors and the
{1, u} particles need to be glued to even strength vor-
tices of the charged sectors. Namely, only quasiparticles
in the sub-lattice (Ip +I- + 14)/2 € Z are physical. To
implement this constraint we redefine gauge fields of the
dual superconductor as: ) = Bo + S, f1 = B+ + OB,
B4 = —B4++_, and enforce that the charges under these
new gauge fields be integers. Upon integrating out the
ay,2 fields that glue the superconductor to the bosonic
Laughlin sector one obtains 3] 5 = a1,2. The resulting
K-matrix is 3x3 and after a basis change implemented
by:

100
w=-[101], (34)
211

with W € SL(3,Z), one obtains the following Chern-
Simons theory:

1 1 1
L=—ao"Kda - —A.ﬁida — —A_tTda+ -,
2 27

C4rm
04 0 2 0
K=|40 0 |,tyr=]10|,t_=1]2
00 —1 -1 -1

Therefore this state is fully gapped and has the topo-
logical order of Z, lattice gauge theory glued to a chiral
integer quantum Hall state. This state is exactly the
same described in the previous section within the Dirac
theory. In fact, the following is the correspondence be-
tween the labels of quasiparticles:

1 0 0
Vielo].Be 1], deo]. 6
0 0 1

Additionally, within the HLR formulation it is possible
to find out the transformation laws for the quasiparticle
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lattice under the layer exchange symmetry X, since this
symmetry remains manifest. First we note that vortic-
ity of the ¢ and A condensates are respectively odd and
even under X, which follows from Eq. and the cor-
responding analogue of Eq. @ for the HLR case. This
implies that X34+ X ' = +44+. Additionally, the trans-
formation property of the vortices of the neutral sector
under X dictates that their zero modes are filled or emp-
tied upon its action, leading to: XvX ' — @. This rule
is implemented on the gauge fields as X 5o X ' = —J.
Using this rules it is easy to find that the X symmetry
acts on the K-matrix of Eq. as:

-1 -21
X:a—=Wyxa, WEKWx =K, Wx=|0 —-10
0 —41

(37)

The rows of Wx € SL(3,Z) specify the transforma-
tion laws of the quasiparticles that serve as basis for
the topological order listed in Eq. . It is reassur-
ing to find that the transformation rules are exactly
the same as those described within the Dirac picture
in Eqgs. and . The discussion in this and the
preceding section illustrates that the Z; topological or-
der with the anomalous particle-hole symmetry imple-
mentation that can be realized at the surface of a two-
component chiral AIII topological insulator, as described
in Ref3Y, can also be realized in particle-hole symmetric
two-component Landau levels.

It is interesting to note that if, starting from the layer
decoupled limit, we had considered only dual composite
fermion exciton condensation without pairing, namely
(¢) # 0 and (A) = 0, we would induce an sponta-
neous composite fermion tunneling term that splits the
two composite fermion fermi seas, which taking (¢) € R
would correspond to symmetric and anti-symmetric co-
herent superposition of composite fermions in the two
layers. Therefore, this phase would correspond to the
particle-hole symmetric version of the ICCFL state pro-
posed in Ref3. An important new qualitative feature
that the Dirac nature of the composite fermion brings
into this phase is that the tunneling term does not change
the Berry phase of neither of the composite fermion sur-
faces, therefore both the symmetric and anti-symmetric
composite fermion fermi surfaces would have a Berry
phase of 7 in such state. Figure [[] summarizes the close
relation between all these two-component particle-hole
symmetric phases we have considered so far.

IV. MULTICOMPONENT PARTICLE-HOLE
SYMMETRIC LANDAU LEVELS

In this section we will describe some interesting pos-
sible states in half-filled particle-hole symmetric Lan-
dau levels with four and eight components. Potential



platforms with these many components are monolayer
and bilayer graphene. First note that just as in a sin-
gle component system, a general N-component Landau
level at half-filling can be fruitfully obtained in a micro-
scopic system of N massless Dirac fermions in a mag-
netic field. The Landau-level particle-hole symmetry is
then obtained as an exact microscopic symmetry but the
price to pay is that the microscopic system lives at the
surface of a suitable three dimensional topological in-
sulator. Since the physical situation is very similar to
the single component case we will not elaborate on it
here. However there is one detail we will need to ad-
dress. We are interested in N-component Landau-level
systems with (at least) U(1) x CT symmetry. Obtaining
these through a microscopic Dirac theory then requires
us to think about massless Dirac systems also with (at
least) U(1) x CT symmetry. For an N-component Dirac
fermion with only this symmetry, it is known®%S7 that
there is no anomaly only if N = 0( mod 8). Thus the
Landau-level particle hole symmetry is anomalous for
generic N but not if N = 8n. For instance at IV = 8 this
means that the particle-hole symmetric Landau level can
in principle be obtained in a strictly two dimensional
microscopic model. This situation changes once other
symmetries are included as we discuss below.

If the interaction Hamiltonian is just a density-density
repulsion (such as Coulomb) then an N-component Lan-
dau level has SU(N) symmetry. The full symmetry
of the half-filled N-component Landau level (including
charge U(1)) is then U(N) x CT. With this higher sym-
metry we can again realize the Landau level in a micro-
scopic system of Dirac fermions. Now we argue below
that this Dirac fermion system is anomalous for all N
and not just when N # 0( mod 8). Thus the physics
of the SU(N) symmetric N-component Landau level at
any N gets related to the physics of the surface of a
three dimensional fermionic topological insulator with

U(N) x CT symmetry.

Much of the literature on such N-component Landau
levels with SU (V) symmetry has focused on a quantum
hall ferromagnets. While this is certainly a very natu-
ral state for the Coulomb Hamiltonian, it is interesting
conceptually to consider other states that preserve some
or all of the symmetries of the Hamiltonian. We first
prove that for N even, a topologically ordered gapped
state that preserves all the symmetries is not possible.
A symmetric gapped state may be possible if the SU(N)
symmetry is either spontaneously broken or explicitly
broken by the Hamiltonian to a smaller symmetry sub-
group.'? We illustrate this with some specific examples
for N =4 and N = 8.

Our discussion of symmetric gapped states will use

12 In the graphene examples residual terms that break the SU(4)
symmetry are always present but are small compared to the
leading long range Coulomb interactions that respect SU(4).
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the perspective of quantum disordering a superfluid. In
this approach one views a Mott insulating phase of in-
terest as descending from a superconductor '3 where the
global U(1) symmetry is restored via vortex condensa-
tion?¥, This approach has been very fruitful for under-
standing symmetry protected topological order at the
surface of topological insulators®, and in particular it
provides a simple route to understand the classification
of the phases of the symmetry class AIIl in the pres-
ence of strong interactions®?. The discussion in this sec-
tion follows closely that of Sect. V of Ref®% where the
analysis assumed only a global U(1) symmetry and the
anti-unitary particle-hole CT. Here we consider enlarged
symmetries that are relevant to specific physical realiza-
tions.

A. U(2Ny) x CT symmetry enforced gaplessness at
v=N;

Let us consider an even number of Landau levels,
2Ny, at half filling, v = Ny, or, equivalently, the sur-
face of an AIII topological insulator with 2N; mass-
less Dirac cones, and restrict to the situation where
there is U(2Ny) x CT symmetry. We first argue that
this is anomalous for any Ny. It suffices to show that
the anomaly exists for massless Dirac fermions in zero
background magnetic field (as the field does not change
the symmetry). For such Dirac fermions, consider the
monopole operator'? associated with threading 27 flux
of a background gauge-field A that couples to the global
U(1) current. It is convenient to think of the Dirac the-
ory as living at the interface between some 3d material
and vacuum. Then the flux threading can be viewed as
a process where a magnetic monopole from the outside
vacuum tunnels into the material on the other side. The
structure of this monopole operator in the Dirac theory
is well-known®®. For instance if the spatial surface on
which the Dirac theory lives is the surface of a sphere,
a monopole configuration has 2Ny zero modes. Charge
neutrality is achieved when Ny of these are filled with
fermions. It is easy to see that the monopole operator
is bosonic and transforms under the rank-NN; fully anti-
symmetric representation of the SU(2Ny) subgroup. In
particular these operators transform non-trivially under
the center Zay, of SU(2Ny). On the other hand local
operators that are charge neutral are built up as com-
posites of the electron operator and will always trans-
form trivially under this Zsx, subgroup. As usual the
non-trivial transformation of the monopole insertion in

13 We view the system of interest as having an un-gauged probe
electro-magnetic field, but we can gauge the probe fields as a
technical device to facilitate the elucidation of the statistics of
the several quasiparticles.

14 Strictly speaking we are weakly gauging the global U(1) in think-
ing of the flux insertion as an operator.



the surface Dirac theory is allowed if the bulk 3d ma-
terial has the same non-trivial transformation for the
bulk monopole. It follows that the bulk is a non-trivial
topological insulator for any 2Ny. Thus, as promised, in
the presence of additional global SU(2Ny) symmetry the
particle-hole symmetric Landau level cannot be realized
in any strictly 2d system.

We will now argue that it is impossible to construct a
gapped phase that respects the full symmetry. The cor-
nerstone of the argument is the observation that there
exist no projective representations for SU(2Ny). This
implies that any topological order containing anyons (x)
and the electron (c), {1,z7} x {1,¢c}, is such that the
anyons can always be taken to be SU(2Ny) singlets. If
an anyon has a non-trivial representation of SU(2Ny)
one can always replace it with an anyon bound to elec-
trons such that the composite forms an SU(2N) singlet
without changing the symmetry realization and topolog-
ical order. In addition, the action of U(1) x CT must be
closed within the topological sector.

Moreover, if the phase realizes symmetry in an anoma-
lous fashion, namely one that is not strictly allowed in
a two-dimensional system with on-site symmetry imple-
mentations, then such an anomalous symmetry would
have to be manifest at low energies in the topological
sector {1,27}. Since the electric charge of any local
SU(2Ny) singlets is quantized in units 2Ny, the mini-
mal charge of a local operator constructed from fusing
the anyons {1,z7} must be an integer multiple of 2Ny.
Moreover, since any local singlet is a bosonic operator,
the topological order {1,z;} can be viewed as arising
from a local bosonic singlet whose charge is some multi-
ple of 2Ny.

Let us now discuss what kind of excitation a funda-
mental monopole tunneling event would leave in such
surface state. The bare electron, with charge e, expe-
riences a magnetic flux quantum from a unit strength
monopole in the bulk: &, = % A charge 2eNy boson,
will therefore experience an enlarged magnetic flux from
the unit strength monopole in the bulk: &, = 2Nf%.
Therefore, the fundamental monopole of the bare elec-
tron is effectively 2Ny-monopoles for the boson. For
bosonic matter with U(1) x CT, the charge neutral
monopoles with even strength are always trivial bosons
(CT? = 1) regardless of whether the bosonic bulk has a
nontrivial § = 27 term®. The monopole would therefore
be a charge neutral bosonic singlet transforming trivially
under CT xU(2Ny), and so would be an excitation at the
surface created by the monopole tunneling event. How-
ever we saw above that the monopole transforms non-
trivially under Zay,. The assumption that the surface
admits a symmetric gapped phase has thus produced a
contradiction.

In Ref" it was shown that for Ny = 4, namely 8 Dirac
cones, with only U(1) x CT symmetry it is possible to
construct a symmetric gapped state that has no topolog-
ical order. This implies that the gapless phase of 8 Dirac
cones with only this symmetry can be deformed through
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a phase transition at strong interactions into a trivial
phase, equivalent to the surface of a Ny = 0 trivial bulk
insulator. The argument given above shows that this is
not possible in the presence of the larger CT x U(2Ny)
symmetry, and therefore that such symmetric 2.V Dirac
cones cannot be connected, without breaking the sym-
metry, to the trivial state.

B. Four-components at v =2

Though with full U(4) x CT symmetry, a symmetric
gapped state is not allowed, we will show below that if
the SU(4) flavor symmetry is reduced to SU(2) x SU(2),
preserving the overall U(1) x CT, then such a state
is indeed possible. The four component particle-hole
symmetric Landau level with these symmetries is still
anomalous. Thus the proposed state - which strictly
speaking cannot be realized in a 2d system- can nev-
ertheless be realized (with the symmetries present with
arbitrary precision) in the isolated Landau level. We will
then comment on the possible realization of such a state
in monolayer graphene.

1. Maximally symmetric eI'mT state at v =2

The state we discuss has the topological order of a
Z5 gauge theory but with an anomalous implementation
of the CT symmetry2©9 28, The Z, gauge theory has
3 non-trivial quasiparticles e, m, e which are all mutual
semions. e, m are bosons while € is a fermion. With only
U(1) x CT symmetry the proposed state has e and m
both transforming as Kramers doublets under C7. For
this reason it has been dubbed eT'mT. In the context of
the present paper this state will be further ‘enriched’ by
the extra SU(2) x SU(2) symmetry.

Our strategy for constructing this state is similar to
previous papers2®27. We will begin with a state with
four massless Dirac fermions in zero magnetic field. We
will break the global U(1) symmetry by pairing them as
follows:

SH = iAo, Tyuyh — iN Yoyt (38)

where o and 7 are Pauli matrices operating in the
Dirac cone flavors. Even though the U(1) symmetry
is broken, this superconductor respects the combination
U(r/2) CT and the SU(2), x SU(2), symmetry of the
separate rotations of the 7 and ¢ Pauli matrices, since
the pairing is singlet with respect to either of those pseu-
dospin flavors. We will then quantum disorder the super-
conductor by proliferating vortices, thereby restoring the
broken U(1) symmetry. The elementary m-vortex will
have zero modes and will be non-trivial and cannot be
proliferated while preserving the symmetry. Quantum
disordering the superconductor will require proliferating



a higher strength vortex which will lead to a gapped
topologically ordered state which inherits the anoma-
lous symmetry of the original massless Dirac theory. As
a non-zero magnetic field does not change the symme-
try of the system, this topologically ordered state will
also be a possible state of the half-filled four-component
Landau level with the stated symmetries.

The zero modes in the vortex cores of this supercon-
ductor can be investigated in a similar spirit to the case
of several Kitaev chains®®. The fundamental m vortex
contains four zero Majorana modes. We can combine
these four Majoranas into two complex fermion zero
modes. The local Hilbert space associated with fill-
ing these modes has dimension 4. Let us label these
four states by the occupation numbers of these complex
modes |n1,n2), where ny2 = {0,1}. One can choose
the complex zero modes such that the subspace with
a singly occupied mode, {|1,0),0,1)}, transforms as a
spin 1/2 representation under the SU(2), transforma-
tions while transforming as trivial singlets under the
SU(2),. Then one finds that the complementary sub-
space, {|0,0),|1,1)}, would form a spin 1/2 representa-
tion of SU(2), while transforming as trivial singlets un-
der SU(2),. In other words, one can show that the zero
mode Hilbert space decomposes into a (1/2,0) @ (0,1/2)
representation of SU(2), x SU(2),. This implies that the
7 vortex is forced to carry non-trivial quantum numbers
of these symmetries.

However, by combining two of these m vortices one
can construct a state that is an SU(2), x SU(2), singlet
and hence transforms trivially under all the symmetries
that remain present in the superconductor state. As a
consequence such 27 vortex would behave as a trivial bo-
son which can be condensed to restore the U(1) symme-
try, and consequently the C7, resulting in an insulating
phase with the topological order of Z, gauge theory*4
enriched by a large symmetry: U(1) x CT x SU(2), x
SU(2),.*°

Several mnon-trivial deconfined quasiparticles are
present in this insulator. There will be a neutral fermion
(spinon) which is the remnant of the Bogoliubov fermion
and we label ¢, a boson (chargon) labeled h, and two
remnants of the 7 vortex (visons) labeled {m,e}. The
visons {m, e} are bosons. m can be chosen as descend-
ing from the vortex states in which all the complex zero
modes are half-filled {|1,0),]0,1)} and hence it carries
pseudo-spins s; = 1/2 and s, = 0. e can be chosen
as descending from the vortex states {|0,0),|1,1)} and
hence it carries pseudo-spins s, = 0 and s, = 1/2. It
follows that the spinon, € = e X m, carries a fundamental
representation of SU(2), x SU(2), with s, = 1/2 and
s¢ = 1/2. The chargon, h, will be a trivial object under
these symmetries as it is essentially a descendant of half

15 Formally the symmetry group is the one written above mod Z%,
which avoids double counting of the (—1) elements.
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a cooper pair and the cooper pair field is a singlet under
these symmetries. However, h will carry physical charge
N, =1 (same as the physical electron) under the re-
stored U(1) charge conservation. The physical electron
is therefore ¢ = h x e. This state has also been discussed
in Ref®Y in a different context.

This state implements the U(1) x CT in an anomalous
fashion in which the e and m particles are charge neutral
Kramers bosons CT2 = —1 as can be seen following sim-
ilar arguments to Ref:3Y. The state in question is there-
fore an SU(2) x SU(2) invariant version of the eT'mT
state previously considered in the literature20404/6:58
Additionally, this state has an interesting discrete sym-
metry that exchanges the e and the m particles. Con-
sider the following symmetry operation that exchanges
the 7 and p pseudo-spin flavors:

3
1
=AY, A== VO,
v 2;0”’ (39)

A=A"=AT, A2 =1, Ao A =10,

The last property of A implies that the pairing 0 H from
Eq. respects this symmetry. This symmetry acts by
exchanging the 7 and ¢ quantum numbers, and, hence,
it exchanges the e and m particles. Even though we
know of no specific potentially realistic physical system
possesssing all the symmetries we considered here, this
phase is a good starting point from which lower symme-
try incarnations of the eT'mT phase can be conveniently
understood.

2. Monolayer graphene

The zeroth Landau level of graphene is four-fold de-
generate and the problem of interacting electrons pro-
jected onto this Landau level can be viewed at low ener-
gies as a theory of the surface of AIII topological in-
sulator with four Dirac cones in the strong magnetic
field limit, as the system we just described. A good
model Hamiltonian for graphene in this limit includes
the long-ranged Coulomb interaction, two types of short-
ranged interactions that account for lattice scale inter-
actionst1:02:

e2

coul
Vit = e
elry — ;] (40)

Vilj‘”t = (9777 +gu(7i7] + TinJy))é(z) (ri =15,

and the Zeeman coupling. Here 7 denote Pauli matri-
ces in valley space, and g, and g, are parameters char-
acterizing the strength of valley-dependent interactions.
From these terms the Coulomb interaction is by far the
most dominant. The projected Hamiltonian with only
Coulomb interaction has SU(4) symmetry in addition
to U(1) x CT. It is believed that the short-ranged inter-
actions are typically stronger than the Zeeman term by



roughly an order of magnitude®68 These terms break
the SU(4) symmetry into SU(2)spin X (U(1) X X)yaitey,
where X here denotes a discrete Z, valley exchange sym-
metry analogous to the layer exchange considered in Sec-
tion[[T} Importantly, these interactions preserve the anti-
unitary particle-hole symmetry C7. On the other hand,
the Zeeman term breaks the internal spin-valley symme-
tries further down to U(1)spin X (U(1) X Z2)vaitey, and,
more crucially, it destroys the anti-unitary particle-hole
symmetry CT.

Therefore in order to view the interacting Hamilto-
nian of graphene as a special limit of a topological in-
sulator surface one needs to neglect the Zeeman term.
In this context it is possible that the eT'mT symme-
try enriched topological order arises in graphene at neu-
trality. This state will be a version of that described
in Sec. with its symmetry properly reduced to
U(1) X CT x SU(2) spin X (U(1) X X)yatiey- We note that
a weak breaking of CT symmetry, such as that expected
from Zeeman, will split the excited states whose degen-
eracy relies on their Kramers nature under C7, however
since eT'mT is a gapped phase its ground state will be
only weakly modified under small C7 breaking terms.

There exist strong numerical evidence supporting that
the ground states of the projected Coulomb plus short-
ranged interactions Hamiltonian are quantum Hall ferro-
magnets®?. Experiments have found that upon increas-
ing the Zeeman term via in-plane magnetic fields a rel-
atively smooth transition, during which the bulk charge
gap remains open, into a state consistent with a ferro-
magnetic order occurs®®. From the candidate quantum
Hall ferromagnets the one that appears most consistent
with this picture is the anti-ferromagnet. However, con-
sidering the fact that Landau level mixing is expected
to be strong in graphene®” and its effects on the ener-
getics of quantum Hall ferromagnets have not been well
explored, it appears reasonable not to rule out the pos-
sibility that they could stabilize exotic states such as the
eTmT. Experimentally an eTmT state would look like
a trivial integer quantum Hall state from the point of
view of charge transport, but it would be non-trivial in
the neutral sectors. This makes challenging detecting
the eT'mT state in graphene, but also ruling it out on
experimental grounds. The transition from the eT'mT
into conventional quantum Hall ferromagnets would be
driven by the condensation of one non-trivial bosons.
For example, upon increasing the Zeeman term one ex-
pects that the boson carrying the spin 1/2, e.g. the e
particle, would condense and hence drive a confinement
transition for the m, € and h particles, while breaking
the spin rotation symmetry resulting in a trivial integer
quantum Hall state with ferromagnetic ordering.

C. Eight-components at v =4

We now briefly consider 8-component Landau levels
which at half-filling do not have anomalous implementa-
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tion of U(1) x CT but have anomalous implementation
of U(8) x CT. We will study the possibility that the
anomaly disappears for some subgroup of U(8) that is
bigger than just the U(1).

1. Highly symmetric gapped state with no topological order

We will show that if the symmetry is U(1) x CT but
with SU(8) reduced to SU(2) x SU(2) x O(2) then a
symmetric gapped state with no topological order is pos-
sible. This implies that the 8-component Landau level
with these symmetries is not anomalous and hence can
be obtained microscopically in a strictly 2d system. Fol-
lowing the strategy of the previous section we start with
8 massless Dirac fermions and consider a superconductor
described by the following pairing=6:

§H = iAo, Ty vo) — iN Yl o, 7, m,vot. (41)

where v are Pauli matrices in an additional pseudo-spin
flavor. Notice that this pairing term is not compati-
ble with a full SU(2) symmetry on the v pseudo-spin,
and it is important that the flavor symmetry on the v
index is only O(2) 6. It is easy to see that the funda-
mental m vortex can be taken to have a trivial gapped
core. Thus this vortex can be condensed and we obtain
the promised symmetric gapped state without topologi-
cal order. This state preserves a large symmetry group,
including, notably, the anti-unitary particle-hole symme-
try CT, and is a possible state in an 8-component Lan-
dau level with this symmetry. Notice that any fermion
bilinear that selects a unique integer quantum Hall state
would necessarily break the particle-hole symmetry as it
would gap the surface of the topological insulator, and
in this sense this state cannot be described by a sim-
ple mean-field Hartree-Fock state. In addition to this
continuous symmetries we would also have the discrete
set of permutations between the two SU(2) flavors, in
analogy to the A symmetry featured in Eq. . Since
the state in question is a fully gapped insulator, explicit
terms in the Hamiltonian which weakly break any of the
symmetries are expected to lead only to small adiabatic
changes of the ground state.

2. Bilayer graphene

AB-stacked bilayer graphene has a special electronic
dispersion which renders its zero Landau level eight-fold
degenerate®®09,  In addition to spin-valley degeneracy,

16 This remaining symmetry can be viewed as the U(1) subgroup

generated by ¢ — eig”y T and the Zo symmetry of exchange
of v flavors T — v ot.



this zero Landau level contains degenerate cyclotron or-
bitals n = 0 and n = 1. Because these orbitals have
different form factors even the projected Coulomb inter-
action into the zero Landau level has no symmetry op-
erations rotating between the n = 0 and n = 1 orbitals
and simply has an SU(4) spin-valley symmetry.

A more subtle issue is the particle-hole symmetry in
the zero Landau level of bilayer graphene '7. Experi-
ments have found particle-hole asymmetric sequences of
fractional quantum Hall states™’. Several authors have
incorrectly assumed that the symmetry is broken by the
Coulomb interaction itself projected into the zero Lan-
dau level, because of the different form factors of the
degenerate n = 0 and n = 1 orbitals. In fact, as pointed
out in Refs™, there is a non-trivial Coulomb interac-
tions with the negative energy sea of occupied states in
bilayer graphene that is needed to properly account for
the particle-hole symmetry™3, A likely explanation be-
hind the particle-hole asymmetry observed in the exper-
iments of Ref™ are intrinsic and sample-specific terms
that break the particle hole symmetry*.

The special kind of particle-hole symmetry that we
need in order to view the zero Landau level of bilayer
graphene as the surface of an AIII topological insulator
with eight Dirac cones is still even more restrictive. In
addition to neglecting these terms that break the lattice
particle-hole symmetry we need to neglect any single par-
ticle term that tends to select a trivial integer quantum
Hall state at neutrality. Therefore, just as in the case
of monolayer graphene, we need to neglect the Zeeman
term and the interlayer bias. The interlayer bias is an
experimentally tunable parameter, so, it can always be
tuned to zero, while neglecting the Zeeman term is an
approximation.

The valley-dependent lattice scale interactions will
also be present in bilayer graphene and assuming they
have zero range they will have the same form as those
in Eq. describing monolayer graphené™. In this
limit, the symmetry of the Hamiltonian of neutral bi-
layer graphene would be U (1) xCT x SU(2) spin x (U (1) x
X)valley, just as in the monolayer. In order to realize the
CT-symmetric state described in Sec. we addi-
tionally need that the C7T symmetry is not broken spon-
taneously. To our knowledge, there is no exact diagonal-
ization or density-matrix-renormalization-group study of
the full 8-fold degenerate zero Landau level including
explicitly the n = 0 and n = 1 orbitals that would ex-
plore in an unbiased manner which type of ground state
the Coulomb interactions would choose. Experimentally
there is clear evidence for a gapped ground state at neu-
trality in bilayer graphene™ ™ and this state is consis-
tent again with an anti-ferromagnetic quantum Hall fer-
romagnet state™. But again we would like to emphasize

17 Particle-hole symmetry is understood to map states at filling v
to states at —v, where v is the filling measured from neutrality.
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that given the lack of complete numerical studies in bi-
layer graphene it is not ruled out that this state could be
a descendant of the particle-hole invariant highly sym-

metric phase described in Sec.

V. SUMMARY AND DISCUSSION

We have shown that the familiar exciton condensate
experimentally realized in GaAs quantum Hall bilayers
can be alternatively viewed as an interlayer paired state
of composite fermions in a special channel that preserves
particle-hole symmetry. This identification is a new ap-
plication of the fermionic particle-vortex duality. The
quantum Hall bilayer at ¥ = 1/2 + 1/2 is an insula-
tor with respect to the symmetric layer charge but a
superfluid with respect to the layer charge imbalance.
We showed that alternately it can be viewed as a “su-
perconductor” with respect to the symmetric compos-
ite fermion density but an insulator with respect to the
composite fermion layer density imbalance, i.e. as an in-
terlayer paired composite fermion state. We showed that
such a dual description of the phase can be understood
either from the Dirac or HLR pictures, although only the
former allows for the particle-hole symmetry to be mani-
fest. Further, we showed that elementary meron vortices
of the exciton condensate serve as a basis out of which
all other gapped quasiparticles can be obtained as bound
states. Out of these defects there exists a 47 vortex that
is charge neutral and has a Kramers structure under the
anti-unitary particle-hole symmetry that survives in the
exciton condensate, denoted C7. This particle is the
closest incarnation of the composite fermion itself, since
it is simply the Bogoliubov fermion resulting from the
interlayer composite fermion pairing. In this sense the
exciton condensate offers us a rather unexpected window
into the physics of the half-filled Landau level itself.

Determining the exact ground state of the ideal quan-
tum Hall bilayer (the problem of Coulomb interacting
electrons projected to the lowest Landau level with neg-
ligible interlayer tunneling) is a difficult problem at ar-
bitrary interlayer distances. However, numerical studies
suggest that the ground state at intermediate distance
can be described by a paired state which has precisely
the pairing channel considered here?™28, As has been
previously pointed out?%, and as we have argued em-
ploying an RG analysis, there exist a weak coupling in-
stability to interlayer Cooper pairing in the limit of infi-
nite layer separation. This suggests the natural conjec-
ture that perhaps the ground state of the ideal quantum
Hall bilayer never encounters a quantum phase transi-
tion as a function of interlayer distance and has a smooth
crossover from a BEC-like limit at small distances to a
BCS-like limit at larger inter-layer distance. However
as mentioned in the Introduction, a very recent Eliash-
berg calculation of the pairing symmetry in the large-d
limit?? finds a pairing channel different from the previous
numerical work. Further numerical studies of realistic



quantum hall bilayers is clearly called for.

We also describe a potential alternative ground state
for a quantum Hall bilayer which can be thought of as
a quantum disordered version of the exciton conden-
sate. This state is fully gapped and preserves all the
microscopic symmetries. It is likely the minimal state
with these properties and has the topological order of
a Z4 gauge theory with an anomalous implementation
of particle-hole symmetry. In this state the merons are
liberated from their logarithmic energy cost and become
fully deconfined quasiparticles. This exotic phase ad-
ditonally features the presence of a fractional exciton
quasiparticle which is essentially a quarter of the famil-
iar interlayer electron-hole pair. It is for future studies
to determine if suitable perturbations could realistically
bring such a phase into experimental realization.

Finally we studied some aspects of half-filled Landau
levels of systems with N = 4 or N = 8 component
fermions. If these Landau levels have full SU(N) sym-
metry (so that the full symmetry including particle-hole
is U(N) x CT), then the symmetry realization is anoma-
lous. We showed the impossibility of symmetry preserv-
ing gapped ground states in such a system. Thus if the
symmetries are preserved, then the ground state must be
a gapless liquid. Alternately the symmetry may be spon-
taneously broken as in the familiar quantum Hall ferro-
magnet. If the microscopic symmetry is smaller, then
a symmetry preserving gapped state may be possible.
We illustrated this with some examples for N = 4 and
N = 8. We did not however attempt to understand the
microscopic situations that will facilitate the appearence
of such states, and this is an interesting target for future
work.

Note added: For complementary work on multicompo-
nent half-filled quantum Hall systems, developed in par-
allel to ours by Potter, Wang, Metlitski and Vishwanath,
see Ref/®2,
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Appendix A: Dual vortices of the electron exciton
condensate in Dirac picture

The mean-field BdAG Hamiltonian for the vortices in
the neutral sector of the superconductor of composite
fermions described in Section [TA 1] reads as:

*
Hpag = wT(me:c +pyo. — N)¢+ %idﬂ’%o—yiﬁr +h~C‘7

(A1)
where 1) carries indices 1,2 denoting layer in addition to
Dirac pseudo-spin indices. Let us define a BdG destruc-
tion operator as follows:

(G
p=1. ) (A2)
<wy¢;
allowing to write the BAG equation as follows:
co— A(r)*
Hpag =o' (P77 H A3
BdG = ¥ ( A(r) —p-o+p 14 (A3)

This BdG equation is formally identical to that of the Fu-
Kane superconductor?®, however, we have not “doubled-
counted” particles and holes since ¢ destroys particles
in layer 1 and holes in layer 2. As a consequence ev-
ery eigen-mode of the BdG problem (with positive, neg-
ative or zero energy) can be interpreted as a conven-
tional complex fermion mode (two Majorana modes).
In a vortex of vorticity n the paring field has the form
A(r) = A(r)ei™. Tt follows that the odd-strength vor-
tices of A have one complex zero mode.

Notice that ¢ carries a definite charge of —1 under
the a, gauge field. Therefore all the vortex states can
be uniquely labeled with a charge. Additionally the
BdG Hamiltonian is invariant under the layer exchange
symmetry:

XXt =r1p, XXt = (pTTxiO'y. (A4)

The a,, charge, ¢— = [d*r 7.1, is odd under X:
Xq_X"' = —g_. Because X acts as a particle-hole on ¢,
we conclude that the fundamental vortex with the com-
plex zero mode empty, V_, must have a charge g_ = 1/2,
whereas the vortex with the zero mode filled, V., must
have a charge q_ = —1/2.

Appendix B: Microscopic wavefunctions for exciton
order parameter vortices

Vortices of the exciton condensate are well studied in
the quantum Hall literature. One approach is to start
from the SO(3) symmetric v = 1 quantum Hall ferro-
magnet described by a non-linear sigma model and con-
sider its XY limit?2. In this model one can infer the



fractional charge of the merons (XY vortices) starting

from the relation®S:

1 [, ~ (0t at

where t is the unit-vector order parameter of the ferro-
magnet. For a vortex with an order parameter winding
of 27w (w € Z), since t,(00) = 0, one gets that it carries
a half-integer quantized charge N, = —wt,(0)/2, where
t.(0) = £1 is the orientation of the order parameter at
the vortex core.

In this section we will provide alternative explicit mi-
croscopic description for the exciton condensate order
parameter vortices that allows to understand various
properties in a straightforward way. These wavefunc-
tions can be thought as the ones corresponding to the
limit of smallest possible vortex cores and are perhaps
not energetically favorable when the layer spacing is
much smaller than the magnetic length, but might be
favorable when the layers are farther apart so that the
Coulomb capacitive energy penalizes severely the devi-
ations of the order parameter away from the XY plane
shrinking the vortex cores to small sizes. We empha-
size, however, that our primary interest concerning these
wavefunctions is not their energetics but rather their con-
ceptual simplicity for illustrating various universal prop-
erties.

We begin by writing a mean-field single-particle
Hamiltonian for the electron exciton condensate pro-
jected to the Lowest Landau level:

Hyp = Po(te(r)1s + ty(r)7y) o, (B2)

where 7 are Pauli matrices acting in the layer index and
Py is a projector into the lowest Landau level. The
Hamiltonian contains no kinetic energy but only cou-
pling to the spatially dependent XY order paramter
tzy(r). Consider now the configuration for a circularly
symmetric vortex centered at the origin: ¢,(r)+it,(r) =
t(r)e™™?, with (r,6) polar coordinates for r, and w € Z.
Recall that in the symmetric gauge the single particle
wavefunctions in the lowest Landau level take the form:

Tmezme

= ¢
vV 2mtlpmlm+1

For w > 0 it is then easy to verify that the following are
non-zero energy eigenstates of the mean-field Hamilto-
nian:

7,2
Gm(r,0) i, m=0,1,2,.. (B3)

r _ 1 d)m(ra 0)
wms( ,9) \/i ( 3¢m+w(ra 0)
(B4)

>7s:i1, m=0,1,2, ..
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FIG. 4: (Color Online) Schematic representation of the
many-body vortex states. The dashed circles are electron
states with orbital m and layer index 1,2. Figure a) is the ex-
citon ground state where electrons occupy states with definite
orbital in a superposition of both layers with equal amplitude,
which is represented by the half-circles joined by straight line.
b) Meron vortex with charge N; = —1/2 and vorticity w = 1.
¢) Meron vortex with charge Ny = 1/2 and vorticity w = 1,
where the zero mode of b) is occupied by an electron depicted
as a blue ball. b) Meron vortex with charge Ny = —1/2 and
vorticity w = —1, obtained from a layer swap, X-operation,
from b). e) The charge neutral Ny = 0 and w = 2 vortex,
which is obtained by filling one of the zero modes and is a
Kramers neutral fermion and the closest incarnation of the
Dirac composite in the exciton condensate. f) A particle-
hole invariant charge neutral w = 4 vortex corresponding the
composite fermion particle-hole pair (exciton) whose conden-
sation, considered in Section[[T] drives the transition into the
Z4 ordered state. This vortex is obtained by filling the zero
modes with two fermions in a unique state analogous to the
filling of 8 Majorana chains ends by Fidkowski and Kitaev®2.

where the components of the column vector correspond
to top and bottom layers. The mean-field energy of these
modes is:

© —z, .m+Y — 7./
E,.=s / et TR = 1V2) (B5)
0

2¢/m!(m + w)!

where E,, _ < 0. In addition there are w complex
fermion zero energy modes:

0

me (Tv 0) = ( ¢m+w (7", 9)

) , m=—w,..,—1. (B6)

A similar structure is found for w < 0, in which case
the zero modes are localized in the top layer. Now, if
we construct the many-body vortex state by filling all
the negative energy eigenstates (s = —1, m € 7Z), it



is easy to verify that the vortex core has a deficit of
w/2 particles relative to the ground state with no vor-
tices (which corresponds to w = 0), and therefore carries
charge Ny = —w/2. Figureillustrating the many-body
vortex state makes this transparent.

Various properties can be explicitly understood in
terms of these vortices. For example, the layer exchange
symmetry changes the vortex texture as:

X @ty +ity = t, —ity, (B7)
therefore it leaves the physical charge N, invariant, but
changes the vorticity w — —w. This is the same state-
ment of the fact that the a, charge ¢ is odd under
layer exchange as described in Appendix [A] in the dual
picture. Also the odd-n strength vortices are forced to
carry physical charge N,.

The closest incarnation of the composite fermion in
the dual picture is the bogoliubov fermion e. This object
is charge neutral, Ny = 0, but carries vorticity of the
exciton order parameter. As described in Section
we expect it to be a vortex with 47 winding of the order
parameter, hence we choose w = 2. Such vortex has two-
complex fermion zero modes. When the two zero modes
are empty this object carries charge N, = —1. Therefore
the composite fermion vortex is obtained by filling one
of these two zero modes. The microscopic particle-hole
symmetry acts on the vortex texture as:

CT : ty+ity — —(tz +ity), (B8)
This symmetry is broken in the ground state as it re-
verses the magnetization. However the closely related
operation CT = CTUi(5)Uz(—7%) remains a particle-
hole symmetry. We can choose these symmetries to act

on the electron operators as:

CTcamCT ' =icl,,,

. (B9)
U(9)amU(6):" = (€7 )aChyn:
where ¢l = creates an electron in layer a = {1,2} and
orbital ¢,,. One finds then that the action of C7 on the
zero modes to be:

CTmoCT = =t (B10)
This symmetry squares to C~T2 = 1 acting on electron
operators. If we denote |p1, p2) the many-body state cor-
responding to the 47 vortex of the order parameter, with
p; = {0,1} denoting the occupation of the zero modes,
we will have that there are two charge neutral states,
namely {|1,0),]0,1)}. These two states are mapped into
one another by C~T|1,0> = |0,1), moreover, from the
action of C77: on the zero modes one concludes that it
squares to CT = —1 on the vortex states {|1,0),]0,1)}.
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Therefore this symmetry has a projective representa-
tion on these vortices. This is the manifestation of the
Kramers structure of the composite fermion.

Appendix C: Particle-hole symmetry in the exciton
condensate: alternate view

In this Appendix we show how the CT properties of
the exciton condensate can be obtained in an alternate
point of view through a construction directly in terms of
electrons. For non-relativistic electrons, CT and CT are
symmetries only when the Hamiltonian is projected to
the lowest Landau level. The associated large degeneracy
of single particle states makes an analysis difficult. Here
we will follow a different approach analagous to that used
in recent discussions of particle-hole symmetry in single
component systems. We will take our microscopic elec-
tron system to be two flavors of massless Dirac electrons
with C7 symmetry. This is realized as the surface state
of a 3d chiral topological insulator (in class AIII but with
an additional U(1) symmetry corresponding to separate
conservation of both flavors of electrons). Specifically,
the Lagrangian is

L= Z XD axr + Lint (C1)
I

Here x; are each 2-component Dirac electrons, and I =
1,2 is the flavor index. A is a background gauge field,
and P 4 is the Dirac operator. This is C7 invariant if we
let x; — i’YoXL and change Ay — —Ap, A; — A;.

A non-zero magnetic field B does not break any sym-
metries, and hence can be included. There will be two
zero energy Landau levels which will each be half-filled
due to the CT symmetry. Projecting to these levels, we
get the v = 1/2 + 1/2 quantum Hall bilayer with CT
symmetry that we are interested in.

Here we will study the exciton condensate phase in
this system in zero B-field. We will make the reason-
able assumption that this B = 0 exciton condensate is
smoothly connected to the one that obtains in the large-
B limit. Indeed, we will see that the excitation structure
and symmetry properties are identical to that in our ear-
lier constructions.

The B = 0 exciton condensate we study will have a
gap to all fermion excitations. We characterize it by an
order parameter ~ e, As usual this breaks CT but
preserves CT. The most obvious excitation is the relic
of the x fermion which is gapped. We strip off it’s N_
charge, and call the resulting fermion f. This will have
Ny = 1. The condensate will also have vortex excita-
tions associated with 27w winding of 6, w € Z. The f
particle will have mutual 7 statistics around all odd w
vortices, and will be local around even w vortices.

A 27 vortex in 6 is readily seen to have a single com-
plex 0 mode. Thus there are two such vortices that differ
by the addition of f. We call them V, and V_ (as we
will shortly identify them with objects denoted by the



same symbols in the dual construction described in the
main text). Note that their N, charges must differ by 1.
Further C7 interchanges these two vortices. Thus these
vortices must have Ny = +1/2. Note also that they are
mutual semions as they differ by the binding of f which
is a mutual semion around either of them. These are ex-
actly the right properties of the V. and V_ as described
in the construction of Section [TATl
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Next consider 47 vortices. These harbor two complex
zero modes, and can be analysed by studying their vari-
ous possible fillings. It is simpler however to obtain them
as composites of the 27 vortex. The logic is now com-
pletely similar to our earlier construction, and we will
get an electrically neutral 47 vortex e that is Kramers
under C7T, as well as the vortices By which have N = 1.
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