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Interaction-driven topological phase transitions in Dirac semimetals are investigated by means of large-scale
quantum Monte Carlo (QMC) simulations. The interaction among Dirac fermions is introduced by coupling
them to Ising spins that realize the quantum dynamics of the two-dimensional transverse field Ising model. The
ground state phase diagram, in which the tuning parameters are the transverse field and the coupling between
fermion and Ising spins, is determined. At weak and intermediate coupling, a second-order Ising quantum phase
transition and a first-order topological phase transition between two topologically distinct Dirac semimetals are
observed. Interestingly, at the latter, the Dirac points smear out to form nodal lines in the Brillouin zone, and
collective bosonic fluctuations with SO(4) symmetry are strongly enhanced. At strong coupling, these two phase
boundaries merge into a first-order transition.

Dirac fermions in (2+1)d emerge in a number of solid state
systems such as graphene [1], surface states of 3D topological
insulators [2] and d-wave superconductors [3–5]. A parallel
research track involves interaction-driven topological phase
transitions in (2+1)d systems [6–17], which exhibit exotic
quantum critical points. In this context, an important ques-
tion is what new physics would emerge if Dirac fermions and
topological phase transitions were brought together via elec-
tronic interactions?

Timely developments in quantum Monte Carlo (QMC)
techniques offer an opportunity to address this question: rather
than simulating an explicit interaction between fermions, one
can instead introduce bosonic fields that mediate fermion in-
teraction. The key insight is that the form of these fields
need not be limited to what would arise from a Hubbard-
Stratonovich decomposition of explicit fermion interactions.
One interesting direction is to endow the bosonic degrees of
freedom with quantum dynamics of their own, such that they
can be tuned through a quantum critical point (QCP). Exam-
ples of this approach include QMC studies of fermions in
2d coupled to nematic [18, 19], antiferromagnetic [20–22],
or Ising gauge fluctuations [23, 24], which have revealed in-
teresting features of metallic QCP as well as realizations of
deconfined phases.

In this Letter, we consider a system of Dirac fermions on
the square lattice, coupled to Ising spins that decorate the
nearest-neighbor links. Ordering of the Ising spins breaks
the underlying C4v symmetry and allows for anisotropic ve-
locity renormalization of the Dirac points. We discover a
first-order, interaction-driven topological phase transition, at
which collective bosonic fluctuations with SO(4) symmetry
comprised of Dirac fermions manifest. Across the transition,
the bulk topological index, associated with the topological
Dirac semimetal, flips its value and thereby shifts the momen-
tum of the topologically protected edge states in the projected
1D Brillouin zone (BZ). Upon further increase of the trans-
verse field and/or coupling, the second-order phase boundary
of the Ising ordering merges with the topological phase tran-
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FIG. 1. Fermions on a square lattice coupled to a transverse-field
Ising model. Ising spins live on the links between adjacent fermionic
sites and modify the corresponding hopping integral. The solid (dot-
ted) lines indicate the positive (negative) character of the coupling
between the Ising spins and the hopping. A magnetic flux of magni-
tude π runs through each plaquette. The arrows indicate the direction
of the counter-circulating currents.

sition into a first-order transition line.
Model and Method — We use sign-problem-free projector

QMC [25–27] to simulate a model of fermions on the π-
flux square lattice in which (i) the hopping is mediated by
Ising spins positioned on the nearest-neighbor links and (ii)
the Ising spins interact via a two-dimensional transverse field
Ising model (TFIM) on the dual lattice. The time-reversal
symmetry of Eq. (1) guarantees positivity of the fermion de-
terminant. The detailed description of QMC implementation,
including local-plus-global updates, is given in the supple-
mental material (SM) [28]. The model, illustrated in Fig. 1,
has a Hamiltonian

H =
∑
j,δ

(
−t + sgn(δ)ξszj, j+δ

) (
c†j cj+δ ei

π
4 sgn(δ) + h.c.

)
− J

∑
〈bb′〉

sz
b

sz
b′
− h

∑
b

sxb .
(1)

Here, we have spin-1/2 fermions c†j =
(
c†
j↑
, c†

j↓

)
on the

each site j of a square lattice and an Ising spin sz
b

= ±1
on each bond with b being the bond index. The dynamics
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FIG. 2. The ξ–h phase diagram. FM and PM indicate the ferromag-
netic and paramagnetic Ising spin states. The color inside circles with
red arrows relates to topological index: the windings of the 2D vec-
tors n along φ1 = ±π/2 loop for h/t = 2, ξ/t = 0.2 inside the left FM
phase; h/t = 4, ξ/t = 1.5 inside PM phase; h/t = 4, ξ/t = 3 inside
right FM phase. The sqaure insets stand for the 2d BZ with pur-
ple area topologically nontrivial (winding number W = −1) while
green area trivial (winding numberW = 0). Across the red dashed
line, where the topological phase transition happens, the two areas of
the BZ switch. The cross-hatched area highlights the enhancement
of collective SO(4) bosonic fluctuations in the fermion sector. The
black solid line is the FM-to-PM magnetic phase transition in Ising
spins. Along paths À, Á, and Â, this transition is continuous, along
paths Ã and Ä it becomes first order.

of Ising variables is governed by a ferromagnetic TFIM. For
the fermions, the nearest-neighbor hopping with phase factor
π
4 sgn(δ) generates a π flux through each plaquette. Because
sgn(δ) distinguishes the horizontal (+) and vertical (−) bonds,
the spins modify the hoppings oppositely along the x and y di-
rections with coupling strength ξ. This spin-fermion coupling
connects the Z2 Ising symmetry to the π/2 space rotational
symmetry, i.e., an Ising ferromagnetic order will induce hop-
ping anisotropy between x and y and hence an electronic ne-
matic ordering [29].

In addition to the Ising and lattice point group symmetries,
the fermionic degrees of freedom also preserve internal sym-
metries, independent of the ordering pattern of the Ising fields.
SUS (2) spin rotations, with generators Sα , and the particle-
hole transformation P−1c†

i,↓
P = (−1)ic

i,↓
leave the Hamilto-

nian invariant. One can also define operators ηα = P−1SαP
that obey

[
ηα ,Sβ

]
= 0. Hence, the full symmetry of the

model is SUS (2)⊗SUη (2)⊗Z2,ph, corresponding to the SO(4)
symmetry of Ref. 30. As a consequence of this enhanced sym-
metry, antiferromagnetic and superconducting states may co-
exist [31].

Results — We set J = t = 1 in the calculation. The QMC
results are summarized in the ξ–h phase diagram of Fig. 2. At
ξ = 0, the fermions and the Ising spins decouple. Because of
the π flux, the fermions form a Dirac semimetal with Dirac
points located at the X and Y points of the BZ. For the spin
degrees of freedom, a 2D TFIM is recovered, where param-
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FIG. 3. (a) The BZ of the π-flux square lattice is constructed from
the reciprocal lattice vectors g1 = (π,π) and g2 = (π,−π). High-
symmetry points in the BZ are labeled by Γ, M, X, and Y. Two Dirac
points are located at X = (π/2, π/2) and Y = (π/2,−π/2). (b) The
electronic dispersion εk at zero transverse field (h = 0) for coupling
strengths ξ = 1/2. (c) and (d) Spectra with open boundaries plotted
in the projected BZ X̄ − Ȳ − X̄ at (c) ξ = 1/2 and (d) ξ = 3/2. The
states at zero energy are topologically protected edge states.

agnetic (〈sz
b
〉 = 0) and ferromagnetic (〈sz

b
〉 , 0) phases are

separated by a quantum critical point at hc = 3.04(2), consis-
tent with literature [32].

As we increase ξ, because the coupling between Dirac
fermions and Ising anisotropy is perturbatively irrelevant [3,
33, 34] [35], the second-order Ising phase transition remains
but with a renormalized critical hc . This second-order phase
boundary is indicated in Fig. 2 as the solid black line. Upon
further increase of ξ, new phenomena beyond the TFIM arise.
At ξ > 1, a new phase boundary emerges (red dashed line),
around which strong fluctuations in a fermion bilinear are ob-
served (the shaded area). As will be shown below, this new
phase boundary is a first-order topological phase transition.
At strong coupling (ξ > 2.2), the topological phase bound-
ary and the second-order Ising phase boundary merge together
into a single first-order phase boundary (black dashed line).

To understand the topological phase transition, we first fo-
cus on the exactly solvable limit at h = 0 (the horizontal
axis of the phase diagram). In this limit, the Ising spins sz

b
have no quantum fluctuations and must choose a classical fer-
romagnetic spin configuration, with sz

b
= +1 or sz

b
= −1;

the system then reduces into a free-fermion problem. At fi-
nite ξ, as discussed above, the Ising ordering reduces the
four-fold rotational symmetry down to two-fold (C4v to C2v).
However, as long as ξ , ±1, the system remains a Dirac
semimetal and the location of the Dirac points are pinned to
X and Y by the C2v symmetry. The reduction of the rota-
tional symmetry is reflected by the anisotropy in Fermi veloc-
ity. Near a Dirac point (e.g. X), the linearized Hamiltonian is
HX = 2(t− ξ)kxσx +2(t + ξ)kyσy , i.e., the Dirac points have
different Fermi velocity along x and y, as shown in Fig. 3(b).
At ξ = 1, the velocity in one direction vanishes, and a nested
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Fermi surface develops. This metallic state marks a topolog-
ical phase transition between two topologically distinct Dirac
semimetals.

To define the band topology for this 2D Dirac semimetal,
we utilize the idea of dimension reduction, in analogy to 3D
Weyl semimetals [36–39]. In the momentum space, we can
define the Hamiltonian for each momentum point H (φ1, φ2),
where a momentum point is labeled as k = φ1g1/2π+φ2g2/2π
with g1 and g2 being the reciprocal lattice vectors shown in
Fig. 3(a), and −π < φ1 < π and −π < φ2 < π. For a fixed φ1,
i.e., along a line in the BZ, the Hamiltonian, as a function of
φ2, can be treated as 1D system. For ξ , ±1 and φ1 , 0 or π, it
is easy to verify that such a 1D system has a finite energy gap.
Because of the chiral symmetry defined above, this gapped
1D system falls into the AIII class of Refs. [40, 41] and thus
supports an integer-valued topological index, i.e., a winding
number. As required by the chiral symmetry, the Hamiltonian
can be written as H (φ1, φ2) = Hx (φ1, φ2)σx + Hy (φ1, φ2)σy ,
where σx and σy are two of the Pauli matrices. A 2D unit
vector can be defined as n =

(Hx,Hy )
√

H2
x+H2

y

for ξ , ±1 and φ1 , 0

or π. For a fixed φ1, as φ2 increases from −π to +π, this 2D
vector winds W times around the unit circle. The winding
number W is the topological index of this Dirac semimetal.
For 0 < ξ < 1, W = −1 for 0 < φ1 < π, and W = 0
for −π < φ1 < 0. For ξ > 1, the topological index flips its
value to W = 0 for 0 < φ1 < π and W = −1 for −π <
φ1 < 0, i.e., ξ = 1 is a topological transition. To change a
topological index, the bulk band gap must close, which results
in the nodal lines. The experimental signature for the band
topology and topological transition lies in the edge states. As
shown in Fig. 3(c) and (d), for 0 < ξ < 1, the nontrivial
bulk topological index results in zero-energy edge states for
projected momentum 0 < φ1 < π. For ξ > 1, however, the
zero-energy edge states shift to momentum −π < φ1 < 0.

For h , 0, as shown in the SM [28], the topological in-
dex can be defined via an effective Hamiltonian, which is the
inverse of the single-particle fermionic Green’s functions at
zero frequency [42]. Away from the shaded region in Fig. 2,
the QMC simulations show a finite single-particle gap for mo-
mentum points away from the Dirac points (X and Y ), where
the effective Hamiltonian is well-defined. One can then use
it to evaluate the topological index, following the same pro-
cedure described above. In the insets of Fig. 2, we presented
the winding number for φ1 = ±π/2 at different values of ξ
and h. We find that the FM phase has two distinct topological
semimetal phases (at small and large ξ). For the PM phase,
the band topology coincides with the small ξ FM phase.

Phase transitions — To better understand the phase transi-
tions, we explore the phase diagram with several parameter
scans. Below, we discuss QMC data along the five exemplary
paths labeled À through Ä in Fig. 2.

For ξ/t . 1, the FM to PM phase transition is seem-
ingly identical to that of the 2D TFIM, except for a small
shift of the critical value of hc . This statement is based
on the evaluation of the correlation function of Ising spins,
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FIG. 4. (a) Correlation function S(Q) of Ising spins along path À for
system sizes L = 4, 6, and 8 at coupling ξ = 0.5. (b) Collapse of the
correlation function data in (a) with (2+1)d Ising critical exponents.
(c) S(Q) of Ising spins along path Á at coupling ξ = 1.5. There is a
first-order transition between two FM states at h ∼ 2.8, followed by
a continuous FM-to-PM transition at hc = 3.65. (d) Collapse of the
correlation function data in (c) close to hc with (2+1)d Ising critical
exponents.

S(Q) = 1
L2

∑
bb′〈s

z
b

sz
b′
〉eiQ·(rb−rb′ ) with b, b′ running over all

Ising spin sites and Q = (0,0). This data is shown in panels
(a) and (b) of Fig. 4. The quality of the data collapse with
(2+1)d Ising critical exponents is very good, which suggests
that the FM to PM transition along path À is still of (2+1)d
Ising universality class [43]. Since the observed ferromag-
netic ordering renormalizes the velocities, our result is con-
sistent with the point of view that small velocity anisotropies
that break Lorentz invariance are irrelevant [3, 33].

When the velocity renormalization becomes sufficiently
large, it can trigger the topological phase transition. At h = 0
and ξ = 1, because of the Fermi surface nesting, the fermionic
density of states diverges, as do spin and charge susceptibili-
ties. At finite value of h, fluctuations of the Ising spins provide
an interaction between the fermionic degrees of freedom and,
owing to the Stoner instability, will potentially trigger an or-
dered state. Alternatively, a first-order transition can separate
the two topologically distinct Dirac phases.

To investigate the above scenarios, we compute 1
L2

∂F
∂ξ =

1
L2

∑
j,δ sgn(δ)szj, j+δ

〈(
c†j cj+δ ei

π
4 sgn(δ) +h.c.

)〉
, the derivative

of the free-energy density F/L2 with respect to the control pa-
rameter ξ, along path Ä. As shown in Fig. 5(a), this deriva-
tive shows a clear jump at the transition point, which implies
a first-order topological phase transition.

We have also calculated the fermionic correlation func-
tions along path Ä, such as the antiferromagnetic correla-
tion function χAF = 1

L2

∑
i j (−1)i+ j (〈szi szj 〉 − 〈s

z
i 〉〈s

z
j 〉
)

with

szi = 1
2
(
c†
i↑

c
i↑
−c†

i↓
c
i↓

)
. Owing to the SUS (2)⊗SUη (2)⊗Z2,ph

symmetry of the model, this correlation function is degenerate
with CDW correlations χCDW = 1

L2

∑
i j (−1)i+ j 〈ηzi η

z
j 〉 and

on-site s-wave pairing correlations χSC = 1
2L2

∑
i j 〈η

+
i η
−
j 〉,
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FIG. 5. Measurements along path Ä. (a) Derivative of the free en-
ergy with coupling strength. Here the h = 0 case of ∂F/∂ξ is also
plotted and the value has been scaled down by a factor of two for
comparison in the same plot. It shows a continuous transition. The
jump for h = 2.0 case ( data points with L = 6 and 8 ) directly show
a first order transition around ξ/t ' 1.2. (b) Fermionic spin-spin
antiferromagnetic correlation functions χAF, on-site s-wave pairing
correlations χSC, and CDW correlations χCDW. These functions
are degenerate and greatly enhanced in the vicinity of the ξ/t value
marked by the red dashed line in Fig. 2.

built from bilinears ηzi = (c†
i↑

ci↑ + c†
i↓

ci↓ − 1)/2 and η−i =

ci↓ci↑. As shown in Fig. 5(b), the various correlation functions
are indeed degenerate, and all develop a peak at ξ/t ' 1.2,
which is consistent with the relation ξS(Q)/tL2 = 1 that de-
scribes the divergence of the density of states at the mean-field
level. Since there are no significant size effects between the
considered lattice sizes, the data is consistent with the absence
of long-range order and associated breaking of the SO(4) sym-
metry. We use a cross-hatched region in the Fig. 2 phase dia-
gram to present an area where the SO(4) bosonic fluctuations
are greatly enhanced. For the case of broken symmetry states,
the coexistence of s-wave pairing and antiferromagnetism has
been discussed in detail in Ref. 23 and 31. Note that at the
value of h considered in Fig. 5 (deep inside FM state), the
Ising spins are only weakly fluctuating. The QMC simulation
dynamics are thus slow (see SM [28]).

At larger values of h, fluctuations of the Ising spins become
stronger. Along paths Á and especially Â and Ã, we see first-
order transitions between the Dirac phases with different topo-
logical index. As illustrated along path Á in Fig. 4(c), as a
function of h, we first observe this first-order transition be-
tween the two FM states and then a (2+1)d Ising transition
from FM to PM in the Ising spins, similar to what happens in
Fig. 6(a). For still larger ξ, the Ising spins undergo only a first-
order transition from FM to PM states, as shown in Fig. 6(b).

Discussion — We have investigated the robustness of Dirac
fermions to fluctuations that break the C4v symmetry. Us-
ing unbiased QMC simulations, we have shown that the Ising
quantum phase transition remains in the (2+1)d Ising univer-
sality class, provided that the coupling between the Ising and
fermion degrees of freedom is weak. This serves as a numeri-
cal proof that small velocity anisotropies in Dirac systems are
irrelevant. At larger couplings, however, where the velocity is
strongly renormalized, we observe enhanced spin and super-
conducting fluctuations around points in phase space where
one of the velocities vanishes. The locking of antiferromag-
netic correlations and s-wave superconductivity is a conse-
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FIG. 6. (a) Correlation function S(Q) of Ising spins along the path Â
for sizes L = 4, 6, 8, and 10 with coupling ξ = 2.0. As a function of
h, there is a first-order transition between two FM states, following
by a continuous transition between FM and PM states. (b) S(Q) of
Ising spins along path Ã with coupling ξ = 3.0. There is a single
first-order transition between FM and PM states.

quence of the SO(4) symmetry present in the model. At these
points, the Berry phases of the Dirac cones interchange, and
the transition turns out to be of first order.

Our model emphasizes fluctuations in velocity as opposed
to fluctuations in the position of the Dirac points. It has some
similarity to recent work reported in Ref. 18, and we can easily
extend it to more complicated Fermi surfaces. The flexibility
of our numerical approach allows for arbitrary couplings be-
tween Ising spins and Dirac fermions such that velocity and
Dirac point fluctuations can be investigated.
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