
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Quantum metrology with a single spin-3/2 defect in silicon
carbide

Ö. O. Soykal and T. L. Reinecke
Phys. Rev. B 95, 081405 — Published 13 February 2017

DOI: 10.1103/PhysRevB.95.081405

http://dx.doi.org/10.1103/PhysRevB.95.081405


Quantum metrology with a single spin-3/2 defect in silicon carbide
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We show that implementations for quantum sensing with exceptional sensitivity and spatial res-
olution can be made using spin-3/2 semiconductor defect states. We illustrate this using the silicon
monovacancy deep center in hexagonal SiC based on our rigorous derivation of this defect’s ground
state and of its electronic and optical properties. For a single V−Si defect, we obtain magnetic
field sensitivities capable of detecting individual nuclear magnetic moments. We also show that its
zero-field splitting has an exceptional strain and temperature sensitivity within the technologically
desirable near-infrared window of biological systems. The concepts and sensing schemes developed
here are applicable to other point defects with half spin multiplet (S ≥ 3/2) configuration.

Technologies based on quantum information are re-
cently opening a range of new opportunities from secure
communications to quantum computing. Quantum sens-
ing using entangled entities such as spins, atomic exci-
tations, and photons can provide vastly improved sensi-
tivities compared to classical technologies. Sensing us-
ing defect spin states in semiconductors is particularly
important in part because of its potential for high spa-
tial resolution and for integration with existing solid-
state technologies [1–6]. Room temperature magnetic
and strain sensing are being currently investigated using
spin-1 and inter-valley spin states, e.g. nitrogen-vacancy
(NV) deep color centers in diamond [7] and phospho-
rous shallow donors in silicon [8, 9], that require difficult
micro-fabrication processes and experimentally challeng-
ing detection techniques.

New concepts and approaches have the potential to
move quantum sensing forward to higher sensitivities in
systems that are easier to implement. In the present work
we show that defect states with less common spin-3/2
(or other half spin multiplets) ground state configuration
provide qualitatively a unique opportunity in quantum
sensing due to unusual entanglement properties of their
spin states, reduced losses, and Kramers degeneracy. To
achieve this, we address the spin-3/2 V−Si monovacancy
center [10–14] in hexagonal SiC and develop novel sensing
schemes resulting in extraordinary sensitivities in mag-
netic, strain, and temperature sensing. We note that the
technologically important wide band gap silicon carbide
(SiC) [15–19] has mature growth and microfabrication
technologies and favorable optical emission wavelengths
[20–22], and we develop optical sensing protocols that are
particularly easy to implement.

For the V−Si defect, we find an unexpected avoided
crossing of its GS spin states forming a naturally en-
tangled Λ-type system leading to a significant increase
in sensitivity to magnetic fields. Such an avoided cross-
ing has been observed recently [23]. The degeneracy in
these entangled spin states allows for coherent control by
using static magnetic fields. In addition, we obtain an
important relationship between its GS zero-field split-
ting (ZFS) and strain coupling that can be employed for

on-chip strain detection using realistic SiC micro-electro-
mechanical systems (MEMS). We also show that its GS-
ZFS is highly sensitive to temperature and can be used
for bio-chemical sensing either optically in the desirable
near-infrared window of biological systems or paramag-
netically with current magnetic resonance imaging tech-
nology.

The silicon monovacancy V−Si in hexagonal silicon car-
bide (4H-SiC) is a point defect with C3ν symmetry con-
sisting of a negatively charged silicon vacancy surrounded
by four carbon (C) atoms (see inset of Fig.1). It has five
active electrons, four from the sp3 dangling bonds of C
atoms and one from the extra charge. Its electronic struc-
ture up to the first optically active excited state (ES) is
shown in Fig.1. Its GS has a quartet (S = 3/2) spin
configuration with a zero field splitting of 2D ∼ 70 MHz
[13] between the spin ms = ±3/2 (lower) and ms ± 1/2
(higher) states due to the spin-spin interactions [14]. Op-
tical excitation from GS to ES, both with 4A2 symmetry,
is allowed for an electric dipole moment parallel to the
c-axis of the defect. The dark doublet states are coupled
to the GS and ES quartets through the spin-orbit inter-
actions giving a spin-selective radiationless decay path
–known as the inter-system crossing (ISC). Through this
ISC, the ES can transition radiationlessly back to GS
with different rates for each spin multiplicity ms=± 3/2
and ms= ± 1/2. This leads to the spin polarization of
the GS. After a steady-state is reached, spin-dependent
changes in the photoluminescence (PL) will occur when
populations are modified.

A rigorous, fully relativistic, multi-particle derivation
of its ground state (GS) spin Hamiltonian, including
the spin-orbit (SO) and spin-spin (SS) interactions, is
needed here as a basis for novel sensing protocols. To
obtain such a Hamiltonian, we apply perturbation the-
ory to the GS wave functions using the SO potential
[24] Vso=

∑
i λ||lz,isz,i+λ⊥(lx,isx,i + ly,isy,i). Orthogo-

nal and longitudinal SO coupling parameters along the
basal plane and c-axis are λ⊥ and λ||, respectively.
Using symmetry-adapted multi-particle wave functions
[14] expressed in terms the molecular orbitals (MOs),
we obtain the SO corrected ground state wave func-



D

D4A2

γq

γq4A2

∆d

∆d

γd

γd

2E

ψ9,10

ψ5,6

ψ7,8

2A2

2E ψ11-14

ψ1,4

ψ2,3

ψ1,4

ψ2,3

∆d

∆d

γd

γd

2E
ψ17,18

ψ19,20

ue2

ve2

e3

v2e

1

1

ψ15,16
2A1

ve2

d||E
λ⊥ Σi l⊥,i  s⊥,i

λ|| Σi lz,i  sz,i
0

0

q1

q1

ve2

ve2

O
ptical Excitation

Ground

1st Excited

ISC

FIG. 1. Electronic structure and wave functions of V −Si in
4H-SiC. Each state has a 2-fold Kramer’s degeneracy. The
quartet GS (4A2) can be optically spin polarized and read-
out via the first quartet ES (4A2) with d|| dipole moments

along the defect’s c-axis. The dark doublet states (3 2E, 2A1,
and 2A2) are ordered in energy on the right. Non-vanishing
spin-orbit matrix elements to GS (ES) are shown by solid
(dashed) arrows forming an ISC channel between quartets and
doublets. ∆d and γd are the energy splittings/shifts induced
by the SO and SS interactions. ZFS splittings are labeled 2D
for the GS and 2γq1 for the ES. (Inset) Local C3ν symmetry
of the defect. a, b, c, d represent the sp3 dangling bonds of the
surrounding carbon atoms.

tions (see Fig.1), Ψso
i =Ψ0

i+
∑
j αi,jΨj , up to the first

order perturbation coefficients αi,j [25]. The interac-
tion between the GS spins and a magnetic field is given
by the fully relativistic multi-particle Hamiltonian [26]

HB =
∑
i µB(li + gesi)B/~ +

∑
i e

2 (B × di)
2
/8mc2 +

e
∑
i,j (si ×∇rVk(rij)) (B × di) /4m

2c3, where i and j
are electron and nuclear indices. ge, µB , e, m, and c
are the bare electron g-factor, Bohr magneton, electron
charge and mass, and speed of light, respectively. The
ith electron’s position relative to the jth nucleus is given
by rij . The position vector of the electron relative to an
arbitrary origin is d, and l=d×p is the angular momen-
tum about this origin. Thus, the first term corresponds
to the Lande g-factor. The second term, proportional to
B2 and independent of the spin, shifts the energy levels,
and it can be omitted. The last term is the relativistic
correction to the first term due to the nuclear potentials
Vk and can be simplified to the tensor form hr = sḠB
[25].

In the SO corrected basis Ψso
1 −Ψso

4 , we find no or-
bital magnetic moment contribution to the g-factor to
first order in αi,j coefficients. Second-order contribu-
tions would be much smaller than the reported shifts
∆g = (6 ± 1)×10−4 in ge [27]. Thus, we omit the sec-
ond order SO contributions, α2

i,j � ηez, η
e
⊥, η

a
⊥ [25]. We

obtain the final V−Si ground state spin Hamiltonian,

HB =


D

√
3
8h− −i

√
3
8h+

3
2hz√

3
8h+ −D + 1

2hz h−

√
3
8h+

i
√

3
8h− h+ −D − 1

2hz −i
√

3
8h−

3
2hz

√
3
8h− i

√
3
8h+ D


(1)

in the Ψso
1 −Ψso

4 basis in terms of h−=µBg⊥B−,
h+=µBg⊥B+, and hz=g||µBBz for magnetic field
B={Bx, By, Bz}. The z-axis is along the defect’s c-
axis with B±=Bx±iBy. We calculated the ZFS of
2D=68MHz in good agreement with experiment [11–
13, 25]. The relativistically corrected g-factors are
g||=ge + (ηa⊥ + ηe⊥)/3 and g⊥=ge + ηez/3 + (ηa⊥ + ηe⊥)/6.
Because of the near Td symmetry of this defect, ηez ≈
(ηa⊥+ηe⊥)/2 leads to an almost isotropic g-factor g|| ≈ g⊥.
In the isotropic case, the relativistic g-factors differ from
ge by ∆g≈2ηez/3, and ηez is roughly (9±1.5)×10−4, con-
sistent with experiments [27].

The GS spin Hamiltonian in Eq. 1 can be put into
the familiar single-spin (S = 3/2) form, HB=D(S2

z −
5/4) + µBSḡB/~, after a unitary transformation from
the defect’s basis to a spin-3/2 basis where ḡ =
diag{g||, g||, g⊥}. In the neighborhood of a level cross-
ing where some small B⊥ is present, coherent mix-
ing/transitions that are otherwise dipole forbidden be-
tween the ms = 3/2 and ms = −1/2 spin states can
be induced without populating the auxiliary ms = 1/2
state.

The resulting level repulsion between ms = 3/2 and
ms = −1/2 differing by ∆ms = ±2 leads to an unex-
pected avoided crossing when B⊥ is present. It is labeled
ACL in Fig.2a and occurs at a lower magnetic field than
the regular avoided-crossing at higher field ACH with
∆ms = ±1. Near the ACL where Bz = 1.25mT, during
the Rabi oscillations between ms = 3/2 and ms = −1/2,
the ms = 1/2 state remains largely unpopulated due to
destructive quantum interference between 3/2↔ 1/2 and
−1/2 ↔ 1/2. In Fig.2b, the frequencies ω1 and ω2 for
transitions 3/2 ↔ −1/2 and 3/2 ↔ +1/2, respectively,
both decrease linearly with a Bz. Level crossings cor-
responding to ω1,2 = 0 occur at BACL = 1.25mT and
BACH = 2.5mT. In Fig.2c, ω2 behaves linearly with a
B⊥ along the basal plane as expected, whereas ω1 is al-
most quadratic and thus has a sharper avoided crossing
in Fig.2a. This can be understood by the interference
mechanism above because the second order ∆ms = ±2
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FIG. 2. (a) GS spin splittings versus magnetic field Bz (along
the c-axis) with fixed B⊥ (along the basal plane). Avoided
crossings ACL at the low (≈ 1.25mT) and ACH at the high
(≈ 2.5mT) fields shown by vertical dashed lines. Spin pro-
jection states 〈Sz〉 = ms are color coded. (b) GS energy
splittings between spin states ms : 3/2 ↔ −1/2 (ω1) and
ms : 3/2 ↔ 1/2 (ω2) versus Bz, and (c) B⊥. (d) (Left) DC
sensing: Ramsey pulse sequence. (Right) AC Sensing: Spin
echo

involves two-spin resonant transitions. Note that we use
a negative ZFS (D < 0) for the GS following the recent
findings [14]; however, our results remain unaffected on
exchanging the signs of ms in the case of D > 0.

Here we propose a Ramsey-type magnetic field sensing
scheme (Fig.2d) using the ACL: (i) V−Si spins are initial-
ized to populate only the ms=±3/2 states by optical spin
polarization at Bz=0, (ii) A field of Bz≈1.25mT along
the [111] c-axis moves the system into the ACL regime,
(iii) A small field of B⊥=30µT in the basal plane for the
duration of a π/2 rotation transforms ms=3/2 into a su-
perposition state (|3/2〉 + |−1/2〉)/

√
2, (B⊥ at the ACL

can be interpreted as an RF field with zero frequency)
(iv) this state now evolves (precesses) freely around a
small target (to be measured) magnetic field along the
c-axis, accumulating a phase φ(τ)=

´ τ
0
Bdcdt over an in-

terrogation time τ , (v) A second π/2 pulse of B⊥ converts
the overall phase in the ms = 3/2 and ms = 1/2 states to
〈Sz〉 populations. The overall (phase induced) change in

ms populations can be detected through the PL signal.
Fig.3a shows the oscillations of the change in PL signal

amplitude (∆PL) for a range of DC target fields. Smaller
magnetic fields have longer oscillation periods and in-
creasing the interrogation time τ gives an increased signal
for the same small fields. Although the longer interroga-
tion times (up to an optimal τ where φ(τ) reaches π)
improve the signal-to-noise ratio for detection of smaller
fields, it ultimately will be limited by the effective T ∗2
(for DC) or T2 (for AC) transverse relaxation times of
the 〈Sx,y〉 components. Early measurements on single
V −Si report a lower bound of 160µs [12] for T2 times. In
our evaluations we use conservative (shorter) interroga-
tion times.
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FIG. 3. (a) Change in PL versus measurement time t for a
range (25-100 nT) of DC fields. (b) Change in PL versus
measurement time t for a range (25-75 nT) of AC fields with
a fixed frequency (ωAC = 4.4kHz).

In a usual ∆ms=±1 avoided crossing regime, the elec-
tron Zeeman energy becomes comparable to the hyper-
fine coupling (SĀI), and the electron spin S acquire de-
coherence due a nearby nuclear spin I by the non-secular
processes, i.e., SxIx and SyIy [28], significantly reducing
the T2 times. However, the ACL here occurs between
ms=3/2 and ms= − 1/2, which differ by ∆ms = ±2,
and the non-secular processes still involve the out-of-
phase auxiliary state ms=1/2 with larger electron Zee-
man splitting. Thus they will have a much smaller prob-
ability and won’t affect the interrogation times signif-
icantly because of this double resonance nature of the
ACL in which at least two simultaneous nuclear spin flips
are needed to change the electron spin by ∆ms = ±2. We
note that the spin-3/2 defect is especially desirable for
relaxation based coherent detection techniques, i.e. T1-
NMR [29], as a result of the reduced nuclear spin mixing
effects in the ACL regime.

Next, we demonstrate AC magnetic field sensing in the
ACL regime using the spin echo scheme [30] in Fig.2d.
Fig.3b shows signals from several AC magnetic fields all
with the same frequency. This frequency was chosen to
achieve reasonable echo times (2τ) smaller than T2. The
AC magnetic sensitivity is given by ζB=σ0/(

√
NdS/dB)

where S∝ cos2[2φ(τ)] is the defect specific signal, σ0 is
the standard deviation per measurement and N = T/τ



is the number of measurements in a one second averaging
time T [31]. The maximum contrast between the ms=±
3/2 and ms=± 1/2 states is taken to be about one per-
cent of the total average PL photon count of 40Kcps from
the defect with a solid immersion lens [12]. The magnetic
field response dS/dB is constructed from the spin echo
AC field data for τ = 114µs [25]. This gives a shot-noise

limited magnetic sensitivity of ζB = 40nT Hz−1/2 for an
AC field with frequency ωAC = 4.4kHz. We note that
decreasing AC frequency increases the overall sensitiv-
ity, but will be limited by the T2 relaxation time. How-
ever, a Carr-Purcell-Meiboom-Gill (CPMG) pulse-echo
sequence can theoretically boost these coherence times
up to the T1 ≈ 340 − 500µs [12, 32] relaxation times of
the 〈Sz〉 components, thus permitting longer interroga-

tion times. Therefore, sensitivities of less than nT Hz−1/2

should be achievable with single V−Si defect centers after
optimizations involving isotopic purification and imple-
mentation optical wave-guiding to increase the photon
collection efficiency. To obtain better spectral resolution,
one could use a spin-locking scheme [33].

We now consider the strain sensing by using a hybrid
quantum system consisting of a single V−Si defect and a
SiC mechanical resonator. First, we obtain the strain
Hamiltonian of the ground state up to the second order
in SO coupling coefficients [25]:

Hσ=


D+ξr1Λr ξ3Λxy iξ3Λ∗xy 0
ξ∗3Λ∗xy −D+Λrξr2 0 −ξ∗3Λ∗xy
−iξ∗3Λxy 0 −D+Λrξr2 −iξ∗3Λxy

0 −ξ3Λxy iξ3Λ∗xy D+Λrξr1

 .

(2)

The off-diagonal terms involving Λxy=σExx − σEyy + 2iσExy
are obtained using the irreducible matrix elements of the
strain tensor components σpij = 〈p||σij ||p〉 in the C3ν dou-
ble group [34]. In the diagonal terms, r indicates a sum-
mation over the allowed MO representations, A1 and E.
This gives ΛA1ξA1

1 + ΛEξE1 and ΛA1ξA1
2 + ΛEξE2 in terms

of ΛA1=σA1
xx +σA1

yy and ΛE=σExx+σEyy + 2σEzz. Without a
magnetic field, the Kramer’s degeneracy of the ms=±3/2
and ms= ± 1/2 states under strain is conserved consis-
tent with our expectations (see Fig.4a). The diagonal
strain coupling shifts the energies of both spin multiplic-
ities equally and therefore does not affect the ZFS. The
deformation potential constants are included in the strain
coupling coefficients ξi [25].

For the V−Si defect coupled to realistic mechanical res-
onators, we calculated the strain sensitivity by using typ-
ical device parameters. The defect is taken to be near the
surface and at the center of a SiC membrane to maximize
the strain coupling. Such devices and accurate defect
placement has been already demonstrated by using var-
ious masked irradiation and smart-cut techniques [35].
In Fig.4a, we show the change in ZFS (∆D) with in-
plane (flexural) strain σ⊥. To be conservative, we use the
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FIG. 4. (a) ZFS of the GS versus the non-axial strain σ⊥
(= σxx = σxy/2 and z‖c-axis). (b) Fundamental mode of the
SiC membrane with frequency ω = 96.3MHz for an amplitude
|A| ≈ 15nm. Surface strain shown by color. Maximum flexu-
ral strain σm = 4.34× 10−4 corresponds to the defect placed
on the surface at the center of a SiC MEMS membrane with
diameter d = 10µm and thickness h = 0.3µm.

smallest reported deformation potential Ξ = 11.6 eV for
bulk 4H-SiC [36]. The GS spin-strain coupling is calcu-
lated using the fundamental mode of the membrane [25]
shown in Fig. 4b. The surface flexural strain field for
the fundamental mode leads to a local maximum strain
of σm=4.34 × 10−4 at the defect location (Fig.4b) and
it results in a ∆D = 6.87MHz increase of the GS ZFS
(Fig.4b) in the presence of a bias strain σ0. Optically
detected magnetic resonance (ODMR) can detect these
variations in ZFS due to membrane oscillations. With a
bias strain of σ0 = 10−2, we calculate the strain sensitiv-
ity to be ζσ=hn(ω)ω−1/2 ≈ 6.7×10−8 strain Hz−1/2. The
hn(ω) noise amplitude is estimated using the reported 2.8
MHz (at −10dBm) experimental ODMR linewidth [13].

The advantages of the V−Si for strain detection are: i)
Roughly two orders of magnitude improvement in sen-
sitivity over spin-1 defects [37] due to the near Td local
symmetry and Kramer’s degeneracy. ii) Simpler spin-
resonance detection techniques (i.e. ODMR, EPR, etc.)
that does not require dynamical decoupling. This makes
the V−Si defect technologically appealing for hybrid quan-
tum systems in realistic applications, e.g. navigation,
gravimetry, and autonomous detection systems.

For the temperature dependence of the GS, we ob-
tain a simple analytical expression [25] leading to
dD/dT=1kHz/K change in ZFS around T=300K, in
remarkable agreement with recent experiments [38].
This corresponds to a fractional thermal response of
dD/(DdT ) = −1.4× 10−5K−1 and it is an order of mag-
nitude higher than that for NV-centers in diamond [39]
due to the near Td symmetry. This provides a unique
opportunity for nano bio-chemical sensing with the com-
bined benefit of increased optical penetration capabilities
[40] due to the V−Si zero-phonon line that lies in the near-
infrared window of biological tissue. Techniques such as
the optically detected double microwave resonance be-
tween the ms = 3/2 and ms = ±1/2 with an N-pulse
CPMG method [41] can be easily utilized to achieve this.



A fully relativistic treatment of the electronic proper-
ties of the V−Si Si deep center defect in 4H-SiC has been
used to develop opportunities for quantum metrology in
this system. It has been shown that the novel features
of half spin multiplet, i.e. class spin-3/2 quartet, defects
allow for novel sensing schemes and easy-to-implement
detection protocols with unique advantages that make
possible sensitivities well beyond those of current tech-
nologies. Other point defects, i.e. 3d transition metal or
rare-earth impurities in semiconductors, may also pro-
vide similar opportunities in quantum sensing due to
their high half-spin (S ≥ 3/2) configurations.
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