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Abstract

High quality factor and small modal volume for compact, integrable optical devices have al-

ways been of great demand. Although metamaterials may be designed to achieve selected mode

confinement at a subwavelength scale, structures themselves have retained a large size. We ad-

dress the issue of the subwavelength mode confinement in structures of reduced size by utilizing

unique properties of spoof surface plasmon polaritons (SSPP). While SSPP modes are commonly

considered in the context of periodic structures, we demonstrate that the SSPP formation does

not depend crucially on periodicity and, therefore, meta-structures of minimal length can support

well-formed spoof plasmon state. This general property is explicated through our study of the

transmission spectrum of a three-cell waveguide with the spoof plasma frequency of the middle

cell (defect cell) different from that of remaining cells (host). The SSPP state in the defect cell

supports resonant tunneling manifested by a narrow transmission resonance inside the bandgap of

the host structure. Despite the minimal length of the structure, the localized defect SSPP mode

is characterized by very high quality (∼ 105) and Purcell (∼ 103) factors. The proposed concept

can be a promising alternative for making a miniaturized sources, information storage and sensing

devices at low terahertz frequencies.
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I. INTRODUCTION

The idea of spoof surface plasmon in a perforated metallic structure triggered by Pendry

with coworkers1 ushered in a great deal of work in this field that ramified into spoof ver-

sions of surface plasmon polariton2–8 and localized surface plasmon9–11 in subsequent years.

The concept of spoof plasmon quasi-particle provides a way to adopt plasmonics to a lower

frequency region where no true plasmons can exist because of high conductivity of metals.

A patterned metal surface, however, can support a surface bound mode mimicking a surface

plasmon mode without penetrating into the material12. It can be shown that the macro-

scopic behavior of the patterned metal surface demonstrates characteristic Drude model

dispersion1,13,14 with the spoof plasma frequency determined by the geometry of corruga-

tions. To explain the working principle of spoof surface plasmon polartions (SSPP), several

theories13,15 describe SSPP structures, a specific type of meta-materials consisting of nar-

row grooves with sub-wavelength width on a plain metal surface [see Fig. 1(a)], in terms of

an effective homogeneous medium. It is a commonly held belief that an effective medium

description of a meta-structure breaks down as the number of elementary cells becomes too

small16. In contrast to this argument, we show here that SSPP structures can preserve the

same ‘effective medium’ description even when the size of the structure is reduced down to

minimal number of unit cells. This facilitates building a very short and geometrically simple

1D SSPP structure, which is able to manifest excellent mode confinement quality yielding

high Q-factor (∼ Qmax ≈ 105) and high Purcell factor ∼ 103. Spoof plasmon states defined

by their dispersion relation are well preserved in finite structures, as periodicity plays a nom-

inal role in determining its propagation character, which is in strong contrast to photonic

crystal structures17 in general.

Pre-engineered defects in plasmonic18,19 and photonic structures20 attract a great deal

of scientific and engineering interest. Sophisticated applications such as ultra-small filters,

low threshold lasers21,22, photonic chips, multiplex biosensing23 and quantum information

processing24,25 often seek for a structure supporting modes with high quality factor, Q, and

small modal volume, V . For example, a point defect embedded into a large photonic crystal

can yield a high-Q resonant mode inside the photonic bandgap. However, many applications

require devices with stringent conditions of small sizes. In those cases, diffraction based

devices, e.g., photonic-crystals, are disadvantageous since their feature size (i.e., lattice
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parameter) has to be comparable to wavelength. Meta-materials, with their ability to offer

deep subwavelength confinement26,27, stand out to be better candidates for small devices.

Efforts for making a small cavity size of good quality have so far resorted to embed the

defect into a large array of unit cells with the number of cells reaching an order of 102

or even higher28–30. The large size of optical structures is apparently inevitable due to

the following. Defect states form inside the bandgap of host medium. In both photonic

crystals or metamaterials, the optical bandgap of the host structure is formed as a result of

interference of multiple scattered waves. Therefore, one has to leave a significant amount of

unit cells around the defect in order to faithfully reproduce the effect of periodic structure.

A similar bandgap effect is observed in disordered metamaterials, which also involve a large

(≈ 102) number of unit cells to embed a defect31. High quality mode proposed or realized

by far, thus, inexorably bring large structures.

Our observations of the properties of an SSPP waveguide reveals a staggering fact. The

characteristic transmission properties of SSPP modes obliterate the need for a long structure.

This can enable to realize a high-Q resonant tunneling of spoof plasmon mode in a very short

host medium. We illustrate this observation by considering a chain of three unit cells of a

SSPP waveguide, with the first and last grooves having height hh, and the groove at the

middle having height hd. We show that, for hd 6= hh, a resonant tunneling mode inside

the SSPP bandgap is formed. Thus, we can reduce the entire structure of ‘a defect in a

host’ system to its minimal possible length. In the subsequent sections, we will refer to this

minimal length ‘host-defect-host’ heterogeneous system as a (1–1–1) structure.

II. TRANSMISSION SPECTRA OF HOMOGENEOUS AND HETEROGENEOUS

STRUCTURES

A schematic of the structure under study is presented in Fig. 1(a). Periodic structures

were a subject of intensive research32–35 and their basic properties are well established. The

SSPP dispersion diagram in a periodic structure is presented in Fig. 1(b). The gaps in the

spectrum indicate the frequency regions where finite SSPP structures demonstrate subsided

transmission as is illustrated by spectra shown in Fig. 2(a). The transmission coefficient

of the waveguide stays close to unity in a wide frequency range with slight modulation by

Fabry-Perot ripples and is strongly reduced in the bandgap zone.

3



FIG. 1. (a) The geometry of a homogeneous SSPP structure. The dark regions indicate metal and

the light regions correspond to dielectric. (b) The dispersion diagram of a periodic SSPP waveguide

with h/d ∼ 1, t/d ∼ 0.3, a/d ∼ 0.1, and w ∼ λ. The frequency is normalized by the spoof plasma

frequency ωp = πc/2h. The bandgaps are formed due to anti-crossing between light-line and ωp.

For 2h� d, the anti-crossing happens far away from the Brillouin zone boundary.

A thorough treatment of the optical response of a good conductor’s surface with periodic

narrow grooves shows14 that such structures are characterized by an effective Drude model

with a spoof plasma frequency

ωp =
πc

2h
√
ε
, (1)

where h is the height of the grooves, c is the speed of light in vacuum and ε is the dielectric

function of the medium filling the groove. It should be emphasized that this frequency

does not derive from material properties, but from the geometry of the structure. Generally,

taking into account higher order resonances, the n-th spoof plasma frequency can be written

as

ω(n)
p = (2n− 1)ωp, (2)

with n = 1, 2 . . ..

Figure 2(a) shows that major characteristics of transmission spectra of an SSPP waveg-

uide successfully retain when the number of unit cells is greatly reduced. This result implies

a certain immunity of SSPP modes to finite-size effects. Manifestation of strongly attenuated
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FIG. 2. (a) Transmission spectra of homogeneous SSPP waveguides with different number of unit

cells. Inset shows the corresponding SSPP structure. (b,c) Transmission spectra of heterogeneous

structures with the defect cells characterized by hd/hh = 0.75 and hd/hh = 1.25, respectively. Anti-

resonances ω
(1)
ar and ω

(2)
ar (transmission dips) at ω/ωh 6= 1 are induced by first and higher order spoof

plasmon resonance modes of defect cells ω
(1)
d and ω

(2)
d , respectively. In addition, a transmission

resonance ωr emerges inside the bandgap. The insets show corresponding heterogeneous geometry.

(d) Trajectories of ωr, ω
(1)
ar and ω

(2)
ar in heterogeneous SSPP structures as functions of the spoof

plasma frequency of the defect cell. The solid black curves shown inside host bandgap are loci of ωr

obtained via Eq. (13). The dots of ωr and ω
(n)
ar are the numerical data of the loci of the resonance

and the n-th antiresonance, respectively, obtained from COMSOL Multiphysics simulation. Note

that, the locus of transmission resonances ωr demonstrates discontinuity around ωd/ωh ∼ 1, as

at this condition, the SSPP structure becomes homogeneous and contains no resonance inside

bandgap.
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transmission or anti-resonance of a single cell is utilized to propose spectral filters in several

works36,37, albeit in a different context. The attenuated transmission near an embedded

cavity resonance is a characteristic feature of a laterally coupled waveguide-cavity systems

in general38. In the present work, however, we emphasize that a single cell of spoof plasmon

waveguide yields not only the ‘bandgap effect’ but also the ‘dispersion effect’ of a periodic

structure. The ‘bandgasp effect’ refers to the phenomenon of strongly attenuated transmis-

sion in a finite SSPP waveguide over a frequency range that corresponds to the bandgap

of its infinite version. The ‘dispersion effect’ in the context of finite structures should be

understood in terms of a phase relation between the states of the field at the boundaries of

a unit cell at a given frequency as is explicated in the transfer matrix treatment in section

III.

To demonstrate these phenomena, we study the transmission behavior of a composite

(1–1–1) structure of SSPP waveguide. We will call the middle cell a ‘defect’ with the groove

height hd 6= hh embedded in a host medium. The term ‘defect’ in this context means an

intentional breaking of translation symmetry of an otherwise regular structure. As we will

show, the transmission property of the composite medium can be successfully explained by

considering each cell as an effective individual SSPP medium, characterized by ωh and ωd

spoof plasma frequencies, respectively. To put differently, the effective medium description

of a SSPP meta-structure is valid for a single cell as well. This simple concept has far greater

significance than being of a mere theoretical interest. This helps in designing, as we will

show, a very short spoof plasmon structure with giant quality and Purcell factors.

The transmission spectrum of the composite structure is a result of interplay between

characteristic frequencies describing states of the field in periodic structures. A straight-

forward impact of inclusion of a new cell to an SSPP waveguide is added spectral filtering

effect due to the SSPP bandgap, which manifests as an anti-resonance in the transmission

spectrum [Fig. 2(b,c)]. The spatial distribution of the electric field inside the structure

corresponding to different propagation regimes is shown in Fig. 3.

In addition to spectral filtering, the spectrum of an 1-1-1 structure may demonstrate a

non-trivial phenomenon of transmission resonance due to resonant tunneling at frequencies

inside the host SSPP bandgap [see Fig. 2(b,c)]. The characteristic field distribution in the

resonant tunneling mode is shown in Fig. 3(c). Figure 2(d) depicts the trajectories of the

transmission resonances ωr and anti-resonances ωar with variation of ωd. In the next section,
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FIG. 3. Spatial field distribution inside a three-cell structure with the wave incident from the left

side. (a) A propagating SSPP mode in a homogeneous structure at a frequency corresponding to

a pass-band. (b) SSPP attenuation at a frequency inside a bandgap. (c) Resonant tunneling in a

heterostructure incorporating a defect cell in the middle.

we show how the numerically obtained trajectory of ωr and ωar in a (1–1–1) composite

structure can be explained by describing the propagating state in each single cell as a spoof

plasmon mode. In this regard, it should be emphasized that, as Fig. 3 demonstrates, all

modes, propagating, non-propagating and resonant tunneling, are concentrated close to the

surface of the structure. Appearance of such kind of resonant tunneling mode of spoof

plasmon with high Q-factor in short structures is the principle message of the present work.

III. SSPP SCATTERING IN HETEROGENEOUS STRUCTURES

Despite significant efforts invested into theoretical studies of SSPP, a full yet tractable

description of the propagation of spoof plasmons in finite structures is yet to be developed.

Basic transport properties of such structures, however, can be understood using a simplified

model based, first, on the assumption that the propagation within a single cell can be

effectively characterized by an SSPP dispersion law and, second, on continuity-on-average

conditions imposed at the interfaces between different cells.

In what follows, we will denote host and defect cells with subscripts ‘h’ and ‘d’, respec-

tively. Retaining a single mode, the electric and magnetic fields can be presented as

Hy = eiq(ω)z{f+eiβ(ω)x + f−e
−iβ(ω)x} (3)

Ez = −β(ω)

ωε
eiq(ω)z{f+eiβ(ω)x − f−e−iβ(ω)x}, (4)
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FIG. 4. (a,b) A 1D photonic crystal and an SSPP structure, respectively. The dashed box indicates

the unit cell. (c,d) Band diagrams of a photonic crystal and a SSPP periodic waveguide, respec-

tively. Anti-crossing (dashed circles) between bands of the perturbed background (dashed lines)

leads to formation of new bands (solid lines). For the SSPP, the anti-crossing location (k = π/2h)

must occur far away from the boundary of the Brillouin zone in order to have well developed SSPP.

As a result, SSPP modes are immune to broken periodicity and withstand the finite size effect.

where the coordinate axes are chosen as shown in Fig. 1(a), f+ and f− are amplitudes of

the waves propagating forward and backward, respectively, q(ω) =
√

(ω/c)2 − β2(ω) is the

transverse wavenumber and β(ω) is found for the host and defect cells from the respective

dispersion equations Dh,d(ω, β) = 0, where39

D(ω, β) =
q

ω/c
tan(qt) +

a

d
sinc2(aβ/2) tan(ωh/c), (5)

where a, d, and t are relevant geometric dimensions of SSPP waveguide as shown in Fig. 1a.

The possibility to characterize the state of the electromagnetic field within a single cell

with the help of dispersion equation (5) is suggested by the following consideration. In

a typical periodically perturbed system, say a photonic crystal, the corresponding band
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diagram can be obtained by replicating the dispersion diagram of the background at each

reciprocal lattice site. The replicated diagrams intersect at the boundary of the Brillouin

zone and the cross-resonance between them leads to opening a gap between the bands.

Figure 4(c) shows how the gap formation occurs in a typical photonic crystal. Periodicity

thus plays the crucial role for the bandgap formation in a photonic crystal, while far away

from the boundary of the Brillouin zone the effect of periodicity on the band is weak.

The bandgap in the spoof plasmon spectrum, however, originates from a different type

of mode coupling. The coupling in this case occurs between states inside and outside of the

groove and is the strongest at crossing between the light-line and the groove resonant mode

at frequency ωp [see Fig. 4(d)]. It should be emphasized that well-defined SSPP modes are

formed when the groove height exceeds half of SSPP period, h > d/2,14 which holds when

the intersection between the light-line and the resonant mode is far from the boundary of

the Brillouin zone. Thus, in an SSPP supporting structure, periodicity plays rather minor

role in the band formation, and one can regard Eq. (5) as describing an effective medium

even for a short SSPP structure with minimal number of cells.

Assuming that the interface between the host and defect cells is situated at x = 0, the

continuity on average condition for the tangential component of the electric field at the

interface has the form ∫ t

0

Ez(d)|x=0dz =

∫ t

0

Ez(h)|x=0dz, (6)

while the continuity of the total energy flux across the interface leads to∫ t

0

Ez(d)H
∗
y(d)dz =

∫ t

0

Ez(h)H
∗
y(h)dz. (7)

Enforcing these conditions, we obtain the transfer matrix for the interface between the host

and defect cells fh+
fh−

 =
1

2

t1 t2

t2 t1

fd+
fd−

 = M̂hd

fd+
fd−

 .

Here tj = 1
2

[
A− (−1)j βd

βhA
· 2iqdt
e2iqdt−1

]
and A = i qd

2qhqdt
(1− e2iqdt) 1−eiqht

1−eiqdt . For small t, one has

A ≈ 1 and consequently, tj ≈ 1
2

[
1− (−1)j βd

βh

]
. Here qd and qh are transverse wavevectors

of the defect and host cells, respectively.

An SSPP structure with a defect cell in the middle is described by the transfer matrix

M̂ = M̂ehM̂hM̂hdM̂dM̂dhM̂hM̂he, (8)
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where M̂dh = M̂−1
hd , M̂h,d = diag

(
eiθh,d , e−iθh,d

)
, with θh,d = βh,dd, are the transfer matrices

through the host and defect cells, and M̂eh = M̂−1
he are the transfer matrices between the

SSPP structure and environment, which we will take in the form of an interface transfer

matrix

M̂eh =
1

2

 s1 −s2
−s2 s1

 , (9)

where parameters s1,2 can be found using the same continuity-on-average conditions, Eqs. (6)

and (7), for the interface between the SSPP structure and environment. Assuming that the

incoming wave is characterized by the wavevector k = (kx, 0, kz) with ck = ω, we find

sj = 1
2

[
A′ − (−1)j 2ikx

A′β
· qht
1−e2iqht

]
, where A′ = qhkx

βkz
· 1−eiqht

1−eikzt . It should be noted, however, that

the specific form of sj is of low importance for the following.

Since we are interested in the frequency range inside the bandgap of the host structure,

where βh = iκh, we present θh = iNdκh, where N is the number of host cells on either side

of the defect cell; and obtain from Eq. (8) the transmission coefficient

T = − 16eiθds1s2t1t2
e2κhND(+) + e−2κhND(−) +D(0)

, (10)

where

D(±) = (s1 ∓ s2)2
[
(t1 ± t2)2 − e2iθd (t1 ∓ t2)2

]
,

D(0) = 2(1− e2iθd)
(
s21 − s22

) (
t21 − t22

)
.

(11)

The resonant tunneling occurs at frequency, where the exponential attenuation of the

transmission with the length of the host cancels. This yields

D(+)(ω) = D+(ω)D−(ω) = 0, (12)

where D±(ω) = t1e
−iθd/2 ± t2eiθd/2. Using the obtained transfer matrices, it can be shown

that D+(ω) = 0 and D−(ω) = 0 define frequencies of states confined to the defect cell

embedded into an infinite host structure, even and odd with respect to the center of the

defect cell, respectively. It’s not difficult to see, however, that D+(ω) = 0 does not have

solutions inside the first Brillouin zone. Thus, the resonant transmission is supported only

by odd local states, or when
βd(ω)

κh(ω)
= cot

(
dβd(ω)

2

)
. (13)
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Basic features of the transmission resonance can be discussed directly on the base of

Eq. (13) taking into account that inside the bandgap above host spoof plasma frequency ωh,

(i.e., ωh < ω < ω
(H)
h ), we have

κh =
ω

c

√
ω
(H)
h − ω
ω − ωh

. (14)

Here, ω
(H)
h is the upper frequency edge of the SSPP bandgap, which is found to be

ω
(H)
h = ωh

(
1 +

4ah

π2dt

)
. (15)

One can see that, for example, as the height of the groove of the defect cell increases,

the transmission resonance ωr emerges near ω
(H)
h and moves deeper into the host bandgap

(ω
(H)
h −ωr ∼

√
hd − hh). The comparison between the analytical estimation of characteristic

resonant frequencies (ωr) following from Eq. (13) and the numerical results is provided in

Fig. 2(d). The good agreement of our analysis with the numerically obtained data validates

the concept that spoof plasmon mode can survive even in a short meta-structure consisting

of minimal number of cells. It should be noted that when the resonance frequency ωr

approaches ωh, the point βd(ωr) gets close to π/d, where the characterization of the state

of the electromagnetic field inside the defect cell in terms of dispersion equation (5) is no

longer valid and Eq. (13) breaks down.

We conclude this section with a note about the defect induced anti-resonances in trans-

mission spectra, for instance, at ω/ωh ≈ 1.45 in Fig. 2(b) and at ω/ωh ≈ 0.7 and 2.2 in

Fig. 2(c). They, as well, can be studied using Eq. (10). It’s not difficult to see that they

emerge at frequencies inside the stop-band of the defect cell. As a result, with the variation

hd, they follow defect cell spoof plasma frequencies, ω
(n)
d .

IV. Q-FACTOR AND ENHANCED RADIATION RATE

We consider two figures of merit for the resonant mode inside the SSPP bandgap: the Q-

factor and the Purcell factor. In a defect incorporated finite waveguide, for a given frequency

inside the bandgap, the fraction of power transmitted through the structure can be written

as

|T |2 ∼ e−4κhdN . (16)
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As the Q-factor is inversely proportional to the power radiated out of the structure, taking

into account Eq. (14) for κh, we can estimate it for frequencies not too close to ωp as

logQ ∼ N

√
ω
(H)
h − ωr
ωr − ωh

. (17)

As has been discussed above, with the gradual change of the height of the groove in the

defect cell, the resonance frequency approaches ωh, which results in significant increase of

κh, yielding very high quality modes localized on the defect cell.

Figure 5a shows how the quality factor changes with the variation of the defect’s spoof

plasma frequency. The fact that electromagnetic transmission essentially stops at ωh results

in exponential increase of the Q-factor. Thus, a very high quality resonating mode is possible

to realize in an SSPP host medium consisting of only one groove on each side of the defect

cell. Although the divergence in Eq. (17) is an artifact of the approximation retaining only

single mode inside the grooves, the COMSOL Multiphysics full-wave simulation justifies

very high Q-factor in the (1–1–1) structure, which hits a maximum of value of 105 when

resonant mode frequency coincides with the host spoof plasma frequency ωh.

The high quality resonant mode formed by the simple SSPP structure signifies strong field

localization near the defect cell at the sub-wavelength scale. This inspires us to investigate

the Purcell effect, FP , which is the modification of the spontaneous decay rate of source

when it matches to the resonant mode of a cavity. In plasmonics, this effect is related to a

large local-field enhancement in ‘hot spots’ due to the creation of surface plasmons, which

can be manipulated to build coherent light sources with ultra-low lasing threshold40. For a

good quality cavity with low loss and quasi-normal eigenmodes, the magnitude of the decay

rate enhancement can be estimated using41

FP =
3

4π2

(λc/n)3

V
Q, (18)

where λc/n is the wavelength within the material and V is the mode volume. Near the spoof

plasma frequency of the host, the volume occupied by the resonant mode can be estimated

as 2×(volume of host groove) + (volume of defect cell). For the (1–1–1) heterostructure

with 100 µm groove width and 800 µm height, we obtain λ3c/V ≈ 16 near 0.1 THz. Thus, on

top of enhanced radiation rate of emitter contributed by high Q-factor of cavity, we expect

at least an extra order of increment of Q/V ratio solely contributed by the mode volume

reduction of defect incorporated SSPP structure.
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FIG. 5. (a) The Q-factor as a function of the difference between the frequency of resonant tunneling

and host’s spoof plasma frequency. The height of each grooves = 0.8 mm, period = 1 mm,

arm = 300 µm, defect’s optical height = 2.5mm. (b) The Purcell factor, FP , in the limit of

perfect electric conductor in the (1–1–1) heterostructure is plotted together with the transmission

spectrum. Inset shows the Purcell factor around the resonant frequency for a structure of the

same geometry but with Au metal surface. (c) The frequency dependence of the Purcell factor for

sources with three different dipole orientations, positioned near the groove opening in the defect

cell. The region above the dotted line corresponds to FP > 1.

In order to confirm large values of the Purcell factor obtained from this estimate, we

numerically evaluate the total power emission by a point dipole source placed inside a het-

erogeneous (1–1–1) SSPP structure. A practical implementation for the point dipole source

in the relevant frequency range can be n-doped GaAs based submicron size Gunn oscillator,

which can operate in the lower part of THz range42. More importantly, its miniature phys-

ical size justifies the ‘point’ sized source assumption, so as not to alter the photonic density

of states of the meta-material.

As the waveguide has a metallic cover at distance t away from the groove, the only

gateway for power outflow from a source placed inside the waveguide is the lateral opening

of the waveguide at each terminal. The magnitude of the source is set in such a way so that

it irradiates unity magnitude power when placed in free space.

The total power radiated by a Hertzian dipole radiated over all direction is

Pair =

∫ 2π

0

dφ

∫ π

0

dθ〈Sr〉r2sinθ =
η0

12π
(kĪd)2. (19)
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For a given frequency ω, a dipole current source Īd(ω) is chosen so as to emit Pair = 1 unit.

In our 3D simulations, we take the lateral dimension, w, of the waveguide to satisfy w � d,

so that the boundary condition along the lateral direction does not have significant impact

on the overall system. When the defect cell is excited with its resonant mode, a large field

density occurs on top of the defect groove-mouth. Since the resonant mode is predominant

with the longitudinal Ex component, the polarization direction of the dipole source is chosen

as x-axis.

Figure 5(b) shows the Purcell factor spectrum around the frequency of the resonant

tunneling mode. The maximum of the Purcell factor coincides with the frequency of maximal

transmission. With the Q-factor reaching the value ∼ 1.5 × 102 at the resonant frequency,

the radiation enhances by a factor of 4 × 103. The inset of Fig. 5(b) shows Purcell factor

for the structure of the same geometry but instead of the perfect electric conductor we have

chosen material with the conductivity of gold at 0.1 THz. While retaining large values,

both the quality factor and the peak transmission are reduced due to the finite conductivity,

especially near the host plasma frequency. A detailed account of the effect of the trade-off

between the mode confinement and the Q-factor in heterogeneous SSPP structure in the

presence of finite conductivity will be provided elsewhere.

We have extended our analysis of the Purcell factor enhancement for dipole sources

with different orientations [Fig. 5(c)]. As expected, the largest contribution to radiation

enhancement appears from the longitudinal component of the dipole moment of the source,

since the propagating SSPP mode with the lowest frequency is predominantly Ex polarized

field. This is why, the x-polarized dipole source emits many orders of magnitude larger power

than that polarized in other directions. This in turn implies that, even for a source with a

random orientation of dipole moment, the maximum oscillation strength would reduce just

by a factor of three.

V. CONCLUSION

We have shown that, opposed to commonly held view, realization of an ultrahigh quality

resonant SSPP mode with enhanced emissivity does not require a large host medium to

admit well developed defect modes. Even within a single cell, the electromagnetic states

can be described with a good accuracy by the SSPP dispersion law obtained for a periodic
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structure. This is attributed to the fact that the spoof plasmon mode originates from

coupling between propagating free-space modes and the groove resonances within each cell,

rather than from the cell-to-cell coupling.

The formation of SSPP modes well defined even in structures with small number of cells

allows designing a tunable SSPP composite system made of one host cell on each side of a

defect cell. Coupling between the SSPP states in the defect cell and in the host leads to

formation of a narrow transmission resonance inside the bandgap of the host structure. We

show that the Q-factor of the defect state can easily reach the value of 105 together with the

large spontaneous radiation rate (exceeding 103). Both the Q-factor and the Purcell factor

reach their maximum values when the optical height of the groove in the defect cell is tuned

to yield the transmission resonance near the spoof plasma frequency of the host structure.

Reducing the size of the entire defect-host system to the minimum possible value is

quintessential for making ultra-compact sources, especially at micro-wave and low terahertz

region. The same principle may also be extended to higher frequencies and using highly

doped semiconductor instead of metal, though keeping in mind that the Ohmic losses in real

metal/material due to longer relaxation time of electron’s response would begin competing

with the long-lived resonating mode. Nevertheless, the redundancy of periodicity in spoof

plasmonic waveguides together with strong lateral confinement in a specified spectral zone,

we believe, presents great opportunities for expedition of the emerging field of spoof-plasmon

science.
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