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We study the unique physical properties of topological nodal-loop semimetals protected by the coexistence
of time-reversal and inversion symmetries with negligible spin-orbit coupling. We argue that strong correla-
tion effects occur at the surface of such systems for relatively small Hubbard interaction U , due to the narrow
bandwidth of the “drumhead” surface states. In the Hartree-Fock approximation, at small U we obtain a surface
ferromagnetic phase through a continuous quantum phase transition characterized by the surface-mode diver-
gence of the spin susceptibility, while the bulk states remain very robust against local interactions and remain
non-ordered. At slightly increased interaction strength, the system quickly changes from a surface ferromagnetic
phase to a surface charge-ordered phase through a first-order transition. When Rashba-type spin-orbit coupling
is applied to the surface states, a canted ferromagnetic phase occurs at the surface for intermediate values of U .
The quantum critical behavior of the surface ferromagnetic transition is nontrivial in the sense that the surface
spin order parameter couple to Fermi-surface excitations from both surface and bulk states. This leads to un-
conventional Landau damping and consequently a naı̈ve dynamical critical exponent z≈1 when the Fermi level
is close to the bulk nodal energy. We also show that, already without interactions, quantum oscillations arise
due to bulk states, despite the absence of a Fermi surface when the chemical potential is tuned to the energy
of the nodal loop. The bulk magnetic susceptibility diverges logarithmically whenever the nodal loop exactly
overlaps with a quantized magnetic orbit in the bulk Brillouin zone. These correlation and transport phenomena
are unique signatures of nodal loop states.

PACS numbers: 73.20.-r, 73.20.Mf, 75.30.Fv, 64.60.Ht

The theoretical proposal and experimental verification of
Weyl and Dirac semimetals [1–18] has shown that topolog-
ical electronic structure is not restricted to gapped systems
[19–23], but also occurs in gapless systems such as nodal
metals[24]. Recently, the interest in topological semimetals
has been extended from systems with point nodes to those
with a 3D nodal loop, “nodal-chain” [25], “nodal-arc”[26],
and even “nodal surfaces” [27], in which there are bulk band
touchings along isolated or connected 1D lines, or even at 2D
surfaces in the 3D Brillouin zone (BZ) instead of at isolated
points.

A growing number of material systems have been theo-
retically proposed to realize nodal-loop semimetals (NLSMs)
[28–37]. In particular, ZrSiS and PbTaSe2 have been exper-
imentally confirmed by angle-resolved photoemission spec-
troscopy (ARPES) measurements [31, 32, 34], and the bulk
nodal loops in the ZrSiS-family compounds were further in-
vestigated by de Haas-van Alphen (dHvA) quantum oscilla-
tions [38, 39] and magneto-transport measurements [40].

In this paper, we discuss some fundamental physics of
NLSMs which is distinct from Weyl and Dirac systems. First,
we argue that nodal-loop semimetals are prime candidates to
observe correlation effects at their surfaces. This is because,
unlike point node materials which possess highly dispersive
bulk and surface states (typically with large Fermi velocities
derived naturally from the several eV width of the associated
bands), nodal-loop semimetals possess “drumhead”-like sur-
face states. Depending on surface terminations, the states exist
either inside or outside the projection of the nodal loop in the
surface BZ.

The dispersion of such drumhead surface states is typi-
cally much smaller than that of the bulk valence and con-
duction bands, raising the interesting possibility of correla-

tion effects occurring at the surface even when interactions
are too weak to disturb the electronic states with large kinetic
energy in the interior of the sample. Correlations may be in-
duced by Coulomb interactions and/or coupling to phonons,
due to the small kinetic energy and large surface density of
states. For example, it has been theoretically proposed that
such novel flat surface states might support s-wave super-
conductivity whose critical temperature scales linearly with
the coupling strength [41–43]. Here we argue that repulsive
Coulomb interactions generate unusual surface charge den-
sity wave and ferromagnetic states, for moderate interaction
strength for which the bulk states are unaffected. We ex-
pound this in detail through a thorough Hartree-Fock study of
a NLSM, including both Hubbard U and surface Rashba-like
spin-orbit coupling (SOC)[44] . This yields a phase diagram
showing several correlated surface phases at relatively small
values of U .

Given the prospect for surface quantum phase transitions
(QPTs) in these systems, it is interesting to explore the asso-
ciated quantum critical behavior. We find that such surface
QPTs can realize entirely new critical universality classes dif-
ferent from either two or three-dimensional bulk QPTs, owing
to their mixed dimensional character. Specifically, a distinct
process of Landau damping of order parameter fluctuations
into the third dimension arises, and dominates under condi-
tions which we explain.

It is also important to be able to characterize a NLSM by
probes other than photoemission, which may be difficult or
impossible on many samples, or on appropriate crystal sur-
faces. In that vein, we derive the existence of unconventional
quantum oscillations in NLSMs, which are present even when
the Fermi level is exactly at the degeneracy level, so that the
system has no true Fermi surface.
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These results are expounded in detail in the remainder of
the paper, which is organized as follows. In Sec. I, we first
a noninteracting tight-binding (TB) model on a tetragonal lat-
tice with both inversion (P) and time-reversal (T ) symme-
tries, which can realize the NLSM phase when spin-orbit cou-
pling (SOC) is neglected. Then, in Sec. II we apply on-site
Hubbard interactions (the strength of the interaction is de-
noted by U ), and solve such an interacting model in a slab
geometry within the Hartree-Fock (HF) approximation, both
with and without Rashba SOC, and complement the HF anal-
ysis with a study of the susceptibility in the random-phase ap-
proximation. Next, in Sec. III, we consider Landau damping
of ferromagnetic surface fluctuations, which control quantum
critical phenomena [45, 46]. We find in particular that when
the Fermi level is close to the nodal energy, the dominant pro-
cess is one in which an electron-hole pair is shared between
the bulk and surface, leading to an unconventional dynamical
coefficient ∼|νm|q‖ (νm is the bosonic Matsubara frequency,
q‖ is the magnitude of in-plane wavevector). This implies
a new universality class for the ferromagnetic QPT. Finally,
In Sec. IV, we discuss quantum oscillations due to the bulk
nodal-loop states, showing that they arise even in the absence
of a Fermi surface, and conclude with a summary in Sec. V.

I. NON-INTERACTING TIGHT-BINDING MODEL

We first construct a non-interacting TB model on a tetrago-
nal lattice with both T and P symmetries neglecting SOC. As
schematically shown in Fig. 1(a), there are two sublattices de-
noted byA andB in each primitive cell, and the hopping from
A to B along the positive (negative) z direction is denoted by
t1 (t2). Moreover, there are intra-sublattice in-plane hopping
t0 and inter-sublattice in-plane hopping t3. Without the in-
plane hoppings, the system can be considered as arrays of de-
coupled 1D Su-Schrieffer-Heeger (SSH) chains [47, 48]; the
in-plane hopping t3 couple these chains together so that there
is band inversion around only one of the eight time-reversal in-
variant momenta (TRIM). The nodal loop is centered around
the TRIM with inverted band order.

Note that this model, defined on a bipartite lattice, pos-
sesses a “chiral symmetry” when t0 = 0. In this special case,
CH(k)C−1 = −H(k), where C=σz , and H(k) is the model
Hamiltonian at wavevector k. This implies that if E(k) is an
eigenenergy at k, then−E(k) is also the eigenenergy. Adding
the t0 hopping term break this symmetry.

The specific properties of the nodal loop such as its size
and shape are controlled by t1, t2 and t3, while t0 renders
dispersions to both the bulk nodal energy along the loop and
the otherwise flat drumhead surface states. Hereafter we fix
t1 = 0.8, t3 = 0.2, t0 = 0.01, and t2>0 is the only variable in
the noninteracting situation. In particular, when t2<t1, there
is a circular nodal loop centered at the X ((π, π, π)) point. If
the surface [49] is truncated at the A sublattice, one obtains
drumhead surface states inside the projected nodal loop cen-
tered at X as shown in Fig. 1(b) and Fig. 2(a). If t2 = t1,
the nodal loop is diamond-like and connects the TRIM X and
M ((π, 0, π)). The corresponding surface states fill the re-
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FIG. 1. Schematic illustration of the non-interacting tight-binding
model for nodal loop semimetals on a tetragonal lattice. (a) Lattice
structure and hopping terms, the thick black arrow indicate surface
electric field which generates Rashba SOC denoted by λR (b)-(d),
nodal loops projected onto the (001) surface BZ, with the shaded
region indicating the drumhead surface states, (b) for t2 < t1, (c)
t2 = t1, and (d) t2>t1

gion inside the diamond as shown in Fig. 1(c) [50]. When
t2 > t1, the nodal loop is centered at Z ((0, 0, π)) and the
surface states fill the region outside the projected nodal loop
(Fig. 1(d) and Fig. 2(b)). It worth to note that for fixed bulk
hopping parameters the drumhead surface states can be either
inside or outside the projected nodal loop depending on sur-
face terminations (see Appendix C), which is essentially due
to the properties of 1D SSH chains. Therefore, the surface
states covering a large portion of the surface BZ as shown in
Fig. 1(d) can also be realized when t1 < t2 if the system is
terminated at the other sublattice.

Given that inversion symmetry is always broken at a sur-
face, the surface electric field may lead to considerable
Rashba spin-orbit splittings in the surface states. Such surface
Rashba splittings have been observed in the surfaces of non-
magnetic and magnetic metals [51–53], as well as semicon-
ductor heterostructures [54]. Thus we also take the surface
Rashba effects into account by adding a Rashba-type first-
neighbor spin-dependent hopping within the surface atomic
layer, of which the amplitude is denoted by λR. The spin-
degenerate drumhead surface states are splitted by such sur-
face SOC (see Fig. 2(c)-(d)); moreover, the surface states ac-
quire nontrivial spin textures. We thus expect that the ef-
fects of Coulomb interactions in these two situations (with and
without surface SOC) would be different.
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FIG. 2. Surface bandstructures of the non-interacting tight-binding
model without surface SOC (a)-(b), and with surface SOC (c)-(d). (a)
t2 =0.75t1, and (b) t2 =1.25t1; (c) t2 =0.75t1, λR =0.0625t1, and
(d) t2 = 1.25t1, λR = 0.0625t1. The energy bands are plotted along
the high-symmetry path marked by the thick black lines in Fig. 1(b).

II. EFFECTS OF HUBBARD INTERACTIONS

A. Without surface Rashba spin-orbit coupling

We first consider the situation without surface Rashba split-
tings, and apply Hubbard interactions, HU =U

∑
i n̂i↑n̂i↓, to

the above noninteracting tight-binding model in a slab geom-
etry. As the Coulomb interaction at the surface is expected to
be strongly screened due to the large surface density of states
(DOS), a Hubbard-type local interaction is a good description
if we are mainly interested in the effects on the surface states.
On the other hand, unlike the surface states of topological in-
sulators, there is no simple low-energy effective Hamiltonian
describing the drumhead surface states of NLSMs. Thus we
have to construct a slab and apply Hubbard interactions to all
the electrons in the slab. Hereafter we will only consider half-
filled systems, and we say the system is charge homogeneous
with zero charge density if each site is exactly half filled, i.e.,
there is one electron at each site.

The Hubbard interactions are treated by self-consistent
Hartree-Fock (HF) approximation (see Appendix (A) for de-
tails). The HF ground states for a slab of 50 primitive cells are
shown in Fig. 3(a). When U = 0, the system is in the NLSM
phase. When U ∼10%−20% t1, the system enters into a sur-
face FM (denoted by “surf FM” in the figure) phase with the
ferromagnetic order localized at the surface. As U is further
increased, a surface charge-ordered phase becomes energeti-
cally favored over the surface FM phase. The system enters
enter in to surface CDW phase trough a first-order transition.
The inset in Fig. 3(a) shows the local charge density along the
z direction for U =0.5t1 and t2 =1.25t1. Clearly the charges
are strongly localized at the surface, as the density oscillation
decays rapidly into the bulk.

The smallness of the critical U for the instability of the
NLSM surface states, demonstrated in the figure, is expected

(a)

(b)

FIG. 3. Phase digram of the NLSMs with Hubbard interactions in the
t2 − U parameter space: (a)Without surface Rashba SOC, with the
inset shows the local charge density distribution in the surface CDW
phase when t2 =1.25t1 and U=0.5t1; and (b) With surface Rashba
SOC, where λR =0.0625t0.

from the flatness of the surface band. More specifically, we
would expect from the Stoner criteria of ferromagnetism that
the criticalU should be of order of the inverse density of states
at the Fermi level, i.e. proportional to the surface stand band-
with, or 4t0. Since t0 = 0.01, the critical U may actually ap-
pear surprisingly large. This is due to the fact that the surface
states have a non-zero width, and so the effective interaction
is reduced by the wavefunction amplitude at the surface.

To study the nature of the surface FM transition, we have
calculated the spin susceptibility of a 30-primitive-cell slab in
the random phase approximation (RPA) [55] (see Appendix
B for details). Fig. 4(a) shows the eigenvalues of static RPA
spin susceptibility at different wavevectors at U = 0.25t1 and
t2 = t1. As clearly shown in the figure, there are a large num-
ber of quasi-degenerate bands with small amplitudes; more-
over, there are two degenerate bands with much larger am-
plitudes which tend to diverge at Γ. The eigenvectors of the
RPA spin susceptibility indicate that those quasi-degenerate
bands with small amplitudes are from the bulk spin fluctua-
tions, while the two bands with much larger amplitudes are
dominated by acoustic and optical surface fluctuation modes.
This is consistent with the expectation that the drumhead sur-
face states are much more sensitive to Coulomb interactions
than the bulk states due to the much smaller bandwidth. From
Fig. 4(a) it is also evident that the surface spin-fluctuation
modes tend to diverge at Γ = (0, 0), indicating a continuous
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FIG. 4. (a) Dispersion of the spin susceptibility (χzz(q)) for a 60-
layer slab of nodal-loop metal with t2 = t1 and U = 0.25t1. (b)
The U dependence of the surface spin fluctuations at Γ (denoted by
χsurf
zz ) for different t2 values.

quantum phase transition at the surface driven by Hubbard in-
teractions. We refer the readers to Appendix B for technical
details of the implementation of RPA on the slab as well as the
properties of the eigenvalues and the eigenvectors of the spin
susceptibility.

In Fig. 4(b) we show the parameter dependence of the RPA
surface spin susceptibility at Γ = (0, 0) calculated in a slab
geometry including 30 primitive cells, which is denoted by
χsurf
zz (Γ). As is clearly seen from the figure, for a given t2, the

surface fluctuation modes at Γ increase with U , and diverge
at some critical U , indicating the transition from a nonordered
phase to a surface FM phase. The gray dotted line in Fig. 3(b)
marks the numeric threshold above which χsurf

zz (Γ) is consid-
ered as diverging. It is interesting to note that as t2 increases
from 0.75t1 (denoted by blue crosses) to 1.5t1 (denoted by
cyan diamonds), the critical U value is reduced by ∼50%.
This is because the surface DOS becomes larger for greater t2
values (Fig. 1(b)-(d)), thus the system becomes more sensitive
to Coulomb interactions [56] .

B. Hubbard interactions with surface Rashba SOC

We continue to study the effects of Hubbard interactions
on NLSMs including surface Rashba splittings with λR =
0.0625t1. Since the surface electric field decays quickly into
the bulk, it is assumed that the Rashba SOC λR applies only
to the topmost and bottommost layers of the slab. The sys-
tem with such surface SOC expects to be more robust against

Coulomb interactions due to the lifted spin degeneracy of the
drumhead surface states as shown in Fig. 2(c)-(d). More-
over, as the surface states at the Fermi level acquire nontrivial
spin textures due to Rashba SOC, it is unlikely that a charge-
ordered phase would be favored.

Both of the above two conjectures are numerically verified
as shown in Fig. 3(b). When surface SOC is turned on, our
noncollinear self-consistent HF calculations (see Appendix A
for technical details) suggest that the system tends to enter
into a surface canted FM phase around some moderate U val-
ues (Uc ∼ 35%−65% t1). The surface canted FM phase is
characterized by ferromagnetically coupled z components of
spins (mz) which are exponentially localized at the surface,
and possibly with small spin cantings toward the in-plane di-
rections.

We have also checked the U dependence of mz at the sur-
face layer, and find that |mz| increases continuously with U
when U ≥ Uc, indicating a continuous quantum phase tran-
sition. The critical value Uc decreases with the increase of
t2 due to the larger surface DOS for greater t2 values. The
continuous quantum phase transition is further verified by the
divergence of surface spin susceptibility (data not shown).
Moreover, it turns out that |mz| is likely to have a square root
dependence on U −Uc (|mz|∼

√
U − Uc ), which is in agree-

ment with the behavior of Stoner ferromagnetism [57].
The spin susceptibilities are expected to be anisotropic due

to the surface Rashba SOC, thus the in-plane spin suscepti-
bilities χxx and χyy deserve further discussions. The RPA
surface in-plane spin susceptibilities (denoted by χsurf

xx (q) and
χsurf
yy (q)) are shown in Fig. 5. The blue circles, magenta

crosses, red diamonds and cyan plus signs represent the cases
of t2 = 0.75t1, t2 = t1, t2 = 1.25t1 and t2 = 1.5t1 respec-
tively;the U value is fixed as 0.5t1. As shown from the figure,
when t2 . 1.25t1, both χsurf

xx (q) and χsurf
yy (q) are peaked at Γ,

indicating that the in-plane spin fluctuations tend to preserve
the lattice translational symmetry. While when t2 & t1, the
peak of χsurf

xx (q) is shifted to M2 = (0, π), and correspond-
ingly χsurf

yy (q) becomes peaked at M1 = (π, 0). It implies that
the in-plane spin components might develop some interest-
ing winding textures in such a way that the x component (y
component) is ordered antiferromagnetically along the y (x)
direction. More details of computing the surface RPA spin
susceptibilities are shown in Appendix B.

More interestingly, when t2 > t1 the system tends to go
to a surface stripe charge-ordered phase (indicated by “stripe
CDW” in Fig. 3(b)) at large U values, in which there are al-
ternating positive and negative charge stripes along either the
x or the y direction at the surface. There is a transition from
such surface stripe CDW phase to a surface CDW with homo-
geneous in-plane charge density as U further increases. Both
of these transitions (from canted FM to stripe CDW phase,
and from stripe CDW to in-plane homogeneous CDW phase)
turn out to be first-order transitions whose phase boundaries
are marked by solid lines as shown in Fig. 3(b). Again, we
emphasize that the charge and spin order parameters in all of
these phases are exponentially localized at the surface and the
bulk remains nonordered.

In concluding this section, we remark that the mean-field



5

(a)

(b)

FIG. 5. Wavevector dependence of the surface-mode in-plane spin
susceptibilities for different t2 values at fixed U = 0.5t1, (a) χxx,
and (b) χyy . The high-symmetry points M1 = (π, 0), M2 = (0, π),
X = (π, π), and Γ = (0, 0).

treatment is of course approximate, and so that some quanti-
tative differences from exact results should be expected. This
may be exacerbated by the gapless bulk quasiparticle states,
which remain gapless even in the ordered phases. [58]. How-
ever, we believe the mean-field results should be qualitatively
correct, and that the results capture the proper variation with
coupling constants etc. To go beyond this approach, it would
be interesting to the surfaces of nodal-loop metals using more
advanced many-body numerical techniques such as quantum
Monte Carlo or dynamical mean field theory. However, this
is certainly beyond of the scope of the present paper, and we
leave it for future study.

III. FERROMAGNETIC QUANTUM CRITICALITY AT
THE SURFACE

A. Framework and general considerations

In this section we discuss the quantum critical (QC) behav-
ior near the ferromagnetic transition at the surface of a nodal-
loop semimetal neglecting effects of surface SOC. The proto-
typical description of the quantum phase transition in an itin-
erant ferromagnet is that of Hertz-Millis theory [45, 46], in
which the system is described by an effective action for the
order parameter in which the itinerancy of the electrons is re-
flected by a term representing Landau damping, due to the
coupling with Fermi-surface fluctuations [59]. The Landau
damping gives rise to a term quadratic in the order param-
eter with a dynamical coefficient ∼ |νm|/q in the effective

FIG. 6. Schematic illustration of different types of electron-hole ex-
citations that couple to surface spins. (a) When the surface bands are
partially filled. (b) When the surface bands are (nearly) completely
filled. The electron-hole excitations purely from the surface (bulk)
states are denoted by “s−s” (“b−b”); while the process of creating a
hole in the surface states and an electron in the bulk states is denoted
by “s−b”.

action of the spins. Based on this, Hertz derived the dynam-
ical critical exponent z = 3 for FM transitions in 2D and 3D
Fermi-liquid systems [45]. The dynamical critical exponent
determines the quantum critical phenomenology such as the
dependence of critical temperatures on U , the specific heat,
and the crossover behavior from quantum to classical regime
at finite temperatures [45, 46]. In two dimensions, there are
known flaws in the purely order parameter description, and
much theoretical work has gone into improving it [60–62].
Nevertheless, the dynamical scaling z ≈ 3 is believed to still
be quite a good approximation if not exact.

In NLSMs, we have shown in Sec. II that the FM transi-
tion occurs only at the surface and no order occurs in the bulk,
so that one may naı̈vely expect purely two-dimensional FM
quantum criticality with z ≈ 3. However, in reality the situ-
ation is more complicated due to the gapless bulk states. The
electron-hole excitations which couple to the surface spin or-
der parameter arise both from the surface bound states and
the extended bulk states, which have an amplitude at the sur-
face. Given the critical role of Landau damping in the theory,
we may expect that the quantum critical behavior would be
different for such a surface FM transition with gapless bulk
excitations.

We confine our analysis here to the level of Landau damp-
ing, i.e. the Hertz-Millis order parameter description, which
is sufficient to distinguish the difference between purely 2d
critical behavior and something else. This is already some-
what subtle because several distinct processes may contribute
to the damping, i.e. the non-analytic part of the surface spin
susceptibility, and one must carefully take into account the
momentum and frequency behavior of surface Green’s func-
tions in describing this. It is convenient to decompose the
electron-hole excitations into different types. In the first type,
both the electron and the hole are created in the surface bound
states as denoted by “s−s” in Fig. 6(a); in the second type,
that both the electron and the hole are created in the bulk con-
tinuum which is denoted as “b−b” in Fig. 6; and finally in
the last type, a hole is created in the surface states while an
electron is added to the bulk states as denoted by “s−b” in
Fig. 6(b).

We consider two different situations. The first situation is
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that the system is (slightly) hole-doped with partially filled
surface bands as schematically shown in Fig. 6(a). In the sec-
ond situation, the Fermi level is very close to the nodal energy
and the drumhead surface states are almost completely filled
as sketched in Fig. 6(b). In the first situation we only consider
the s−s and b−b type excitations, since the s−b process re-
quires a large momentum transfer, and we are only interested
in low-frequency long-wave-length excitations; while in the
second case we only consider the s−b and b−b excitations
since the surface bands are fully occupied.

B. Surface Green’s function and Dynamical Susceptibility

We start by calculating the surface Green’s function (SGF)
of NLSMs using the method reported in Ref. 63. Note that the
SGF includes contributions from both extended and localized
eigenstates, and by using an exact method for calculating the
SGF, we capture subtle behaviors due to varying contributions
of the two types of states. For the tight-binding model given
in Sec. I, the surface Green’s function (Gs(k‖, ω)) can be cal-
culated analytically at low energies when the size of the nodal
loop is much smaller than that of the BZ. It turns out that the
SGF has a simple analytic solution

Gs(k‖, ω) =
−ω̃

t̃1( (
√
γ2 − 4 + γ)/2− t2/t̃1 )

≈ − 1

t2

ω̃√
(k2
‖ − k

2
0)2 − ω̃2 + k2

‖ − k
2
0

(1)

where k‖=(kx, ky), γ=(t̃21 + t22 − t22ω̃2)/(t̃1t2), and

ω̃ = (ω − 2t0(cos kx + cos ky) + µ̃ )/t2; ,

≈(ω − (t0(k2
x + k2

y)− 4t0) + µ̃ )/t2 , (2)

where µ̃=µ/t2 with µ being the Fermi level, and

t̃1 = t1 + 2t3(cos kx + cos ky)

≈ t1 − 4t2 + t2(k2
x + k2

y) . (3)

We consider the situation that the nodal loop is centered at
(π, π, π) the radius of which is much smaller than the size of
the Brillouin zone, and assume that t2 = t3, which is nothing
but saying that the bulk Fermi velocity is isotropic [64]. Then
the second lines in Eq. (2)-(3) follow by expanding cos kx and
cos ky around kx =π and ky =π. In Eq. (1) k0 is introduced
as a parameter characterizing the size of the nodal loop:

t̃1 − t2 = t3(k2
‖ − k

2
0)

= t2(k2
‖ − k

2
0) . (4)

Again, we have assumed that t2 = t3 so that the bulk Fermi
velocity is isotropic. Starting from Eq. (1) it is straightforward
to show that when −|k2

‖ − k
2
0| ≤ ω̃ ≤ |k2

‖ − k
2
0|, ω is the in

the bulk gap (the gap is locally defined at each k and vanishes
at the nodal loop), and there is a pole at ω̃ = 0 for k‖ < k0

corresponding to the drumhead surface states (the surface is

prepared by making a truncation at the A sublattice) ; while
when ω̃> |k2

‖−k
2
0| or ω̃< |k2

‖−k
2
0|, ω is in the bulk continuum.

Hereafter we will set the bulk nodal energy as 0, so ω̃ is shifted
by a small constant: t2ω̃=ω − t0(k2

‖ − k
2
0) + µ̃. We refer the

readers to Appendix C for details in calculating the surface
Green’s function.

Eq. (1) may be expressed using the spectral representation
as:

Gs(k‖, ω) =
1

t2

∫
dε

f(k‖, ε)

ω/t2 − (ε− µ̃) + iδε
, (5)

where δε is an infinitesimal quantity which is greater than (less
than) zero if ε>µ̃ (ε<µ̃). Or, in the Matsubara formalism,

Gs(k‖, iωn) =
1

t2

∫
dε

f(k‖, ε)

iωn/t2 − (ε− µ̃)
, (6)

The spectral density f(k‖, ε) consists of two terms:

f(k‖, ε) = fb(k‖, ε) + fs(k‖, ε) . (7)

fb(k‖, ε) is from the bulk continuum, and fs(k‖, ε) corre-
sponds to the surface bound state:

fb(k‖, ε) =

√
(ε− t̃0xk‖)2 − x2

k‖

ε− t̃0xk‖
θ(|ε− t̃0xk‖ | − |xk‖ |) ,

fs(k‖, ε) = |xk‖ |δ(ε− t̃0xk‖)θ(−xk‖) , (8)

where xk‖ =k2
‖ − k

2
0 , and t̃0 = t0/t2.

Now it is straightforward to calculate the dynamical suscep-
tibility using the surface Green’s function shown in Eq. (5)-
(8). To be specific, using the Matsubara formalism, the dy-
namical susceptibility is expressed as:

χ(q‖, iνm)=− 1

β

∫
k‖

∑
n

Gs(k‖, iωn)Gs(k‖+q‖, iωn+iνm) .

(9)
where

∫
k‖

=
∫
dkxdky/(2π)2, β = 1/(kBT ) is the in-

verse temperature, and (k,ω) and (q, ν) denote Fermionic and
Bosonic wavevectors and frequencies respectively. k‖ (q‖)
represents an in-plane wavevector. Plugging Eq. (5) in to
Eq. (9), and summing over the Matsubara frequencies using
the standard contour technique, then taking the analytic con-
tinuation iνm→ν + iδ, one obtains

Imχ(q‖, ν, µ)=

∫
k‖

∫ −µ̃+ν̃

−µ̃

dε

t2
f(−ε,k‖)f(ν̃ − ε,k‖ + q‖)

(10)
where µ̃= µ/t2, and ν̃ = ν/t2, with µ being the Fermi level.
Since f=fs+fb, χ(q‖, ν) can be decomposed into four terms
which are the bulk-bulk (χbb), surface-bulk (χsb), bulk-surface
(χbs) and surface-surface (χss) contributions. We will discuss
these contributions separately in the following paragraphs.

C. Partially filled surface bands

Let us first consider the situation with partially filled sur-
face bands as shown in Fig. 6(a) with µ < 0. The dynam-
ical susceptibility contributed by the s− s process (denoted
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by χss(q‖, ν)) behaves similarly to the 2D Linhard function
because the SGF has a pole at ω̃ = 0 for k‖ < k0, which
looks similar to that of 2D free electrons with quadratic dis-
persion. Thus the imaginary part of zero-temperature suscep-
tibility Imχss(q‖, ν)∼ ν/q‖ at small in-plane wavevector q‖
and low frequency ν � ~vsFq‖ with vsF referring to the Fermi
velocity of the surface bands (In the finite-temperature formal-
ism χss(q‖, νm)∼|νm|/q‖ with νm being Bosonic Matsubara
frequency.). On the other hand, the dynamical susceptibility
contributed by the b−b process χbb(q‖, ν) with |ν| < |µ| is
expressed as:

Imχbb(q‖, ν, µ)=

∫
k‖

∫ −µ̃+ν̃

−µ̃

dε

t2
fb(−ε,k‖)fb(ν−ε,k‖+q‖) ,

(11)
After some algebra, it turns out that when ν � ~vFq‖ (vF is

the bulk Fermi velocity):

Imχbb(q‖, ν, µ) ∼ ν

q‖
. (12)

Therefore χbb is equally important as χss for the hole-doped
case. In other words, the dominant Landau damping is from
both the surface and the bulk, and they make comparable con-
tributions. Thus we expect the usual theory of 2d FM quantum
critical still applies, with consequently dynamical critical ex-
ponent z ≈ 3. It is also interesting to note that as a result of
the fluctuations in the third spatial dimension, χbb(q‖, ν) is
novanishing even when q‖=0. It turns out that

Imχbb(q‖=0, ν, µ) ∼ ν , (13)

which is unusual for a ferromagnetic phase transition. We
refer the readers to Appendix D for the derivations of Eq. (12)
and Eq. (13).

The analytic results shown in Eq. (11) and Eq. (13) are
supported by direct numeric calculations of the surface dy-
namical susceptibility of a 500-cell slab of the tight-binding
model introduced in Sec. I. The Fermi level µ = −0.036 as
schematically indicated by the gray dashed line in Fig. 6(a),
t0 = 0.01, t1 = 0.8, t2 = 0.3 and t3 = 0.2. The frequency
dependence of surface dynamical susceptibility at q‖ = 0 is
shown in Fig. 7(a). Clearly at low frequencies, χbb(0, ν) is
linear in ν, in agreement with Eq. (13).

We also study the wavevector dependence of χbb(q‖, ν)
for a given frequency ν = 0.008 as shown in Fig. 7(b).
Imχbb(q‖, ν) is linearly dependent on 1/qx for 0.065 . q‖ .
0.085 (in units of 1/a, where a = 1 is the in-plane lattice
constant). When q‖ . 0.06, we are no longer in the regime
that ν � ~vFq‖ and in the meanwhile 1/q‖ becomes com-
parable to the k-mesh density, so that Eq. (12) is no longer
valid; while when q‖ is large (q‖ & 0.085), the wavevector
becomes comparable to the radius of the bulk “Dirac cone”
above which the electron-hole excitations are rigorously trun-
cated. This explains why the 1/q‖ behavior is observed only
for 0.065 . q‖ . 0.086. The details of computing the surface
dynamical susceptibility is explained in Appendix E.

TABLE I. Linear fits to the frequency dependence of surface suscep-
tibility at different wavevectors

q‖ 0.4 0.3 0.25 0.2 0.15 0.1 0.05
c 0.6075 0.5099 0.4536 0.3892 0.3143 0.2294 0.1377
η(t0, q‖) 0.0054 0.0041 0.0036 0.0030 0.0025 0.0017 0.0014

D. Nearly full surface bands

We continue studying the case when the surface bands are
nearly completely filled as shown in Fig. 6(b). In such a situ-
ation, the Fermi level µ= 0, and the dominating contribution
is either b−b or s−b process. The surface dynamical suscep-
tibility from the s−b process is expressed as

Imχsb(q‖, ν, µ=0) =

∫
k‖

∫ ν̃

0

dε

t2
fs(−ε,k‖)fb(ν−ε,k‖+q‖) ,

(14)
and the b− b contribution is expressed in Eq. (11) with µ=0.
After solving these integrals, it turns out that

Imχbb(q‖, ν, µ=0) ∼ ν3/q‖ , (15)

Imχsb(q‖, ν, µ=0) ∼ q‖(ν − η(t0, q‖)) , (16)

where η(t0, q‖) = 2t0(2k0q‖ − q2
‖)/3 is the energy gap of

the s−b particle-hole excitations. Physically Eq. (16) implies
that a minimal frequency ∼ η(t0, q‖) is required to create an
electron-hole pair of the s−b type with finite wavevector q‖.
Such a minimal excitation energy ∼ t0, and vanishes when
the surface bands are perfectly flat (remember that the surface
bandwith arises due to t0) or when q‖ →0. We refer the read-
ers to Appendix. D for the derivations of Eq. (15)-(16).

Eq. (15)-(16) indicate that when µ = 0 the s− b pro-
cess dominates over the b−b process at low frequencies and
small wavevectors. If we follow the Hertz-Millis procedure,
a straightforward analysis then predicts the dynamical critical
exponent z ≈ 1. Subtleties similar to those in the purely 2D
case may still occur here, of course, but this result is sufficient
to show that the quantum critical behavior at this transition is
fundamentally different from that of a purely 2D itinerant fer-
romagnet. We once again note that, when q‖=0, Imχbb(0, ν)

is non-vanishing and ∼ ν2 for µ = 0 due to the Fermionic
fluctuations in the z direction.

Again, the analytic results in Eq. (15)-(16) are numerically
verified by directly computing the surface-layer dynamical
susceptibility of a 500-cell slab. The Fermi level is very close
to the nodal loop in the calculations as indicated by the gray
dashed line in Fig. 6(b). The surface bound states are almost
completely filled. The other parameters of the tight-binding
model are the same as those in the previous susceptibility cal-
culation. The frequency dependence of the surface suscep-
tibility at q‖ = 0.4 (denoted by Imχsb(0.4, ν)) is shown in
Fig. 8(a). Clearly Imχsb(0.4, ν) ∼ ν at low frequencies and
there is a small energy gap around ν ∼ t0, in agreement with
Eq. (16).

In order to study the wavevector dependence of the energy
gap η(t0, q‖), we have calculated the frequency dependence
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FIG. 7. Numerical calculations of the surface dynamical susceptibil-
ity of slightly hole-doped nodal-loop semimetals with partially filled
surface bands: (a) frequency dependence at q‖ =0; and (b) wavevec-
tor dependence at ν=0.008. Note the horizontal axis in (b) is 1/qx.

FIG. 8. Numerical calculations of the surface dynamical susceptibil-
ity of charge neutral nodal-loop semimetals with nearly completely
filled surface bands: (a) the frequency dependence at q‖ = 0.4, and
(b) the wavevector dependence at ν=0.025.

of the surface dynamical susceptibility of a 500-cell slab for
different wavevectors from q‖ = 0.4 to q‖ = 0.05. Then we
fit the data with linear functions y = c (x − η(t0, q‖)) (y is
Imχsb(q‖, ν), x is ν). The parameters cs and η(t0, q‖)s are
shown in Table I. As clearly shown in the table, η(t0, q‖)
decreases with q‖ and tend to vanish as q‖→0 [65].

We also numerically calculate the wavevector dependence
of the surface dynamical susceptibility at ν= 0.025 as shown
in Fig. 8(b). Clearly Imχsb(q‖, 0.025) ∼ q‖ at small q‖, in
agreement with the analytic prediction of Eq. (16). It should
be noted that when the Fermi level is at the nodal energy,
the b− b process is suppressed at relatively large wavevec-
tor (q‖ &0.05), thus the data shown in Fig. 8(a)-(b) is mostly
contributed by s−b process. We refer the readers to Appendix
E for details in the the numeric calculations of surface dynam-
ical susceptibility.

IV. BULK QUANTUM OSCILLATIONS

We turn to discussing the bulk quantum oscillations of
NLSMs neglecting Coulomb interactions. We introduce the
following low-energy effective Hamiltonians describing nodal

loops with different in-plane dispersions:

Hqua
0 = ~vzkz σy + (∆−

~2(k2
x + k2

y)

2m
)σz

H lin
0 = ~vzkz σy + (∆− ~v0

√
k2
x + k2

y)σz , (17)

where σy and σz are the Pauli matrices representing the low-
est conduction band and highest valence band at some high-
symmetry point (k = (0, 0, 0)), vz is the Fermi velocity along
the z direction, and ∆ is the gap at k = (0, 0, 0). Hqua

0 de-
scribes a circular nodal loop with quadratic in-plane disper-
sion, of which the in-plane effective mass is denoted by m;
while H lin

0 describes a nodal loop with linear in-plane disper-
sion with in-plane Fermi velocity v0. The nodal energies de-
scribed by Eq. (17) are exactly zeros.

The Landau levels for the above two effective Hamiltonians
with B=Bêz are readily obtained:

Equa
± (n, kz) = ±

√
(∆− ~ωc(n+ 1/2))2 + ~v2k2

z

Elin
± (n, kz) = ±

√
(∆− ~ωc

√
n+ 1/2)2 + ~v2k2

z , (18)

where the cyclotron frequency

ωc =

{
eB/m for quadratic in-plane dispersion√

2eBv2
0/~ for linear in-plane dispersion

(19)
for the case of linear dispersion. If the chemical potential is
exactly at the nodal energy, i.e., µ= 0, in general the Landau
level spectrum is gapped and the chemical potential is in the
middle of the gap. However, the gap closes at kz = 0 when-
ever ∆=~ωc(n+ 1/2) for quadratic in-plane dispersion, and
∆=~ωc

√
(n+ 1/2) for linear in-plane dispersion. Note that

the above gap-closure condition is nothing but the equality be-
tween the area of the nodal loop ANL and the area of the nth
quantized magnetic orbit AB(n), i.e., ANL = AB(n), where
ANL = π∆2/(~2v2

0) ( ANL = 2πm∆/(~2)) for a nodal loop
with linear (quadratic) in-plane dispersions, and the area of
nth magnetic orbit AB(n)=2πeB(n+ 1/2)/~.

In other words, the Landau levels become gapless when-
ever the nodal loop exactly overlaps with a quantized mag-
netic orbit. At the gapless point there expects to be a sharp
change in the free energy because a fully occupied Landau
level becomes completely unoccupied due to the gap closure
and reopening. Thus some singular behavior is expected at the
gapless critical point.

To confirm the above conjecture, we calculate the mag-
netic susceptibility χ(B)=−∂2F/∂B2 for the Landau levels
shown in Eq. (18) in the limit µ→ 0 and T → 0. It turns out
that the magnetic susceptibility consists a term which diverge
logarithmically when the Landau level is gapless:

lim
µ→0,T→0

χ(B) ∼ e2ωc
π2~mvz

∞∑
n=0

(n+ 1/2)2×

ln
(√(∆/ωc − (n+ 1/2))2 + Λ2 + Λ

|∆/ωc − (n+ 1/2)|

)
(20)
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for quadratic-inplane dispersion, and

lim
µ→0,T→0

χ(B) ∼ eB

2π2~
e2v4

0

ω2
c

2∆

ωcvz

∞∑
n=0

√
n+ 1/2×

ln
(√(∆/ωc −

√
n+ 1/2)2 + Λ2 + Λ

|∆/ωc −
√
n+ 1/2|

)
(21)

for linear in-plane dispersion, where Λ = (πvz)/(ωca) is a
cutoff parameter with a being the lattice constant on the order
of 1 Å. More detailed results about the dHvA quantum oscil-
lations of NLSMs are presented in Supplementary Material.

The logarithmic divergence indicates a magnetic-field-
driven quantum phase transitions in the NLSM. In Ref. 25, it
was pointed out that the Berry phase of the nth Landau level
along the kz direction would be changed by π through the gap
closure at kz = 0, which shows that such a quantum phase
transition is indeed a topological one. Here we discuss the na-
ture of such a transition in a bit more detail, and try to make
a connection to the transition between two topologically dis-
tinct insulating phases in 1D SSH chains. In the SSH model,
each energy band is the nondegenerate Bloch band, and the
Berry phase is quantized to 0 or π as a result of the chiral
symmetry (i.e., there is only inter-sublattice hoppings in the
model) [66]. In our case, the 3D tight-binding model defined
in Sec. I (which has a chiral symmetry when t0 =0) can be re-
duced to the first line of Eq. (17) after a k·p expansion around
the high-symmetry k point about which the nodal-loop is cen-
tered. Then such a 3D low-energy Hamiltonian is reduced
to an effective 1D problem as the in-plane electrons’ motions
are confined by external magnetic field. The resulted Landau
spectra shown in Eq. (18) may be considered as massively de-
generate Bloch bands of some effective 1D systems (as there
is translational symmetry along z). Then it is meaningful to
ask what is the Berry phase of the occupied Landau bands of
such an effective 1D system,

φ=
∑
n,l

∫ π

−π
dkz i 〈ψn,l(kz)|∂kzψn,l(kz)〉 , (22)

where n is the Landau-level index, and l is the index of the
degenerate eigenstate within the nth Landau level, and the
summation is restricted to occupied states. We notice that if
the original 3D model (Eq. (17) or the tight-binding model
introduced in Sec. I ) possesses chiral symmetry, then the chi-
ral symmetry should be preserved in the presence of exter-
nal magnetic field along the z direction (neglecting Zeeman
splitting), so that the resulted Landau spectra are exactly sym-
metric about 0. Thus the argument that applies to the SSH
chains can be carried over to such Landau bands with such
chiral symmetry, i.e., the Berry phase of the Landau bands
expressed in Eq. (22) have to be exactly quantized as 0 or
π. In this sense, the transition of two gapped Landau spectra
through the band touching at kz = 0 is indeed a topological
phase transition, and we have shown that the quantum criti-
cal point of the topological transition is characterized by the
logarithmic divergence of magnetic susceptibility.

It worth to note that quantum-oscillation behavior is not
expected when an in-plane magnetic field is applied. In our
simplified model the nodal loop has zero cross section nor-
mal to the x or y direction, so that Landau levels cannot be
formed for in-plane magnetic fields. It implies that Zeeman
splitting would dominate over orbital effects for in-plane mag-
netic fields, and the spin-degenerate nodal loop might be split-
ted into a pair of non-degenerate “Weyl loops”, or splitted into
pairs of isolated Weyl nodes. In realistic systems, the nodal
loop is not necessarily confined within the kx − ky plane,
so quantum oscillations with in-plane magnetic fields are al-
lowed, but the period is expected to be much larger than that
when the magnetic field is along z direction.

V. CONCLUSION

To summarize, we have studied the effects of Hubbard in-
teractions and bulk quantum oscillations in NLSMs. Our
HF calculations indicate that Hubbard interactions tend to
drive the system into surface-ordered phases through quantum
phase transitions at the surface. In particular, in the absence
of surface Rashba SOC, the system becomes ferromagnetic
at the surface at small U , and enters into a surface charge-
ordered phase at slightly increased U through a first-order
transition. On the other hand, surface Rashba SOC splits the
otherwise two-fold degenerate drumhead surface states and
endows them with nontrivial spin textures, so that a surface
canted FM phase becomes stable for moderate U values. The
quantum critical behavior of the surface ferromagnetic tran-
sition is distinct from that in conventional 2D or 3D metals.
This is due to novel Landau damping of the 2D spin fluctua-
tions into electron-hole excitations near the nodal loop in the
third dimension. This “mixed dimensionality” of the system
is argued to result in a modified dynamical critical exponent,
with z ≈ 1 at the level of a Hertz-Millis analysis, when the
Fermi level is close to the bulk nodal energy. We have also
studied the bulk quantum oscillations of NLSMs in the non-
interacting case, and find that in the limit of zero temperature
and zero chemical potential, there is a logarithmic divergence
in the magnetic susceptibility whenever the nodal loop over-
laps with a quantized magnetic orbit. Such a logarithmic di-
vergence is accompanied by the gap closure of the Landau
levels, and is periodic in 1/B. The predictions of interaction-
driven surface ordering and novel bulk quantum oscillations
may stimulate future experimental and theoretical studies of
NLSMs.

Note added. Recently we became aware of three related
works by H. K. Pal et al. [67], B. Roy [68] and B Pa-
muk et al. [69]. H. K. Pal et al. have thoroughly studied
the quantum-oscillation behaviors of various physical quan-
tities in a model of two dimensional valence and conduction
bands that touch along a loop, and in this context explored
the temperature dependence of the quantum oscillations. B.
Roy has discussed effects of Coulomb interactions in the bulk
of nodal-loop semimetals. B. Pamuk et al. has performed
first-principles calculations on slabs of rhombohedral graphite
(which has been proposed to be a bulk nodal-loop metal [70]),
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and found interesting ferrimagnetic spin order localized at the
surface.

ACKNOWLEDGMENTS

JL would like to thank Se Young Park for his educa-
tion on the linear-tetrahedron method. This work was sup-
ported by the National Science Foundation under grant NSF
DMR1506119.

Appendix A: Self-consistent Hartree-Fock approximation

In Sec. II, the self-consistent Hartree-Fock (HF) approxi-
mation is adopted to calculate the ground states of the inter-
acting Hamiltonians, i.e.,

Un̂l↑n̂l↓ → U〈n̂l↑〉n̂l↓ + Un̂l↑〈n̂l↓〉 − U〈n̂l↑〉〈n̂l↓〉 (A1)

where n̂lσ refers to the density operator of electrons with spin
σ (σ =↑, ↓) at site l, 〈n̂lσ〉 is the self-consistent mean field ap-
plied to the electrons of spin−σ at site l; U denotes the ampli-
tude of the Hubbard repulsion. The linear tetrahedron method
[71] is implemented as an interpolation scheme so that the
self-consistent calculations can be carried out with improved
numeric efficiency.

Including SOC, the noncollinear HF is slightly more com-
plicated then its collinear version:

Unl↑nl↓ →U [c†l↑, c
†
l↓](〈nl〉 −ml · sl)[cl↑, cl↓]T

− U〈nl↑〉〈nl↓〉+ U〈c†l↑cl↓〉〈c
†
l↓cl↑〉 , (A2)

where c†l↑(↓) (cl↑(↓)) represents the creation (annihilation) op-
erator of electrons at site iwith ↑ (↓) denoting electrons’ spins.
nlσ = c†lσclσ (σ =↑, ↓) is the number operator at site i with
spin σ, and nl = nl↑ + nl↓ is the total number operator. 〈...〉
represents the expectation value of some operator in the HF
ground state. sl = [sxl , s

y
l , s

z
l ] are the Pauli matrices repre-

senting an electron’s spin at site l, which couples to the self-

consistent vector field ml=[mx
l ,m

y
l ,m

z
l ], where

mx
l = 〈c†l↑cl↓ + c†l↓cl↑〉

my
l = i〈c†l↓cl↑ − c

†
l↑cl↓〉

mz
l = 〈c†l↑cl↑ − c

†
l↓cl↓〉 (A3)

Appendix B: Generalized RPA susceptibility

The generalized susceptibility in the random phase approx-
imation (RPA) χRPA can be expressed as [55]

χRPA = (1− χ(0)U)−1χ(0) (B1)

where χ(0) and U are the matrices representing the bare sus-
ceptibility and the Coulomb interactions respectively. To be
specific, the bare susceptibility can be calculated from the
noninteracting Green’s function,

χ
(0)
αβl,α′β′l′(q, iνn) =− kBT

∫
dk2

(2π)2

∑
iωn

G
(0)
α′l′,αl(k, iωn)×

G
(0)
βl,β′l′(k + q, iωn + iνn) , (B2)

where the α,α′,β and β′ are the spin indices, while l and
l′ label the lattice sites in the slab; k is the wavevector of
the noninteracting Bloch functions, and the sum over Mat-
subara frequency ωn can be taken analytically in the basis
that diagonalizes the noninteracting Hamiltonian at each k.
kB is the Boltzmann constant and T is the temperature; kBT
is fixed as 1/100 in the RPA calculations in Sec. II. Note
that in the nonordered phase without spin-orbit coupling, all
kinds of spin fluctuations are equivalent to each other, i.e.,
χ

(0)
↑↑l,↑↑l′ = χ

(0)
↑↓l,↑↓l′ = χ

(0)
↓↑l,↓↑l′ = χ

(0)
↓↓l,↓↓l′ . With SOC in-

cluded, terms like χ(0)
↑↑l,↓↓l′ are also allowed, and spin fluctua-

tions become anisotropic.
The interaction matrix for Hubbard interactions is defined

as:

Ul,l
′

βα′,αβ′ = −(Uδl,l′δβ′α′δβαδα,−α′ − Uδl,l′δαβ′δβα′δα,−β)

(B3)

The over minus sign on the right-hand-side (RHS) of Eq. (B3)
is from the minus sign in the time-ordered exponential of the
S matrix [57]. The first term on the RHS of Eq. (B3) rep-
resents a direct Coulomb interaction, while the second term
is the exchange interaction. Then the matrix element of the
static RPA spin susceptibilities are expressed as

χRPA
zz (q)l,l′ = χRPA(q)↑↑l,↑↑l′ − χRPA(q)↓↓l,↑↑l′ − χRPA(q)↑↑l,↓↓l′ + χRPA(q)↓↓l,↓↓l′

χRPA
xx (q)l,l′ = χRPA(q)↑↓l,↑↓l′ + χRPA(q)↓↑l,↑↓l′ + χRPA(q)↑↓l,↓↑l′ + χRPA(q)↓↑l,↓↑l′

χRPA
yy (q)l,l′ = χRPA(q)↑↓l,↑↓l′ − χRPA(q)↓↑l,↑↓l′ − χRPA(q)↑↓l,↓↑l′ + χRPA(q)↓↑l,↓↑l′

(B4)
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The eigenvalues of χRPA
zz (q) at t2 = t1 and U = 0.25t1

(t1 and t2 are defined in Sec. I) are shown in Fig. 4(a). As
discussed in Sec. II, the surface modes of χRPA

zz (q) are much
stronger than the bulk modes, and tend to diverge at Γ asU ap-
proaches some critical value Uc indicating a continuous quan-
tum phase transition at the surface. The surface modes of the
in-plane RPA spin susceptibilities χRPA

xx (q) and χRPA
yy (q) are

shown in Fig. 5.

Appendix C: Surface Green’s function

In this section we derive the surface Green’s function of
NLSMs using the method reported in Ref. 63. To be spe-
cific, using the Dyson equation, the surface Green’s function
Gs(k‖, ω) can be expressed as:

Gs = G0 +G0V Gs , (C1)

where Gs is the full surface Green’s function with the corre-
sponding Hamiltonian H , V =H −H0 is the potential differ-
ence between a crystal with and without a surface, and G0 is
the noninteracting bulk Green’s function. In the basis of the
“hybrid Wannier functions” [72] which are extended in the
x−y plane and localized in the z direction, Eq. (C1) can be
written as:

Gs(k‖, ω) = G0(k‖, ω; 0)+G0(k‖, ω; 1)V (−1, 0)Gs(k‖, ω) ,
(C2)

whereG0(k‖, ω; l) (l is an integer labelling the primitive cells
in the z direction) is the bulk Green’s function defined in the
hybrid Wannier function basis:

G0(k‖, ω; l) =

∫
dkz
2π

eikzlG0(k, ω) , (C3)

and the bulk Green’s function G0(k, ω) is:

G0(k, ω) =
−ω̃ I2×2 − (t̃1 + t2 cos kz) τx − t2 sin kz τy

t̃21 + t22 + 2t̃1t2 cos kz − t22 ω̃2
.

(C4)
In the above equation I2×2 is the 2× 2 identity matrix, τx, τy
and τz are the Pauli matrices defined in the sublattice space.
t̃1 and ω̃ are defined in Eq. (2) in Sec. III.If the bulk tight-
binding model introduced in Sec. I is truncated at sublattice
A with an ideal surface termination, the surface perturbation
potential V (−1, 0) can expressed as

V (−1, 0) =

(
0 0

−t2 0

)
. (C5)

Plugging Eq. (C3)-(C5) into Eq. (C2), one obtains:

Gs(k‖, ω)1,1 =
G0(k‖, ω; 0)1,1

1 + t2G0(k‖, ω; 1)1,2
. (C6)

where

G0(k‖, ω; 1)1,2 = −
∫
kz

eikz
t̃1 + t2e

−ikz

t̃21 + t22 + 2t̃1t2 cos kz − t22 ω̃2
,

(C7)

and

G0(k‖, ω; 0)1,1 =

∫
kz

−t2 ω̃
t̃21 + t22 + 2t̃1t2 cos kz − t22 ω̃2

,

(C8)
where

∫
kz

=
∫ 2π

0
dkz/(2π). Again, ω̃ is defined in Eq. (2).

Defining η= eikz , the integral over kz in Eq. (C7) can be re-
placed by an contour integral around a unit circle in the com-
plex plane of η, and can be solved exactly:

G0(k‖, ω; 1)1,2 = − t̃1η+ + t2

t̃1t2(
√
γ2 − 4)

, (C9)

and

G0(k‖, ω; 0)1,1 = − t2 ω̃
t̃1t2

1√
γ2 − 4

, (C10)

where

γ=(t̃21 + t22 − t22 ω̃2)/(t̃1t2) , (C11)

and

η+ =(−γ +
√
γ2 − 4)/2 . (C12)

From Eq. (C9) one may notice thatG0(k‖, ω; 1)1,2 is real only
if γ2−4>0, which implies thatGs(k‖, ω)1,1 may have a pole
on the real axis only when γ2−4>0. It follows that γ2−4=0
defines the bulk spectral edge:when γ2−4<0, ω is in the bulk
continuum; while when γ2 − 4> 0, ω is in the bulk gap and
there may be bound-state solutions. Then it is straightforward
to show that:{

if −|k2
‖ − k

2
0|<ω̃< |k2

‖ − k
2
0|, ω in the bulk gap,

if ω̃> |k2
‖ − k

2
0| or ω̃<−|k2

‖ − k
2
0|, ω in the bulk continuum,

(C13)
where k0 characterizing the size of the nodal loop is defined
in Eq. (4), and ω̃ is defined in Eq. (2).

Plugging Eq. (C9) and Eq. (C10) into Eq. (C6), we obtain:

Gs(k‖, ω) =
− ω̃
t̃1

1

(
√
γ2 − 4 + γ)/2− t2/t̃1

. (C14)

Plugging t̃1 = t2(1 + k2
‖ − k

2
0) into Eq. (C11), considering the

low-energy excitations around the nodal loop so that k2
‖ − k

2
0

and ω̃ are small, one obtains the final expression of the surface
Green’s function shown in Eq. (1) by dropping some terms
higher order in k2

‖ − k
2
0 and ω̃.

When ω is in the bulk gap, Eq. (1) can be re-expressed as:

Gs(k‖, ω) =
−ω̃
t2

1

(
√

(k2
‖ − k

2
0)2 − ω̃2 + k2

‖ − k
2
0 )

≈ −ω̃
t2

1

( |k2
‖ − k

2
0| (1− ω̃2/(k2

‖ − k
2
0)2) + k2

‖ − k
2
0 )

(C15)
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From the above equation we see that for k‖<k0,

Gs(k‖, ω) ≈
(k2

0 − k2
‖)

t2 ω̃
, (C16)

corresponding to the drumhead surface states at ω̃=0.
From the above analysis we see that when the surface is

terminated at sublattice A there are drumhead surface states
with dispersion t0(k2

‖ − k
2
0) inside the projected nodal loop.

On the other hand, when the surface is terminated at sublat-
tice B, the role of t̃1 and t2 is interchanged, so that there are
drumhead surface states only when t̃1 > t2, i.e., outside the
projected nodal loop (k‖>k0). This explains the termination-
dependent surface states as shown in Fig. 2(a)-(b).

Appendix D: Derivations of surface dynamical susceptibility

1. Derivations of Eq. (12), Eq. (13)

We first derive the low-energy, long-wavelength behav-
ior of the surface dynamical susceptibility of a hole-doped
NLSM contributed by the extended bulk states projected at
the surface, which are expressed by Eq. (12) and Eq. (13)
in Sec. III. Such contributions are labelled as “b − b” in

Fig. (6)(a). In principle we need to calculate the imaginary
part of χbb(q‖, ν, µ) which is expressed in Eq. (11).

Again, we consider the situation that the nodal loop is cen-
tered at (π, π, π) whose size is small compared to the BZ.
Then we expand t̃1 around (π, π) up to quadratic order of k‖
as shown in Eq. (3). Since we are interested in Fermi-surface
fluctuations from the bulk continuum, we neglect the disper-
sion from t0, so the spectral density of the bulk continuum fb
becomes

fb(k‖, ε) ≈

√
ε2 − x2

k‖

ε
θ(|ε| − |xk‖ |) . (D1)

Without loss of generality, the Bosonic wavevector q‖ is cho-
sen to point along the x direction, q‖ = (q‖, 0). Then we
define

xk‖ = k2
‖ − k

2
0 . (D2)

We also define

µ̃ = µ/t2 ,

ν̃ = ν/t2

t̃0 = t0/t2 . (D3)

Plugging the expression of fb in Eq. (D1) into Eq. (11), one
obtains:

Imχ(q‖, ν, µ) =

∫
k‖

∫ −µ̃+ν̃

−µ̃
dε

√
ε2 − x2

k‖

√
(ν̃ − ε)2 − x2

k‖+q‖

−ε(ν̃ − ε)
θ(|ε| − |xk‖ |) θ(|ν − ε| − |xk‖+q‖ |)

=

∫ −µ̃+ν̃

−µ̃
dε

∫ ε

−ε
dx

∫ (ε−ν̃)/(2k0q‖)

−(ε−ν̃)/(2k0q‖)

dy
2k0q‖

√
ε2 − x2

√
(ν̃ − ε)2/(4k2

0q
2
‖)− y2

−ε(ν̃ − ε)
√

1− ( y − (x+ q2
‖)/(2k0q‖) )2

≈
∫ −µ̃+ν̃

−µ̃
dε

∫ ε

−ε
dx

∫ (ε−ν̃)/(2k0q‖)

−(ε−ν̃)/(2k0q‖)

dy
2k0q‖

√
ε2 − x2

√
(ν̃ − ε)2/(4k2

0q
2
‖)− y2

−ε(ν̃ − ε)

=

∫ −µ̃+ν̃

−µ̃
dε

∫ ε

−ε
dx

√
ε2 − x2(ε− ν̃)

2k0q‖ε

=

∫ −µ̃+ν̃

−µ̃
dε
ε(ε− ν̃)

2k0q‖

∫ 1

−1

dx′
√

1− x′2

=
π

4k0q‖
(ε3/3− ν̃ε2/2)

∣∣∣−µ̃+ν̃

−µ̃

=
π

4k0q‖
(µ̃2ν̃ − ν̃3/6) , (D4)

where the second line of the above equation follows due to
the heaviside θ function, and y = (x + q2

‖)/(2k0q‖) + cosφ,
with φ being the angle between k‖ and q‖. We have made

the approximation that
√

1− ( y − (x+ q2
‖)/(2k0q‖) )2 ≈ 1

when going from the second to the third line in Eq. (D4). The
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fourth line of Eq. (D4) follows by using the integral identity:∫ b

−b
dy
√
b2 − y2 =

π

2
b2 , (D5)

where b = (ε− ν̃)/(2k0q‖). Finally in the fifth line we define
εx′=x, and it follows that Imχbb(q‖, ν, µ)∼ ν/q‖. Eq. (12)

is proved.

As discussed in the main text, the surface susceptibility is
nonvanishing even at q‖ = 0 due to the bulk fluctuations. As
expressed in Eq. (13), Imχ(q‖=0, ν, µ)∼ν for µ<0. Using
some similar tricks as those in Eq. (D4), it is straightforward
to show that when q‖=0,

Imχ(q‖=0, ν, µ) = 2π

∫ −µ̃+ν̃

−µ̃
dε

∫ 1

−1

dx′ (ε− ν̃)
√

1− x′2
√

1− (1− ν̃/ε)2x′2

≈ 4

3
π(|µ̃| ν̃ − ν̃2/2) , (D6)

where the integral over x′ is approximated by a constant 2/3.
Such an approximation is valid as long as the frequency is
much smaller than the Fermi level, i.e.,ν�|µ|. Thus Eq. (13)
is proved.

2. Derivations of Eq. (15)-(16)

Now we turn to the case of Fig. 6(b), i.e., the surface bands
are filled and the electron-hole excitations are mostly con-
tributed by the b−b and s−b process.

Let us first consider the b−b process. Since we are interested
in the bulk-state fluctuations, we neglect the dispersions from
t0 in the bulk continuum spectral density, i.e., ω̃≈ω/t2, and

Eq. (D1) applies. One may still use Eq. (D4), except that now
the Fermi level is right at the nodal energy µ = 0. Then it
immediately follows from Eq. (D4) that Imχ(q‖, ν, µ= 0)∼
ν3/q‖, which proves Eq. (15).

Next we consider the process that an electron is created in
the bulk conduction band and a hole is left in the otherwise
occupied surface bands as denoted by s−b in Fig. (6)(b). Let
us consider a simplified case that t0 = 0 so that the surface
bands are perfectly flat and completely occupied. Then,

fb(k‖, ε) ≈

√
ε2 − x2

k‖

ε
θ (|ε| − |xk‖ |) ,

fs(k‖, ε) ≈ |xk‖ | δ(ε) θ(−xk‖) . (D7)

Plugging the above equation into Eq. (16), one obtains:

Imχsb(q‖, ν, µ=0) =

∫
k‖

∫ ν̃

0

dε fs(−ε,k‖ − q‖) fb(ν̃ − ε,k‖)

=

∫
k‖

∫ ν̃

0

dε|xk‖−q‖ | δ(−ε) θ(−xk‖−q‖)

√
(ν̃ − ε)2 − x2

k‖

ν̃ − ε
θ(|ν̃ − ε| − |xk‖ |)

≈
∫ ν̃

−ν̃
dx

∫ 1

(x+q2‖)/(2k0q‖)

d cosφ√
1− cos2 φ

(2q‖ cosφ
√
k2

0 + x− x− q2
‖)

√
ν̃2 − x2

ν̃

= 2q‖k0

∫ ν̃

−ν̃
dx

√
ν̃2 − x2

ν̃

√
1− (x+ q2

‖)
2/(4k2

0q
2
‖)−

∫ ν̃

−ν̃

√
ν̃2 − x2

ν̃
(x+ q2

‖)

∫ 1

(x+q2‖)/(2k0q‖)

d cosφ√
1− cos2 φ

≈ 2q‖k0

∫ ν̃

−ν̃
dx

√
ν̃2 − x2

ν̃

√
1− (x+ q2

‖)
2/(4k2

0q
2
‖)

≈ 2q‖k0

∫ ν̃

−ν̃
dx

√
ν̃2 − x2

ν̃

= πk0q‖ν̃. (D8)

In the above equation, x ≡ xk‖ = k2
‖ − k2

0 , and we have made the approximation xk‖−q‖ = (|k‖ − q‖|)2 − k2
0 ≈
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x + q2
‖ − 2k0q‖ cosφ. We have used the integral identity,∫

dx(1/
√

1− x) = −2
√

1− x, when going from the third
to the fourth line; and we have dropped the second term on
the right hand side of the fourth line because it is higher order
∼ q2
‖ ν̃ or ∼ ν̃2q‖. Finally we have made the approximation√

(1− (x+ q2
‖)

2/(4k2
0q

2
‖))≈ 1 from the fifth to the six line.

We see that the final result presented in Eq. (D8) is consistent

with Eq. (16) in the main text when t0 = 0. It follows that
when the µ = 0, the s − b process dominate over the b − b
process, and leads to a dynamical critical exponent z≈1.

Now we consider the case of nonvanishing t0, i.e., the sur-
face bands are not perfectly flat, but with a bandwidth ∼ t0.
Plugging Eq. (8) into Eq. (16), then integrating over ε, one
obtains:

Imχsb(q‖, ν, µ=0) =

∫
k‖

|xk‖−q‖ | θ(−xk‖−q‖) θ(|ν̃ + t̃0xk‖−qp|)

√
(ν̃ + t̃0xk‖−q‖)2 − x2

k‖

ν̃ + t̃0xk‖−q‖

. (D9)

where xk‖ is defined in Eq. (D2). Let us define x≡ xk‖ and
y ≡ xk‖−q‖ . Since x is around 0, we make the following
approximation to y:

y = xk‖−q‖

= x− 2
√
x2 + k2

0 q‖ cosφ+ q2
‖

≈ x− 2k0q‖ cosφ+ q2
‖ . (D10)

Plugging Eq. (D10) into Eq. (D9), and imposing the con-
straints on the limits of integrations from the two Heaviside
θ functions, one obtains

Imχsb(q‖, ν, µ=0) =

∫ 0

x−2k0q‖+q2‖

dy

2k0q‖

∫ |ν̃+t̃0y|

−|ν̃+t̃0y|

√
(ν̃ + t̃0y)2 − x2

−y
ν̃ + t̃0y

≈ − π

4k0q‖

∫ 0

−2k0q‖+q2‖

dy y (ν̃ + t̃0y) , (D11)

where the second line of the above equation follows due the
following approximation on the limit of integration of y:∫ 0

x−2k0q‖+q2‖

→
∫ 0

−2k0q‖+q2‖

, (D12)

and we have used the integral identity∫ |ν̃+t̃0y|

−|ν̃+t̃0y|
dx

√
(ν̃ + t̃0y)2 − x2 =

π(ν̃ + t̃0y)2

2
. (D13)

Now we need to discuss two different situations: ν̃ + t̃0y>0,
and ν̃ + t̃0y<0. If ν̃ + t̃0y>0, it follows from Eq. (D11) that

Imχ>sb(q‖, ν) =
πν̃3

24k0q‖
. (D14)

If ν̃ + t̃0y<0, it turns out

Imχ<sb(q‖, ν) ≈ − πν̃3

24k0q‖
+
πk0q‖

2
(ν̃−η(t0, q‖))) . (D15)

Combining the above two equations,

Imχsb(q‖, ν) = Imχ<sb(q‖, ν) + Imχ>sb(q‖, ν)

=
πk0q‖

2
(ν̃ − 2t0

3
(2k0q‖ − q2

‖)) . (D16)

Eq. (D16) has the same analytic behavior as Eq. (D8) when
t0 = 0, although the coefficients differ by a factor of 2. We
attribute such a difference in the coefficients to the approxi-
mation shown in Eq. (D12), and we believe it is not impor-
tant because it dose not change the analytic behavior of χsb.
It is also clearly seen from Eq. (D16) that the excitation gap
η(t0, q‖)=2t0(2k0q‖−q2

‖)/3, which is proportional to t0 and
vanishes as q‖→0. This is also in agreement with our numeric
simulations as shown in Table. I.

Appendix E: Numeric calculations of surface dynamical
susceptibility in slab geometry

In this section we explain the technical details in the numer-
ical calculations of the surface dynamical susceptibility for a



15

slab of NLSMs, as shown in Fig. 7 and Fig. 8. When both the
surface Rashba SOC and Coulomb interactions are neglected,
the system can be considered as spinless, and we use l, l′ to la-
bel the lattice sites in the z direction in a slab of NLSMs. The
matrix element of zero-temperature dynamical susceptibility
is expressed as:

χll′(q‖, ν) = i

∫
dkxdky
(2π)2

∫
dω

2π
G

(0)
l′l (k‖, ω)G

(0)
ll′ (k‖+q‖, ω+ν) ,

(E1)
where the G(0)(k‖, ω) is the noninteracting Green’s function
for a slab of NLSMs which can expressed in matrix form as
follows:

G(0)(k‖, ω) = V (k‖)G
(0)
diag(k‖, ω)V †(k‖) (E2)

where G(0)
diag is a 2N×2N (N is the number of primitive cells

in the slab, and there are two sublattices in each primitive cell)
diagonal matrix whose jth diagonal elementG(0)

diag(k‖, ω)jj =

1/(ω − εj(k‖) + iδj,k‖), δj,k‖ is an infinitesimal quantity
which is greater than (less than) 0 if the eigenenergy εj(k‖)
is occupied (unoccupied). V (k‖) is the eigenvector matrix
of the Hamiltonian for the slab at k‖ (denoted by Hslab(k‖)):∑
l′ Hslab(k‖)l,l′Vl′,j(k‖) = εj(k‖)Vl,j(k‖). Then Eq. (E1)

becomes

χll′(q‖, ν) = i

∫
dkxdky
(2π)2

∫ ∞
−∞

dω

2π

2N∑
j,j′=1

Wll′jj′(k‖,q‖)

(ω − εj(k‖) + iδj,k‖)(ω + ν − εj′(k‖ + q‖) + iδj′,k‖+q‖)
, (E3)

where the spectral weight Wll′jj′(k‖,q‖) is defined as

Wll′jj′(k‖,q‖) = Vl′,j(k‖)V
∗
l,j(k‖)Vl,j′(k‖+q‖)V

∗
l′,j′(k‖+q‖)

(E4)
The integration over ω can be carried out by closing the con-
tour in the upper half plane, then Eq. (E3) becomes

χll′(q‖, ν + iδ) =

∫
dkxdky
(2π)2

2N∑
j,j′=1

Wll′jj′(k‖,q‖)
(
θ(µ− εj(k‖) )− θ(µ− εj′(k‖ + q‖) )

)
ε′j(k‖ + q‖)− εj(k‖)− ν − iδ

(E5)

If the top-surface layer is labelled as the 0th layer, then the
surface susceptibility χsurf(q‖, ν) =χ00(q‖, ν). The numeric
integrations over kx, ky are replaced by discrete summations
on a 280× 280 k mesh, and the infinitesimal quantity δ is
chosen as 0.001 in our numerical calculations. The number of
primitive cells in the slab is 500.

Appendix F: Bulk quantum oscillations

In this section we derive the dHvA quantum oscillations of
bulk NLSMs neglecting Coulomb interactions. We consider
two types of low-energy effective Hamiltonians of NLSMs as
shown in Eq. (17). The energies of Hqua

0 (H lin
0 ) in Eq. (17)

have quadratic (linear) in-plane dispersions. The tight-binding
model introduced in Sec. I can be reduced to a k · p model
around the center of the NLSM that is similar to Hqua

0 ; the
terms linear in k‖ are killed by tetragonal symmetry. How-
ever, we would like to discuss both situations (Hqua

0 andH lin
0 ))

for the sake of generality.

Landau levels are formed when a magnetic field is applied
along the z direction. The expressions of the Landau lev-
els for Hqua

0 and H lin
0 are shown in Eq. (18). As discussed

in Sec. IV, the Landau levels become gapless whenever the
nodal loop exactly overlaps with a quantized magnetic orbit.
It is also mentioned that the gapless point there expects to be a
sharp change in the free energy and the magnetic susceptibil-
ity show logarithmic divergence at zero temperature and zero
Fermi level. In the remaining part of this section, we will ex-
plicitly derive the magnetic susceptibilities χ(B) as expressed
in Eq. (20)-(21).

The free energy of the Landau levels with chemical poten-
tial µ is expressed as:

F = − eB

β2π2~

∫ π

−π
dkz

∞∑
n=0

∑
λ=±

log (1 + e−(Eλ(n,kz)−µ)β)

(F1)
where the λ = ± label the branch of Landau levels, and the
Landau levels E±(n, kz) are expressed in Eq. (18) for both
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Hqua
0 and H lin

0 . Summing over λ, Eq. (F1) becomes

F = − eB

β2π2~

∫ π

−π
dkz

∞∑
n=0

log g(E(n, kz), µ, β) , (F2)

where

g(E(n, kz), µ, β) = 1+e−(E(n,kz)−µ)β+e(E(n,kz)+µ)β+e2µβ ,
(F3)

E(n, kz)=E+(n, kz) (see Eq. (18)), and β=1/(kBT ).
Then it is straightforward to calculate the magnetic suscep-

tibility χ(B)=−∂2F/∂B2:

χ(B) =
e

2π2~

∫ π

−π
dkz

∞∑
n=0

(h1 + h2 + h3) (F4)

where

h1 = h(E(n, kz), µ, β)
∂E(n, kz)

∂B
,

h2 = B h(E(n, kz), µ, β)
∂2E(n, kz)

∂2B
,

h3 = B
∂h(E(n, kz), µ, β)

∂E(n, kz)
(
∂E(n, kz)

∂B
)2 . (F5)

h(E(n, kz), µ, β) is defined as follows

h(E(n, kz), µ, β) =
e(E(n,kz)+µ)β − e−(E(n,kz)−µ)β

1 + e(E(n,kz)+µ)β + e−(E(n,kz)−µ)β + e2µβ
.

(F6)
For NLSMs with quadratic in-plane dispersions, the Lan-

dau levels are defined in the first line of Eq. (18). Then the
partial derivatives of E(n, kz) with respect to B are readily
obtained:

∂E(n, kz)

∂B
=

e (n+ 1/2) (ωc(n+ 1/2)−∆)

m
√
v2k2

z + (∆− ωc(n+ 1/2))2
,

∂2E(n, kz)

∂2B
=

e (n+ 1/2)2 v2k2
z

m [v2k2
z + (∆− ωc(n+ 1/2))2]3/2

. (F7)

Plugging Eq. (F7) into Eq. (F4),one obtains that when µ =
0 and β → ∞ (T → 0), one obtains the expression of the
magnetic susceptibility:

χ(B) =
2e2

2π2~m

∫ π

−π
dkz

∞∑
n=0

(n+ 1
2 ) (ωc(n+ 1

2 )−∆)

E(n, kz)

e2

2π2~m

∫ π

−π
dkz

∞∑
n=0

(n+
1

2
)2 ωc
E(n, kz)

,

− e2

2π2~m

∫ π

−π
dkz

∞∑
n=0

(n+
1

2
)2 ωc(ωc(n+ 1

2 )−∆)2

E(n, kz)3

(F8)

The integration over kz in Eq. (F8) can be carried out as fol-

lows:∫ π

−π
dkz

1

E(n, kz)
=

2

v
log
( √((n+ 1

2 )− ∆
ωc

)2 + Λ2 + Λ

|n+ 1
2 −

∆
ωc
|

)
∫ π

−π
dkz

1

E(n, kz)3
=

2Λ

vω2
c (n+ 1

2 −
∆
ωc

)2
√

(n+ 1
2 −

∆
ωc

)2 + Λ2

(F9)

where Λ = πv/ωc is a dimensionless cutoff parameter (the
in-plane lattice parameter is set to unity).

Plugging Eq. (F9) into Eq. (F8), one obtains

χ(B) =
e2ωc

2π2~m

∞∑
n=0

(
(n+

1

2
)2 2

v
log(j(n, ωc,∆))

+ 2(n+
1

2
)(n+

1

2
− ∆

ωc
)
2

v
log(j(n, ωc,∆))

− (n+
1

2
)2 2Λ

v
√

(n+ 1
2 −

∆
ωc

)2 + Λ2

)
, (F10)

where

j(n, ωc,∆) =

√
((n+ 1

2 )− ∆
ωc

)2 + Λ2 + Λ

|n+ 1
2 −

∆
ωc
|

(F11)

The first term on the RHS of Eq. (F10) diverges logarithmi-
cally whenever ∆/ωc→ (n + 1/2). On the other hand, it is
evidently seen that when ∆ = (n + 1/2)ωc is satisfied, the
two Landau levels ±E(n, kz) become gapless at kz = 0, and
the size of the quantized magnetic orbit associated with the
nth Landau level becomes exactly the same as the size of the
nodal loop.

One may reproduce the above derivations for a NLSM with
linear in-plane dispersions (see H lin

0 in Eq. (17)). It turns out
that for linear in-plane dispersions, the magnetic susceptibility
is expressed as

χ(B) =
eB

2π2~
(
ev2

0

ωc
)2
∞∑
n=0

√
n+

1

2

∆

ωc

2

v
log l(n, ωc,∆)

+
e2v2

0

π2~

∞∑
n=0

√
n+

1

2
(

√
n+

1

2
− ∆

ωc
)
2

v
log l(n, ωc,∆)

− eB

2π2~
(
ev2

0

ωc
)2
∞∑
n=0

2Λ(n+ 1
2 )

vω2
c

√
( ∆
ωc
−
√
n+ 1

2 )2 + Λ2

,

(F12)

where

l(n, ωc,∆) =

√
( ∆
ωc
−
√
n+ 1

2 )2 + Λ2 + Λ

| ∆ωc −
√
n+ 1

2 |
. (F13)

The first term on the RHS of Eq. (F12) diverge logarithmi-
cally whenever ∆ = ωc

√
n+ 1/2. Again, such a condition

is exactly the gap-closure condition of Landau levels; in the
meanwhile, the nth magnetic orbit exactly overlaps with the
nodal loop when ∆=ωc

√
n+ 1/2
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