
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Twistronics: Manipulating the electronic properties of two-
dimensional layered structures through their twist angle

Stephen Carr, Daniel Massatt, Shiang Fang, Paul Cazeaux, Mitchell Luskin, and Efthimios
Kaxiras

Phys. Rev. B 95, 075420 — Published 17 February 2017
DOI: 10.1103/PhysRevB.95.075420

http://dx.doi.org/10.1103/PhysRevB.95.075420


Twistronics: Manipulating the Electronic Properties of Two-dimensional Layered
Structures through their Twist Angle

Stephen Carr,1 Daniel Massatt,2 Shiang Fang,1 Paul Cazeaux,2 Mitchell Luskin,2 and Efthimios Kaxiras1, 3

1Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.
2School of Mathematics, University of Minnesota, Minneapolis, Minnesota, 55455, USA.

3John A. Paulson School of Engineering and Applied Sciences,
Harvard University, Cambridge, Massachusetts 02138, USA.

(Dated: January 25, 2017)

The ability in experiments to control the relative twist angle between successive layers in two-
dimensional (2D) materials offers a new approach to manipulating their electronic properties; we
refer to this approach as “twistronics”. A major challenge to theory is that, for arbitrary twist angles,
the resulting structure involves incommensurate (aperiodic) 2D lattices. Here, we present a general
method for the calculation of the electronic density of states of aperiodic 2D layered materials, using
parameter-free hamiltonians derived from ab initio density-functional theory. We use graphene, a
semimetal, and MoS2, a representative of the transition metal dichalcogenide (TMDC) family of
2D semiconductors, to illustrate the application of our method, which enables fast and efficient
simulation of multi-layered stacks in the presence of local disorder and external fields. We comment
on the interesting features of their Density of States (DoS) as a function of twist-angle and local
configuration and on how these features can be experimentally observed.

I. INTRODUCTION

A few short years after the experimental demonstration
of the existence of monolayer graphene1, many other 2D
materials, have been successfully fabricated2–6. Although
single-layer 2D systems have intriguing physical prop-
erties, there has also been great interest in developing
and understanding artificial heterostructures composed
of multiple atomic layers weakly bonded by van der Waals
forces7. Mechanical or chemical exfoliation and position-
ing of one layer on top of another allows for a relative
twist between successive layers, which can destroy the
alignment and thereby break the translational symme-
try in the combined system8,9. The resulting structures
may have commensurate stacking for special orientations,
but more generally are incommensurate. This allows
for interesting new behavior: studies of bilayer graphene
have found clear twist-dependent features in both the
electronic density of states and the conductivity10,11; at
very small twist-angles, a domain-wall phase appears, re-
lated to the stacking configuration12. Similar effects may
occur in TMDC semiconductors, with their band-gaps
affected by the substrate and the relative twist-angle
orientation13. Incommensurate structures pose a great
challenge to theoretical studies since the standard de-
scription of solids with crystalline order, a periodic Bra-
vais lattice and the associated Bloch states of electrons,
is entirely absent in the combined system although each
layer may still be a perfect 2D crystal.

In the effort to capture the physics of incommen-
surate systems, a simple approximation is to consider
large super-cells that can mimic the incommensurate sys-
tem; in the case of first-principles calculations like den-
sity functional theory (DFT), that can afford relatively
small cells, this approximation limits the physical system
rather severely to special values of the twist angle11. This

leaves important questions unaddressed: Are there dis-
tinct physical characteristics that distinguish the incom-
mensurate from the commensurate case? Do the proper-
ties of commensurate systems approach the proper limit
of the incommensurate systems as the twist-angle is var-
ied?

In the present work we introduce a robust framework
for the calculation of the properties of truly incommen-
surate 2D heterostructures that can address such ques-
tions for situations involving arbitrary twists between
successive layers. Our method is inspired by previous
mathematical works on disordered tight-binding models,
which can be classified into two distinct concepts. First,
an algebraic treatment of electronic transport in disor-
dered systems14,15 that allows for a rigorous definition of
quantum-mechanical operators in a disordered material.
Second, the fact that local tight-binding models create
exponentially localized observables, that is, they make it
possible to controllably remove finite-size and edge effects
from calculations16. We have already provided a rigorous
mathematical discussion of this method17, but here inves-
tigate its implications and results for physical systems.
Our modeling is based on effective tight-binding hamilto-
nians without any adjustable parameters, obtained from
first-principles DFT results18,19. As a demonstration of
the capabilities of the method, we study some proto-
typical systems of 2D stacked layers, including bilayer
graphene, a semimetal, and bilayer MoS2, a representa-
tive semiconductor of the TMDC family.

II. FORMALISM

We here provide a simplified discussion of the math-
ematical work which examines the stability and conver-
gence of our finite-sized approach to twisted 2D material
modeling17. The essence of our approach consists of the
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following ideas: A tight-binding model in d-dimensions is
described by localized orbitals φi in a d-dimensional lat-
tice, i ∈ Zd, and the hopping matrix elements between
them labeled tij . To describe disorder in this model, we
consider the space of all possible defects and calculate
physical properties for a carefully chosen subset of con-
figurations. This is formulated by defining a configura-
tion space Ω with specific local configurations ω ∈ Ω with
a probability distribution dP (ω). Ω describes all possi-
ble environments that an atom in the infinite crystal can
experience, and we simulate physical observables by sam-
pling over this space of disordered configurations. This
is in contrast to periodic approaches, which instead use

the Bloch wavenumber, ~k, as the sampling space. In in-
commensurate systems translational symmetry has been
completely broken, and there is no Brillouin zone. Ω,
referred to as the “non-commutative Brillioun zone” for
this reason14, is an alternative to this notion; neither Ω
nor the Brillioun zone provide a diagonalized band struc-
ture with a finite number of eigenvalues at each point.

Viewing the interlayer interaction as a perturbative po-
tential, the relative twist-angle can be interpreted as an
aperiodic disorder field applied to the single-layer system.
For a fixed twist angle, the location of the orbital φi in
the field created by another layer varies. This variation
in location can be completely described by the offset, or
shift, between the two layers’ unit cells, and thus Ω can
be viewed as the compact two-dimensional space of all
shifts. For each shift, we construct a system of finite
radius which contributes a finite-size error. The error
decays exponentially with the radius, so it can be made
to approach zero in a controllable fashion. Our results
prove that this is a computationally feasible strategy.

In this picture, the difference between an incommen-
surate and commensurate twist angle becomes trivial: a
commensurate angle has a finite number of possible con-
figurations because a periodic super-cell exists, while an
incommensurate angle has an infinite number. If two
twist angles, θ commensurate and θ′ incommensurate,
are extremely close then a specific shift configuration
will look effectively identical between them. Therefore,
the results of a single ω calculation will not vary signif-
icantly between θ and θ′; rather, it is the sampling of
Ω that varies. A physical observable can show a sharp
change as one varies the twist angle between commensu-
rability and incommensurability only if it varies strongly
over Ω and the commensurate twist angle does not sam-
ple Ω too finely. This distinction only holds for each layer
being a perfect infinite crystal. In real materials, the dif-
ference between an incommensurate and a commensurate
twist-angle is less clear, as the presence of imperfections
(strain, tears, ripples) may make even a commensurate
system sample Ω continuously. The effect of disorder on
twisted bilayer graphene’s electronic properties has be-
gun to be investigated theoretically20,21, but we do not
study it here.

Our approach can also handle other sources of disor-
der straightforwardly. Magnetic and electric fields can be

easily introduced through a Peierl’s substitution or an on-
site energy term, respectively. Physical defects such as
vacancies, ripples, and edges are easy to implement, pro-
vided that it has been established how the hopping terms
of the tight-biding hamiltonian change in the presence of
defects. This is handled by introducing extra dimension-
ality to Ω to represent all possible forms of disorder and
applying them directly in each ω tight-binding model.

Our implementation of these ideas on a high-
performance computing system are as follows:
i) Create a heterostructure model out of layers that are
disks of radius R; these disks are centered at a point with
“zero-shift”, which is just one specific ω configuration.
ii) Determine all relevant hopping indices Hij in the
sparse hamiltonian by only looking for pairs of orbitals
that are within the range of the hopping matrix elements
tij .
iii) For each desired configuration ω, displace one layer
with respect to the other layer, and compute of Hω

ij for
each non-zero hopping term; from this, we then calculate
the local electronic density of states (LEDoS), or any
other useful physical property like the conductivity. The
LEDoS is derived from the global EDoS, g(ε), by consid-
ering all eigenstates (indexed by s) and orbitals (indexed
by x):

g(ε) =
∑
x

1

N

N∑
s=1

δ(ε− εs)|φs(x)|2 =
∑
x

gx(ε) (1)

iv) Apply the operator of interest to Hω
ij with a Ker-

nel Polynomial Method (Chebyshev polynomials)22,23;
the Chebyshev polynomials Ti form a complete basis for
square integrable functions which take values in the range
[−1, 1] and a linear combination of them can be chosen to
approximate the eigenspectrum of a tight-binding hamil-
tonian after a simple rescaling to ensure all eigenvalues
lie in [−1, 1].

An additional advantage of the method is that it can be
formulated into a code with excellent parallel efficiency,
especially compared to DFT super-cell calculations. This
is a consequence of the fact that to obtain the global op-
erator requires a large number of independent computa-
tions of the local operator in different configurations that
can be run in parallel (we use MVAPICH 2.2b). Since
each local operator is computed using only sparse matrix-
vector operations, a second layer of parallelization can be
added by using multi-threaded implementations of highly
optimized matrix-vector operator subroutines, which fur-
ther enhances efficiency (we use Intel MKL 11.0).

III. BILAYER GRAPHENE

Twisted bilayer graphene (tBLG) provides an excel-
lent candidate for a test of our method, since it has been
well characterized by many experimental works and an-
alytical theory24–27. To compute the EDoS of tBLG we
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FIG. 1. Simulated local electronic density of states (LEDoS)
at four different angles of twisted bilayer graphene. Each
line corresponds to a different real-space configuration along
the line connecting AA to AB stacking. The insets show a
real-space image of the density of states in the bilayer sys-
tem at the energy value identified by a dashed line. For the
0.88◦ angle an orange line showing the AA to AB config-
uration path is shown in the real-space image. The figure
was constructed to facilitate comparison with experiment32,
which shows excellent agreement in the positions and rela-
tive heights of the VHS. For these calculations we use a disk
cut-off radius R = 500 Å which contains 591, 344 atoms.

used a two-band model that describes the π bonding and
antibonding combinations of pz orbitals associated with
the two-atom basis of the honeycomb lattice; the tight-
binding hamiltonian is derived from first-principles calcu-
lations with the use of Wannier orbitals and involves no
adjustable parameters, other than the range of hopping
matrix elements18.

The main feature of twisted bilayer graphene is the
presence of van Hove singularities (VHS) above and be-
low the Fermi energy. The origin of these VHS can
be best understood by considering the low-energy band-
structure of tBLG as consisting of four Dirac cones at
the valleys Kl and K ′l , where l = (1, 2) labels the lay-
ers. At θ = 0◦ twist, K1 and K2 are at the same point
in momentum-space. For θ > 0◦, the Dirac cones move
away from one another in momentum-space, and a partial
band-gap opening occurs where the cones now overlap.
These hybridizations at the overlap of the Dirac cones
produce the VHS28, which have already been investigated
by experimental STM measurements29–32.

As a first test of the method, in Fig. 1 we compare
the spatial dependence of tBLG at four twist angles to

experimental results32. This is possible because sam-
pling shifts over the diagonal of one layer’s unit-cell is
the same as moving linearly from an AA to AB type
stacking in the real-space moiré pattern. The simulated
features of the VHS for the four selected angles are iden-
tical to those from experiment32, but the scaling between
the VHS feature and the background graphene DoS are
different between theory and experiment. This can be
partly explained by the fact that in STM measurements
states with lower in-plane momentum k have shorter de-
cay lengths33,34. Our method gives the DoS independent
of the momentum of electronic states that contribute to
it, so it is expected that the VHS will be less pronounced
in experiment.

Next, we sample the configuration space Ω for a fixed
twist angle of θ = 5.73◦ (0.1 radians) for 100 configu-
rations along the diagonal of the unit-cell, see Fig. 2.
The LEDoS varies smoothly as a function of ω, with the
only regions of significant configuration dependence be-
ing those near the VHS, as shown in Fig. 2(b). The
AB (BA) type stacking has much lower DoS at the VHS
than any other stacking configuration. Since we fit the
DoS to a smooth polynomial, the divergent nature of the
DoS at the VHS is only partially recovered. We can still
compare the intensity of the VHS by examining its spec-
tral weight. In Fig. 2(c) we plot the DFT ground-state
energy calculations for non-twisted bilayer graphene over
the same range of relative shifts. There are interesting
similarities between the VHS LEDoS in (b) and the non-
doped ground state energy in (c), namely, the LEDoS
at the VHS has the same dependence on relative shift
as the energy. An important question is: can one con-
trollably induce a relative twist between two graphene
layers in samples of macroscopic size? We suggest that
use of intercalants may facilitate this process. In partic-
ular, Li-ions are known to be easily intercalated between
graphene layers, with both insertion and removal being
fast processes. Inspired by this observation, we have also
calculated the ground-state energy as a function of rela-
tive shift for a graphene bilayer including Li-ion intercala-
tion. In the fully lithiated structure, the relative stability
of the AB and AA stacking is inverted, suggesting that
Li-ion intercalation may indeed act as a way to facilitate
changes in the relative twist-angle even for macroscopic
samples.

In Fig. 3(a) we plot the angle-dependent EDoS for
tBLG. The first, second, and third VHS are visible in
the low-angle regime and they move away from the Fermi
level linearly with twist angle. At the VHS, we find that
the real-space local DoS is highly localized at the AA
stacking sites as in Fig. 1, in agreement with experi-
mental STM results31,35. It is easy to identify in Fig.
3(a) the first and second “magic angles” of tBLG (near
1.1◦ and 0.5◦, respectively), explained by band flattening
near the Fermi level24,26. In Fig. 3(b) we plot the cal-
culated EDoS of monolayer graphene in the presence of
out-of-plane magnetic field. The Landau levels (LL’s) in
the monolayer and the VHS in the twisted bilayer both
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FIG. 2. Local Electronic Density of States as a function of shift distance across the unit cell diagonal: (a) Scan of a single
orbital’s LEDoS with the coloring corresponding to distance across the diagonal. The insets show the real-space configurations
ω for three types of stacking with the atoms in each layer represented by different color circles (red and blue for top and bottom).
The unit-cell of the bottom layer is outlined in blue and the shifted orbital is highlighted as a filled red dot. (b) LEDoS at
the selected VHS peak as a function of shift for one orbital (triangles) and for the average of both orbitals (circles), which is
properly symmetric. The peak varies smoothly with shift and has critical points at the three special stacking configurations.
For the calculations in (a-b) we use a disk cut-off radius R = 500 Å which contains 591, 344 atoms. (c) Ground state energy
(GSE) of θ = 0◦ twist-angle with and without Li-ion doping (see text for details).

represent tunable, localized electronic states. This sim-
ilarity may support the interpretation of the twisted in-
terlayer interaction as a non-abelian gauge field, the ex-
act nature of which is still being investigated26,32,36,37.
These calculations allow a very robust determination of
the monolayer’s Fermi velocity without a band-structure
calculation, using the low-energy model for the LL’s28:

E(n) = ±vF
√

2eBN (2)

with the result for the Fermi velocity vF = 1.2 × 106

m/s. Finally, we test the interaction between twist and
magnetic field in Fig. 3(c): at the AA stacking with a
3.1◦ twist there are many clear LL’s and at a field of 5
T, the peak of the VHS is significantly altered relative
to its zero-field shape. At a twist of 1.1◦, the magnetic
field dependence of the peak is not visible. These results
are in good agreement with experimental STM measure-
ments30,32.

The Str̈eda formula38 relates the fluctuations in the
integrated electronic density n under small changes in the
magnetic field strength B to the Hall conductance σxy,
while the fermi-energy E of the system lies in a gapped

region, E ∈ Eg:

σxy = e
∂n(E)

∂B

∣∣∣∣
E∈Eg

(3)

Averaging over 100 configurations of the LEDoS on
both layers gives values for σxy that jump from −2 to
+2 in units of e2/h across the central LL in the 3.1◦

simulation. This change of +4e2/h, before taking into
account spin, corresponds to the four-fold degeneracy for
the N = 0 LL of bilayer graphene, with the four states
originating from the monolayer’s K,K ′ valley degeneracy
(factor of 2) and the two sheets (another factor of 2). A
change of +8e2/h is observed in experiment for tBLG,
which is in agreement with our results when we take into
account spin degeneracy8. If only the AA configuration
is used in the calculation we do not obtain good quantiza-
tion of σxy. Just like integrating over the entire Brillouin
Zone when computing in momentum space, integrating
over the entire configuration space Ω is required in the
case of tBLG. This allows us to compute the Chern num-
ber for the wavefunctions in the gapped region by taking
the difference in σxy in units of the conductance quanta
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(+4e2/h), which indicates that our method can capture
accurately certain topological properties of the electronic
band structure.

IV. BILAYER TMDC

Unlike bilayer graphene, transition metal dichalco-
genides will not be well described by low-energy theory
due to their large band-gaps (about 2 eV). For bilayers
of TMDCs we use an 11 band model, consisting of 5 d
orbitals on the transition metal atom and 3 p orbitals
on each of the two chalcogen atoms19. The interlayer in-
teraction is modeled only between the chalcogen atoms
closest to the bilayer interface. Here we present results
for MoS2, whose model hamiltonian includes the GW ap-
proximation (GWA) for more accurate representation of
the electronic structure. Since we are mainly interested
in studying twist-angle dependent effects, we will neglect
spin polarization, but an ab-initio model with spin-orbit
coupling can be easily substituted if such effects are im-
portant.

Some twist-angle dependent features were seen in the
LEDoS for both WSe2 and MoS2, but most were not near
the conduction or valence band-edges. The twist-angle
dependence of the density of states for bilayer MoS2 is
shown in Fig. 4(a). There are significant changes in the
EDoS deep into the valence band (more than 2 eV be-
low the maximum), but it is difficult to probe this region
experimentally. They could be observed as interesting
properties for high-frequency conductivity or optical ac-
tivity.

Instead, we focus on the valence and conduction band
edges. The band-gap is a twist-angle dependent feature:
it increases by 76 meV (a ∼ 4% change) going from 0◦

to 28.6◦ twist-angle. The regions near the valence and
conduction band extrema are shown in great detail in
Fig. 4(b) and (c), with the logarithmic scale showing the
changes more clearly. These plots also show the good
numerical convergence of the EDoS in our model, with
noticeable numeric error only occurring when the EDoS is
smaller than 10−5 states per eV. This error, reminiscent
of Gibbs oscillations22, is likely an artifact of the KPM
attempting to fit a smooth function to a band-edge in
the eigenvalue spectrum. We thus take a region about
10−4 states per eV to compare changes in the band-gap
(plotted in orange). Our model does not take into ac-
count changes in the distance between the two layers as
a function of twist-angle, which could give additional de-
pendence of the band-gap and can be incorporated as a
dependence of the tight-binding hopping matrix elements
on twist angle and distance.

V. CONCLUSION

We have introduced a new method for parameter-free
computation of electronic properties in incommensurate

layered 2D materials with controllable errors. Although
here we have only studied bilayer materials, the method is
general and extends to any number of layers and of arbi-
trary heterostructure composition. Viewing the problem
on the space of configurations, Ω, allows us to fully char-
acterize the properties of incommensurate (aperiodic)
systems. The method allows for the inclusion of exter-
nal fields and other sources of disorder, such as strain
or defects. We present results of applying the method
to twisted bilayer graphene and a representative of the
TMDC family of semiconductors. The method is accu-
rate enough to correctly calculate quantization of Hall
conductivity in tBLG in the presence of magnetic fields,
and reproduces the correct Chern number for the N = 0
Landau Level. It also predicts that bilayer TMDC’s have
a twist-dependent band-gap. The method is a promising
candidate for the targeted design of electronic properties
in layered heterostructures.
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FIG. 3. (a) Average EDoS as a function of twist angle for tBLG. (b) Average EDoS for monolayer graphene in the presence
of varying magnetic field. (c) LEDoS for AA stacked tBLG with 3.1◦ (solid line) and 1.1◦ (dashed line) twist-angle at different
values of the magnetic field and Hall conductivity σxy in units of e2/h, with the horizontal red dashed lines at ±2e2/h. For
these calculations we use a disk cut-off radius R = 750 Å (1, 330, 550 atoms) and averages are over 100 configurations across
the unit-cell (10x10 grid).
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FIG. 4. (a) EDoS for twisted bilayer MoS2 from 0◦ (blue) to
28.65◦ (red) twist angle. (b) and (c) EDoS near the valence
and conduction band extrema, with the logarithmic scales
showing the changes in greater detail. These calculations use
a disk cut-off radius R = 300 Å (193, 700 atoms) and are
averaged over 100 configurations across the unit-cell (10x10
grid).
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