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Recent experiments demonstrating proximity induced ferromagnetism in graphene motivate this
study of commensurate graphene/EuO hetero-structures. Due to the commensurability of graphene
with the (111)-EuO layer, graphene’s Dirac points are mapped to the Γ point of the commensu-
rate Brillouin zone. The Eu atoms not only induce proximity exchange on the graphene layer, but
they also introduce inter-valley interactions resulting in a non-linear dispersion at Γ. We develop
a model Hamiltonian, consistent with the lattice symmetries, that includes proximity induced ex-
change splitting, spin-orbit coupling, and inter-valley interactions with parameters fitted to ab initio

calculations. The inter-valley interaction opens up a trivial gap preventing the system from crossing
into a non-trivial state. The model Hamiltonian is analyzed to determine the conditions under which
the hetero-structures can exhibit topologically non-trivial bands.

I. INTRODUCTION

Ever since the classification of the integer quantum
Hall effect (IQHE) in terms of topological invariants1,
significant theoretical effort has gone towards realizing
IQHE phenomenology at vanishing external magnetic
fields. Haldane2 proposed that in the presence of an
intrinsic spin-orbit coupling, spinless electrons hopping
on a two-dimensional honeycomb lattice are topologically
non-trivial, and this can result in one-dimensional chiral
gapless excitations along the edges of a gapped graphene
system. Owing to the chiral nature of these edge modes,
the gapless edge states are dissipationless and exhibit a
Hall conductance σxy = e2/h. This Hall conductance is
a consequence of the Berry curvature associated with the
Bloch bands in momentum space, and it is quantized only
when the Fermi energy lies in the bulk band gap of the
material. A number of other proposals have been made
for realizing the quantum anomalous Hall (QAH) effect
in mercury-based quantum wells3, optical lattices4, disor-
der induced Anderson insulators5, magnetic topological
insulators6,7, and ferromagnetic graphene8,9. The robust
nature of charge transport which identifies the QAH ef-
fect at vanishing magnetic fields might enable design of
novel quantum devices for low-power electronics applica-
tions.

To realize the QAH state in realistic materials two
conditions are necessary, (i) broken time reversal sym-
metry and (ii) topologically non-trivial bands. Since
topological insulators (TIs) possess a large spin-orbit
coupling10, a route towards realizing the QAH effect
is to introduce ferromagnetic ordering in TIs. Imme-
diately following recent successes in synthesizing mag-
netic TIs (MTIs), transport measurements in MTIs ver-
ified the predicted e2/h Hall conductance6,11. Another
approach is to engineer the QAH state in ferromag-

netic graphene in the presence of Rashba spin-orbit
coupling8,9. Recently, graphene was successfully de-
posited on an atomically thin-film insulating ferrimagnet,
yttrium iron garnet (YIG), and the transport measure-
ments revealed an unquantized anomalous Hall effect due
to proximity induced ferromagnetism12. Several other
magnetic material/van der Waals (vdW) materials com-
binations (for example graphene/EuO, graphene/BiFeO3

and MoTe2/EuO
8,13–15) have been proposed for possible

spintronics13,14 and valleytronics15 applications. In these
systems, ferromagnetic ordering is induced by a proxim-
ity effect. Additionally, proximity induced magnetism
by a magnetic insulator allows for control of the electron
and hole densities by gating. Previous theoretical stud-
ies have reported an exchange splitting gap of 36 meV in
graphene/EuO hetero-structures14.

In this paper, we construct a model Hamiltonian to
analyze the effect of commensurability and the resulting
zone-folding and inter-valley interaction on the topolog-
ical properties of commensurate graphene/EuO hetero-
structures. Such hetero-structures can be constructed
by placing graphene on the (111) surface of EuO, and
our model Hamiltonian is applicable to any commen-
surate graphene/EuO hetero-structure. For commen-
surate graphene/EuO hetero-structures the low-energy
graphene bands at the K and K′ are folded to the Γ
point, which is due to the 3N × 3N super-lattice of
the commensurate graphene-EuO stacking. This zone-
folding is accompanied by two distinct types of inter-
valley interactions, determined by the position of the Eu
atoms that can sit on either the bridge site or the hol-
low site of the graphene lattice (see Fig. 1). Our model
Hamiltonian is constructed to account for the inter-valley
interactions induced by the Eu atoms, along with the
magnetic exchange interactions and Rashba spin-orbit
coupling. The parameters for the model Hamiltonian
such as the strength of the inter-valley interactions, ex-
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FIG. 1: (Color online) (a) Schematic view of a hetero-structure with graphene between two EuO layers. The O layers are
terminated with H atoms, and the surfaces abutting the graphene are the Eu (111) planes. (b) The reciprocal lattice
corresponding to the unit cells shown in (c) and (d) maps the K and K′ points of the hexagonal graphene Brillouin Zone
(BZ) indicated by the outer red hexagon to the Γ point of the commensurate BZ of the graphene/EuO unit cell indicated by
the central green hexagon. The gi’s are the reciprocal lattice vectors of the hetero-structure unit cells in (c) and (d).
Elevation and plan views of the unit cells corresponding to the two graphene/EuO geometries are shown in (c) for the
Eu-misaligned structure and (d) for the Eu-aligned structure.

change splitting and spin-orbit coupling are determined
by fitting to ab initio calculations. The low-energy
band dispersion of the graphene/EuO hetero-structure
depends on the strength of the inter-valley interaction
terms. The position of the bridge Eu atom reduces the
graphene lattice symmetry from C3v → C2v and results
in shifting the Dirac cones from Γ to new points in the
super-lattice Brilloun zone (BZ), whereas the Eu atoms
on the hollow site open an energy gap at Γ. This is a
topologically trivial gap that is detrimental to achiev-
ing a QAH state. We analyze the band dispersion and
the topological properties of the model graphene/EuO
Hamiltonian and determine conditions under which the
graphene-EuO hetero-structure can acquire a non-zero
Chern number.

The rest of the paper is organized as follows. In
section II, we describe the two types of commensurate
graphene/EuO hetero-structures and their super-lattice
symmetries, and we discuss how these symmetries influ-
ence the band structure. In section III, we develop the
model Hamiltonian that captures the low-energy band
dispersion of the graphene/EuO hetero-structures with
and without spin-orbit coupling. In section IV, calcula-
tions of the Chern numbers identify the conditions which
yield topologically non-trivial bands and the QAH effect.
Section V, concludes with a discussion of the possibility of
proximity induced exchange and the observation of QAH

effect in other graphene/ferromagnetic hetero-structures.
The appendix describes ab initio calculations from which
we extract parameters for the model Hamiltonian such
as exchange splitting, spin-orbit coupling, and the values
of inter-valley scattering and mass terms.

II. GRAPHENE/EUO HETERO-STRUCTURES

EuO is a ferromagnetic insulator with a Curie
temperature of Tc 69K with a saturation magne-
tization of 7µB. It has a rock salt structure with
the space group Fm3̄m. Graphene is a honey-
comb lattice of carbon atoms with a lattice con-
stant 2.46 Å with the space group P63mc. In the
graphene-EuO hetero-structure, the graphene lies
on the Eu terminated (111) EuO surface. Each
(111) layer of EuO contains 4 Eu atoms and 4 O
atoms, and the Eu-layer and O-layers are stacked
alternatively along the (111) direction. Each EuO
layer is displaced 1.22Å with respect to the adja-
cent layers. Twice of the lattice constant of EuO
along the (111) surface is about 7.27Å, and it is
commensurate with a 3 × 3 unit cell of graphene.
In the combined hetero-structre the Eu atom sits
either in a hollow site at the center of a graphene
hexagon or at a bridge site above the center of a
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C-C bond.
Figs. 1(c,d) show the two different hetero-structures

studied in the paper. They differ by the alignment of the
EuO-monolayer on opposite sides of the graphene layer.
In both cases, graphene is placed on the (111) surface of
EuO. This gives a commensurate hetero-structure with
a lattice constant 2 times the lattice constant of a EuO
unit cell and 3 times that of the graphene unit cell. In
the aligned structure, shown in Fig. 1(d), the top EuO-
monolayer is directly above the bottom EuO-monolayer,
whereas in the misaligned structure shown in Fig 1(c),
the top Eu-monolayer has an in-plane displacement of
1.22 Å with respect to the bottom EuO layer. In both
structures the Eu atoms either sit at the center of the
hexagonal graphene unit cell or at the the bridges of
the C-C bonds coinciding with the inversion symmet-
ric points of graphene’s honeycomb lattice. Therefore,
in-plane inversion symmetry is preserved for both cases.
However, as a result of the lateral displacement of the
EuO layer in the misaligned hetero-structure, inversion
symmetry perpendicular to the graphene sheet is bro-
ken in contrast to the aligned hetero-structure where
this symmetry is preserved. These symmetries play an
important role in determining the band dispersion and
the model Hamiltonian of the graphene/EuO hetero-
structure.
The lattice constants of the graphene-EuO unit cell

are three times those of the graphene unit cell. Hence,
the reciprocal lattice constant of the commensurate BZ
is 1

3
that of graphene’s BZ as shown Fig. 1(b). The

outer hexagon (red - online) is the BZ of the graphene
primitive cell, and the central hexagon (green - online)
is the BZ of the hetero-structure unit cell. Fig. 1(b)
shows that the K and K’ points of the graphene BZ lie
at equivalent Γ points in the extended zone of the hetero-
structure BZ. This results in zone folding of graphene’s
K and K′ points to Γ. This band folding leads to
important changes in the band dispersion of the
graphene-EuO hetero-structure, when compared
to the graphene band structure (see Appendix
A). We address this next as we construct the model
Hamiltonian to describe the band dispersions of the two
graphene/EuO hetero-structures.

III. LOW-ENERGY EFFECTIVE
HAMILTONIAN

In graphene, the gapless Dirac cones at K and K’
are protected by time-reversal and inversion symmetry.
Since these Dirac points are separated in the BZ, small
perturbations cannot lift this valley degeneracy. There-
fore, the valley index is a good quantum number. In the
3N × 3N unit cell, due to zone folding of graphene’s BZ,
both valleys K and K’ get mapped to Γ. Hence, valley
symmetry is no longer preserved and inter-valley interac-
tions can gap the Dirac bands at Γ without breaking in-
version or time-reversal symmetry. In the graphene/EuO

hetero-structures, Eu adatoms positioned at the bridge
and hollow sites contribute two distinct inter-valley in-
teraction terms that are responsible for the non-linear
dispersions obtained from the ab initio calculations. In
this section, we construct a model Hamiltonian that cap-
tures the effect of these inter-valley interaction terms,
and we analyze their effect on the band dispersion.

A. Inter-valley interactions

The following model Hamiltonian that acts on an 8
component spinor is consistent with the lattice symme-
tries, and it describes the salient features of the band
dispersion near the Γ point in the absence of spin-orbit
coupling.

H0 = ~vF (σ̂xτ̂zpx+ σ̂ypy)+∆exŝz +∆v τ̂x +mσ̂xτ̂x (1)

In Eq. (1), τ̂i, σ̂i and ŝi are the standard Pauli matrices
acting on the valley, sublattice, and spin degree of free-
dom, respectively. The first term is the standard low-
energy Hamiltonian describing the linear dispersion of
the Dirac bands in graphene at the two valleys τz = ±1
that are now folded to Γ. The second term is the ex-
change coupling term induced by the magnetic moment
of the Eu atom resulting in proximity induced exchange
splitting ∆ex between the spins. The last two terms of
Eq. (1) capture the influence of the Eu atoms on the
graphene layer. In both the hetero-structures of Fig.
1(c,d), Eu atoms can sit on a C-C bond, referred as
the bridge site, and in the middle of the hexagon, re-
ferred as the hollow site. The position of the bridge
Eu atom reduces the graphene lattice symmetry from
C3v → C2v resulting in the term ∆vτx in Eq. (1). This
term corresponds to a valley pseudospin Zeeman term in
x-direction16 and shifts the Dirac cones from Γ = (0, 0) to
(0,±∆v/m). The last term, mσ̂xτ̂x results from the Eu
atom sitting at the hollow site of a graphene hexagon; we
refer to it as an inter-valley scattering term. This term
opens up a trivial gap at Γ and works against the topo-
logical transition to a non-trivial state. The combined
result of these terms, along with the relative strengths
of ∆ex,∆v, and m, give a rich band dispersion and also
account for the differences in the band dispersions of the
two hetero-structures that we explore next.
The difference in the band dispersions of the two

hetero-structures is related to the relative magnitudes of
∆ex, ∆v, and m. The energy dispersion of the model
Hamiltonian H0 is

E± = ±∆ex ±
√

m2 + v2F |p|2 +∆2
v ± 2∆v

√

m2 + v2F p
2
y,

(2)

where |p| =
√

p2x + p2y. For ∆ex = 0 the band dispersion

has two important features, if m ≥ ∆v the dispersion is
elliptical and gapped at Γ (px = py = 0), with an en-
ergy gap 2|∆v −m|. In contrast when ∆v > m the Dirac
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FIG. 2: (Color online) Band dispersions in the absence of spin-orbit coupling for different values of m, ∆ex, and ∆v. (a)
m > ∆v and ∆ex < |∆v −m|, (b) m > ∆v and ∆ex > |∆v −m|, (c) m < ∆v and ∆ex < |∆v −m|, and (d) m < ∆v and
∆ex > |∆v −m|.

Relation between m and ∆v value for ∆ex
band dispersion

along px

band dispersion
along py

m > ∆v ∆ex < m−∆v in Fig. 2(a)
parabolic, spin

splitting
parabolic, spin

splitting

m−∆v < ∆ex in Fig. 2(b)

parabolic with an
overlap between
spin-up and

spin-down bands

parabolic with an
overlap between
spin-up and

spin-down bands

m < ∆v ∆ex < |m−∆v| in Fig. 2(c)
parabolic with spin

splitting
two Dirac cones with

spin splitting

∆ex > |m−∆v| in Fig. 2(d)

parabolic with an
overlap between
spin-up and

spin-down bands

a larger overlap
between the spin-up

and spin-down
double Dirac cones

TABLE I: Description of band dispersions in the absence of spin-orbit coupling for different parameters of Eq. (1). Plots
of the dispersions corresponding to different relative strengths of the model parameters are shown in Fig. 2

points shift from Γ to (0,±
√

∆2
v −m2/vF ) and graphene

retains its semi-metallic structure with two Dirac cones
at (0,±

√

∆2
v −m2/vF ). For ∆ex 6= 0 and m ≥ ∆v, there

are three possibilities determined by the relative magni-
tudes of ∆ex and |∆v −m|. When (a) ∆ex < |m−∆v|,
there is a clear gap between the spin resolved states in
Fig. 2(a). For (b) ∆ex > |m − ∆v|, the band disper-
sion exhibits an overlap between spin-up and spin-down
bands shown in Fig. 2(b). Finally, at the transition point
between scenarios (a) and (b) when ∆ex = |m−∆v|, the
elliptical bands touch. This indicates that when m ≥ ∆v

there a is critical value of ∆ex > |m − ∆v| at which
the spin resolved states intersect. On the other hand, if
∆ex 6= 0 and ∆v > m, the shifted Dirac points which
now appear at (0,±

√

∆2
v −m2/vF ) exhibit crossing of

spin-resolved bands indicating that spin-resolved bands
cross for any value of ∆ex 6= 0. The gap at Γ also de-

pends on the relation between ∆ex and |∆v −m|. When
∆ex < |∆v − m|, the band structure is shown in Fig.
2(c), and the case of ∆ex > |∆v − m| is shown in Fig.
2(d). Now that we have established the conditions for
the intersection of spin resolved bands, we explore the re-
sults of spin-orbit coupling on the graphene/EuO hetero-
structures.

B. Spin-Orbit Coupling

Spin-orbit coupling introduces two additional terms
consistent with the lattice symmetries,

HSOC =
λR

2
(σ̂xŝy τ̂z − σ̂y ŝx) + λI σ̂z τ̂z . (3)
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The first term is the Rashba spin-orbit coupling which
breaks inversion symmetry in the plane perpendicular to
the graphene sheet. Hence, λR = 0 in the aligned struc-
ture. The second term is the intrinsic spin-orbit term
that breaks time reversal symmetry. Therefore λI 6= 0
for both structures. Since in-plane inversion symmetry is
preserved in both structures, we neglect the Dresselhaus
spin-orbit coupling. Our calculations indicate that the
strength of the spin-orbit coupling represented by λR and
λI is always smaller than m, ∆V and ∆ex, so we restrict
our discussions to this case. For λR, λI < m,∆V ,∆ex,
the spin-orbit coupling introduces gaps between spin-
resolved bands whenever they intersect (for example see
Fig. 2 (b),(c) and (d)). With the addition of spin-orbit
coupling the band dispersion becomes gapped, and the
bands are a linear combination of spin-up and spin-down
states.
By fitting the band dispersion with spin-orbit coupling

obtained from the ab initio calculations shown in Fig.
7, we determine the best fit parameters for our model
Hamiltonian. This gives ~vF = 3.5 eV· Å, ∆ex = 80
meV, m = 48 meV, ∆v = 17 meV, λR = 5 meV, and
λI = 1 meV. The band dispersion along the path Γ−K
calculated from the model Hamiltonian H = H0 +HSOC

is shown in Fig. 3. The model Hamiltonian captures
all four anti-crossing gaps at about the same position in
momentum space. Next, we study the topological prop-
erties of these bands obtained from H and calculate the
Hall conductance for a range of band parameters.

IV. QUANTIZED ANOMALOUS HALL EFFECT
IN GRAPHENE/EUO HETERO-STRUCTURES

In Ref. 8, Qiao et. al. found that ferromagnetic
graphene in the presence of Rashba spin-orbit coupling
shows the QAH effect with σxy = 2e2/h. First princi-
ple calculations also demonstrated that this QAH phase
can be engineered by doping with 3d or 5d transition-
metal atoms or the proximity of a layered antiferroma-
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FIG. 3: Band dispersion with spin-orbit coupling of
Eu-misaligned structure calculated from model Hamiltonian
H along the path Γ to K using parameters obtained from ab

initio calculations. ~vF = 3.5 eV· Å, ∆ex = 80 meV, m = 48
meV, ∆v = 17 meV, λR = 5 meV, and λI = 1 meV.

gentic insulator. In all cases studies thus far, the low
energy bands are at the K and K′ points of the hexago-
nal BZ, and the Hall conductance in the gap is quantized
σxy = 2e2/h as long as λR 6= 0 and ∆ex 6= 0. In the
graphene/EuO hetero-structure, as shown in sections II
and III, the low-energy bands are no longer at K and K′

but at Γ, and inter-valley interactions significantly mod-
ify the band dispersion and hence the topological prop-
erties of the bands. Therefore, we now analyze the effect
of inter-valley interactions on the topological properties
of graphene/EuO structures in the presence of in-plane
inversion symmetry.
The Hall conductance is calculated from the integral

of the Berry curvature over the BZ of the occupied bands
and can be expressed as

σxy =
e2

~

∑

α

∫

BZ

d2p

(2π)2
Θ(EF − ǫα(p))Ωα(p), (4)

where α corresponds to the band index, EF denotes the
Fermi energy, ǫα(p) is the energy eigenstate, and Ωα(p)
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FIG. 4: (Color online) The Chern number calculated as a
function of ∆ex for 4 different cases of ∆v and m. The red
open circles show the Chern number of the occupied bands,
the blue ‘x’ symbols show the Chern number of the
unoccupied bands, and the black triangles show the Chern
number of the summation of all bands. The Chern number
of the occupied bands is 2 for all values satisfying (a)
∆v 6= 0, m = 0 and (b) ∆v > m, m 6= 0. For condition (c),
∆v = 0, m 6= 0, the Chern number of the occupied bands
becomes 2 for ∆ex ≥ m. For this example, m is chosen to be
0.04 eV. (d) For ∆v 6= 0 and m > ∆v, (in this example
∆v = 0.01 eV and m = 0.04 eV) the topological transition is
pushed to a higher value of ∆ex = 0.165 eV.
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is the Berry curvature of the αth band. The Berry cur-
vature in terms of the band eigenstates can be expressed
as

Ωα(p) = Im
∑

β 6=α

[

ǫij
〈uα|∂H(p)/∂pi|uβ〉〈uβ |∂H(p)/∂pj|uα〉

(ǫβ(p)− ǫα(p))2

]

,

(5)
where the Einstein summation convention is used for
the Roman indices i and j, ǫij is the anti-symmetric
tensor, and uα(p) is the αth band eigenstate. It is in-
structive to note that in-plane inversion symmetry dic-
tates Ωα(p) = Ωα(−p) and time reversal symmetry im-
poses Ωα(p) = −Ωα(−p). For graphene/EuO hetero-
structures time reversal symmetry is broken due to ex-
change splitting caused by the ferromagnetic substrate,
however in-plane inversion symmetry is preserved. We
take advantage of the in-plane inversion symmetry by
calculating the Berry curvature in the upper half-plane
py > 0 and multiplying by a factor of 2 to account for the
lower half-plane py < 0. The Berry curvature is calcu-
lated numerically. Our calculations satisfy that the sum
of the Berry curvatures over all the bands is zero at every
p point in the BZ, as expected from Eq. (5).
The model Hamiltonian H only captures the low-

energy bands near Γ and may not be valid over the full
BZ of the graphene/EuO hetero-structure. The Berry
curvature calculated using (5) falls rapidly away from
the Γ point. This allows us to restrict our calculations of
the Hall conductance to a neighborhood of Γ. It is well
known that when the Fermi energy lies in the gap σxy is
quantized and the Hall conductance at zero temperature
can be expressed as

σxy =
e2

h

′
∑

α

Cα, (6)

where the prime indicates summation over the occupied
bands, and Cα is the Chern number of the αth band
that we calculate for different parameters of our model
Hamiltonian H . We next discuss the Chern numbers at
EF = 0 for the occupied and unoccupied bands.
The calculations for the Chern numbers were per-

formed for 4 different cases with fixed values for λR,
m, and ∆v (with λR < m, ∆v) as a function of ∆ex.
For this case, λI is not considered. The four dif-
ferent cases are depicted in Fig. 4(a)-(d). Figs. 4(a)
and (b) show the results when ∆v > m. In this case the
Chern number is quantized and gives a Hall conductance
σxy = 2e2/h for any value of λR 6= 0. However, when
∆v < m and m 6= 0, there is a topological transition as
a function of ∆ex and the Chern number changes from
0 to 2 as shown in Figs. 4(c,d). For ∆v = 0, the transi-
tion occurs when ∆ex ≥ m as shown in Fig. 4(c). For
∆v 6= 0 and m > ∆v, the transition is pushed to a higher
value of ∆ex as shown in Fig. 4(d). For both (c) and (d),
m = 0.04 eV. In (d), ∆v = 0.01 eV, and the transition
occurs at ∆ex = 0.165 eV. Unfortunately, we have been
unable to find an analytical expression for the topological

transition for ∆v < m. From the calculations, we con-
clude that the Chern number is 2 for the case of ∆v > m
and that the system undergoes a topological transition
for ∆v < m as a function of ∆ex.
The results can be summarized in terms of the phase

diagram shown in Fig. 5. In this calculation, λR = 5
meV, ∆ex = 80 meV and λI = 1 meV are constant, and
the behavior of Chern number is calculated as a func-
tion of both the magnitude of the valley pseudospin Zee-
man term ∆v and the inter-valley scattering term m. As
shown in Fig. 5, when ∆v > m, the Chern number is al-
ways 2 giving a Hall conductance σxy = 2e2/h. At small
values of ∆v, a more complicated situation occurs in the
region m > ∆v of the phase diagram, however, for suf-
ficiently large values of ∆v, the phase transition occurs
at m > ∆v for a fixed value of ∆ex. The red triangle
shows the values for the bandstructure from Fig. 3 fitted
to the ab initio calculation shown in Fig. 7. Even with
EuO placed on both sides of the graphene providing a
large proximity exchange coupling of 80 meV, the trivial
gapping from the inter-valley scattering term, m = 48
meV, prevents the bandstructure from crossing over to a
topologically non-trivial state.

V. CONCLUSIONS AND OUTLOOK

Using insights from first principle calculations and
lattice symmetries, we constructed a model Hamilto-
nian to describe commensurate graphene/EuO hetero-
structures. In commensurate graphene/EuO structures
band folding maps the Dirac cones to the Γ point of
the hexagonal super-lattice BZ of the combined hetero-
structures. Apart from inducing proximity exchange
splitting in the graphene bands, the Eu atoms also in-

∆
v
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V
)

m(eV)

Chern Number = 0

Chern Number = 2

0 0.05 0.1
0

0.05

0.1

FIG. 5: Phase diagram as a fucntion of m and ∆v for fixed
values of λR = 5 meV, λI = 1 meV and ∆ex = 80 meV. The
red triangle in the figure represents the fitted bandstructure
shown in Fig. 3. The curve indicates the phase boundary
between a Chern number of 2 on the left side of the curve
and 0 on the right side of the curve.
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troduce two distinct types of inter-valley interactions, a
valley pseudospin Zeeman term and an inter-valley scat-
tering term, whose strengths are captured by two model
parameters ∆v and m. The combined effect of exchange
and inter-valley interactions results in a non-linear dis-
persion at the Γ point which is captured by the model
Hamiltonian. The parameters of the model Hamiltonian
are determined by fitting to the band dispersion obtained
from the ab initio calculations.

Using the model Hamiltonian with Rashba spin-orbit
coupling, exchange, and inter-valley interactions we cal-
culate the band dispersion and the topological properties
of the commensurate graphene/EuO hetero-structures.
The inter-valley interactions can significantly influence
the topological properties of the bands for non-zero
Rashba (λR 6= 0) and exchange splitting (∆ex 6= 0).
For ∆v > m with λR, ∆ex 6= 0, the commensurate
graphene/EuO hetero-structure is a Chern insulator with
a Hall conductance σxy = 2e2/h, whereas for small
∆v with m > ∆v, the phase diagram becomes more
complicated and one needs a large exchange splitting
or Rashba spin-orbit coupling to realize the Chern in-
sulating phase. Our calculations indicate that even in
the presence of in-plane inversion symmetry, inter-valley
interactions can significantly influence the topological
properties of graphene/EuO hetero-structures.

For a random incommensurate crystallographic stack-
ing of graphene on EuO, the inter-valley coupling will
be negligible since the Dirac cones will remain at K and
K′. However, since any incommensurate stacking will
break the in-plane inversion symmetry of the graphene
layer, the model Hamiltonian H would acquire an addi-
tional term Mσ̂z

16. In this case the topological prop-
erties will depend on the relative strength of M and
∆gap < min(λR,∆ex). The system will exhibit a QAH
effect with a Chern number 2 only if M < ∆gap.

To observe the QAH effect in graphene/ferromagnet
hetero-structures, it is important that the disorder in-
duced broadening Σ of the bands be smaller than the
topological band gap ∆gap. The critical temperature re-
quired to observe the QAH effect is proportional to the
mobility gap defined as ∆gap − Σ, which must be pos-
itive. In order to increase the topological gap ∆gap, it
is important to have a large Rashba spin-orbit coupling
λR, which is small ∼ 7 meV in our calculations. The
Rashba spin-orbit coupling can in principle be enhanced
by hydrogenation or deposition of heavy adatoms on the
graphene surface17. Even for negative values of the mo-
bility gap (∆gap − Σ < 0), the graphene/ferromagnetic
structures will exhibit an unquantized anomalous Hall ef-
fect. However, in this case the anomalous hall effect will
be additionally influenced by disorder induced extrinsic
effects18 like side-jump and skew scattering mechanisms
which are beyond the scope of this study.

VI. APPENDIX: FIRST PRINCIPLE
CALCULATIONS

The band dispersions of the EuO/graphene/EuO
hetero-structures are calculated using the Vienna ab ini-

tio simulation package (VASP)19–21 in the projected-
augmented-wave method22. The generalized gradient
approximation (GGA) of the Perdew-Burke-Ernzerhof
form23–25 is used for the exchange correlation energy,
and a Hubbard-U correction is used for the magnetic
insulator, EuO. The on-site Coulomb repulsion and ex-
change interactions on the Eu atom 4f orbital are 8.3
eV and 0.77 eV, respectively, and on the O atom 2p or-
bital, they are 4.6 eV and 1.2 eV, respectively26. The
kinetic energy cutoff is 520 eV for all calculations. Dur-
ing all structural relaxations, the convergence tolerance
on the Hellmann-Feynman forces is less than 0.03 eV Å.
An 8 × 8 × 8 Monkhorst-Pack k-point mesh is used for
bulk EuO. The calculated bulk lattice constant is 5.186 Å
which is very close to the previously published first prin-
ciple calculations14 and consistent with the experimental
results. The lattice constant a0 of graphene is 2.46 Å.
This results in a lattice mismatch of less than 1% in the
3a0 × 3a0 unit cells shown in Figs. 1(c,d).
The EuO/graphene/EuO structures consist of

graphene between the (111) Eu planes of EuO. The
hetero-structure with graphene on the Eu-terminated
surface is more stable than graphene on the O-terminated
surface14. The relaxation of the 2D hetero-structures
uses the same level of theory, cutoffs, and tolerances as
described in the previous paragraph with a Monkhorst-
Pack k-point grid of 4 × 4 × 1. A vacuum buffer space
over 25 Å is included to prevent interaction between
adjacent slabs and hydrogen atoms passivate the outer
oxygen layers of the EuO films. The relaxed vertical
spacing between the Eu and C layers is 2.517 Å for the
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FIG. 6: (Color online) Band structure of the Eu-misaligned
structure without spin-orbit coupling. Left inset: close-up of
the low-energy band structure of the misaligned structure
near Γ. Right inset: Band structure of the Eu-aligned
structure.
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misaligned structure of Fig. 1(c) and 2.555 Å for the
aligned structure of Fig. 1(d). These distances are close
the value of 2.57 Å found previously for a single-sided
hetero-structure of graphene on EuO14.

A. Band dispersion without Spin-Orbit Coupling

Fig. 6 shows the calculated band dispersion in the ab-
sence of spin-orbit coupling for the misaligned structure
of Fig. 1(c), and the right inset shows the band disper-
sion for the aligned structure of Fig 1(d). Both band
dispersions are calculated along the path M − Γ − K
of the commensurate BZ of the 3N × 3N graphene lat-
tice. K = (2π/3a, 2

√
3π/3a, 0), M = (0, 2π√

3a
, 0), and

a = 7.38 Å is the lattice constant of the hetero-structure
unit cell. The most striking difference in the two band
dispersions is the presence of a gap between the spin-
resolved bands of the aligned hetero-structure, whereas
in the misaligned hetero-structure the spin-up and spin-
down bands intersect. The calculated values of gaps for
both hetero-structures are tabulated in Table II. The
energy band gap is denoted by EG. The gap between
the spin-up electron band and spin-up hole band is ∆↑,
and the gap between spin-down bands is ∆↓. The spin-
splitting of the electron and hole bands are δe and δh,
respectively. In Table II and Fig. 6, the positive value
of EG = 127 meV indicates a band gap between con-
duction and valence band, whereas the negative value of
EG = −38 meV indicates a spin resolved band overlap.
The values of ∆↑ and ∆↓ in the misaligned structure are
half of their values in the aligned structure. Another
striking feature of the calculated band dispersion is that
the low-energy bands of the combined hetero-structures
appear at Γ and have curvature. In contrast, to the ab

initio studies of a graphene/BiFeO3 hetero-structure13,
the Dirac cones are no longer at the K and K’ points,
but at Γ, consistent with earlier first principle studies of
graphene/EuO hetero-structures14. This is due to band
folding.

0 0.02 0.04

-0.05

0

0.05

k (Å-1)

E
 (

eV
)

FIG. 7: (Color online) Band structure with spin-orbit
coupling of Eu-misaligned structure calculated along the
path Γ to K where K is 0.57 Å−1 away from Γ.

B. Band dispersion with Spin-Orbit Coupling

Our ab initio calculations that include spin-orbit cou-
pling show very different behaviors of the spin re-
solved bands in the two hetero-structures. Since the
spin-resolved bands intersect in the misaligned hetero-
structure, the addition of spin-orbit coupling in this sys-
tem will be more pronounced than in the aligned hetero-
structure. In the aligned hetero-structure spin-orbit cou-
pling leads to a small splitting of the spin resolved bands
and the dispersion remains gapped, therefore, we focus on
the effect of spin-orbit coupling in the misaligned hetero-
structure.
In Fig. 7, we plot the band dispersion of the Eu-

misaligned hetero-structure along path Γ − K. Fig. 7
shows that spin-orbit coupling breaks the degeneracy of
the bands shown in the left inset of Fig. 6 and gaps
the bands. The conduction bands and the valence bands
split by 8 meV and 26 meV at the Γ point, respectively.
There are two local minimum gaps between the conduc-
tion band and valence band in the band dispersion near
Γ with values of 0.1 and 0.3 meV, respectively. The gap
between the two conduction bands is 0.2 meV; while the
gap between the two valance bands is 1.2 meV.
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Structure EG (meV ) ∆↑ (meV ) ∆↓ (meV ) δe (meV ) δh (meV )
Eu aligned 127 309 344 182 217

Eu misaligned -38 173 182 211 220

TABLE II: Energy gaps of the EuO-graphene-EuO structures at the Dirac point. EG is the bandgap of the gapped Dirac
cone. ∆↑ is the spin-up gap, and ∆↓ is the spin-down gap. The spin-splitting of the electron and hole bands at Γ are δe
and δh, respectively.
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Castro Neto, and B. Özyilmaz, Nat Phys 9, 284 (2013).
18 N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and

N. P. Ong, Rev. Mod. Phys. 82, 1539 (2010).
19 G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169

(1996).
20 G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
21 G. Kresse and J. Furthmüller, Computational Materials

Science 6, 15 (1996).
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