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Long-range exchange interaction between magnetic impurities in graphene

M. Agarwal and E. G. Mishchenko
Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA

The effective spin exchange RKKY coupling between impurities (adatoms) on graphene mediated
by conduction electrons is studied as a function of the strength of the potential part of the on-site
energy U of the electron-adatom interaction. With increasing U , the exchange coupling becomes
long-range, determined largely by the impurity levels with energies close to the Dirac points. When
adatoms reside on opposite sublattices, their exchange coupling, normally antiferromagnetic, be-
comes ferromagnetic and resonantly enhanced at a specific distance where an impurity level crosses
the Dirac point.

I. INTRODUCTION

Among possible technological promises of graphene1

are both electronic and magnetic applications. The for-
mer include transistors and require control of graphene’s
conduction, while the latter aim to build memory devices
and hinge on the ability to create and manipulate lo-
cal magnetic moments. Nonetheless, both these avenues
actively explore the possibilities of controlling graphene
properties with chemical dopants, such as hydrogen.
In electronic applications the role of dopants is to

suppress otherwise strong metallic conductivity of the
material2–5. Magnetic impurities6–14 typically interact
with the conduction band and produce electronic states
that carry magnetic moments and could be spread15 over
many lattice spacings a. Of particular interest is the mu-
tual interaction between such impurities. The potential
part of this interaction is important in determining the
equilibrium spatial arrangement of the dopants16–18. At
the same time, the type of collective magnetic properties
is sensitive to the effective exchange coupling between
dopants. Both the potential part of the effective interac-
tion energy and its spin-dependent part are mediated by
the conduction π-electrons of graphene.
One particularly promising dopant is hydrogen. Be-

cause it has an energy level close to the Dirac point of
the conduction π-band of graphene19 coupling of con-
duction electrons has a resonant character, whose scat-
tering amplitude resembles that of a strong substitution
impurity20. Motivated by this similarity, we are going to
concentrate on the substitution model, where the inter-
action of the impurity with conduction electrons,

Ĥimp = U + JS · σ̂, (1)

has both the on-site potential energy U and the spin part
described by the exchange coupling constant J ; the spin
operator of the impurity S couples to the local value of
the conduction electron spin density σ̂.
When two dopants reside above carbon lattice sites

separated by the radius-vectorR, their effective electron-
mediated interaction, likewise, has two parts,

Ĥ12 =W (R) + Jeff(R)S1 · S2, (2)

The potential part W (R) has been studied both for
weak21 and strong21,22 impurity strength U . To the con-
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FIG. 1: Graphene structure consisting of two sublattices A
and B. Two magnetic impurities (shown in dark grey), with
spins S1 and S2 are separated by the vector R. The angle φ
is counted from a zigzag direction.

trary, the indirect spin exchange Jeff(R) in graphene,
while extensively studied perturbatively within the usual
RKKY approach23–29, has not been addressed for impu-
rities with large U . Two notable previous research direc-
tions should be mentioned in this regard. In Ref. 30 the
indirect exchange between resonant Anderson impurities
in graphene was studied numerically with the emphasis
on the short-distance behavior. No analytic dependence
has been reported, however, in the strong coupling limit.
In Refs. 31,32 the indirect spin exchange in the strong U
limit has been addressed in a somewhat reminiscent situ-
ation of a topological insulator, but two related features
distinguish graphene from that case.

First, in the low-energy Hamiltonian of a topological
insulator, H0 = vσ̂ · p, the spin operator σ̂ is essentially
the same as (or at least directly related to) the corre-
sponding operator in Eq. ( energy of one impurity). In
graphene, in contrast, the Pauli matrices in the Hamil-
tonian relate to the pseudospin operator, acting in the
sublattice space. Second, in graphene the interference of
the electron states from the two Dirac points results in
different signs of the inter-dopant interaction when the
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two dopants resite on the opposite sublattices (AB-case)
as compared with the same sublattice (AA) arrange-
ment. This complication did not arise in Refs. 31,32. In
the present paper we are going to investigate the indirect
spin exchange coupling Jeff(R) between two dopants re-
siding directly above carbon atoms of intrinsic graphene.
We study how Jeff(R) depends on 1) the sublattice ar-
rangement of the dopants, and 2) the strength of the
potential coupling U , not assumed to be small. At the
same time, it will be sufficient to limit our analysis to the
lowest (second) order in the coupling constant J , which
is presumably never too large.

The unusual interaction in graphene in the limit of
large U is the result of its peculiar band structure, hav-
ing a linear spectrum and, essentially, zero mass. Unlike
the case of a parabolic spectrum, where a strong enough
potential would trap an electron, true bound states do
not occur in graphene. Because both positive and neg-
ative band energy states are present, for a potential U
of any sign there is always a non-zero overlap with the
band states, which leads to a finite lifetime. Nonethe-
less, at large U , low energy states near the Dirac points
become crucial where the overlap is small. It is those
quasi-localized states that facilitate resonant long-range
interaction in graphene.

Let us first recapitulate the existing results for intrinsic
graphene with the Fermi level at the Dirac points. To the
lowest second order in U and J , the results are rather
identical (barring the replacement U2 ↔ J2) for both
W (R) and Jeff(R). When the two dopants reside on
the same sublattice, both quantities are ∝ |R|−3 and
are negative, meaning that the dopants attract and favor
ferromagnetic arrangement of their spins. On the other
hand, the sign of both interactions is reversed in the AB-
case: W (R) > 0 and Jeff(R) > 0, indicating repulsion

and anti-ferromagnetic coupling. The dependence on the
distance remains the same but the overall magnitude is
three times stronger than in the AA-case.

When the strength U of the impurity becomes large,
U ≫ h̄v|R|/a2, the potential part W (R) changes sign,
compared with the weak coupling limit. This happens for
both AA and AB arrangements. This sign reversal is the
feature of the linear Dirac spectrum. Additionally, the
dependance of the inter-dopant interaction becomes long-
range21,22 W (R) ∝ |R|−1 (up to additional logarithmic
factors). It turns out that the interaction energy in the
AB-case is no longer stronger by a mere numerical factor,
compared with the AA configuration (as is the case for
weak U), but exceeds it logarithmically, by a large factor
ln (|R|/a).
Our goal is to perform a corresponding analysis of

Jeff(R). Below we carry it out for both sublattice config-
urations and for any strength of the potential U assum-
ing only that |R| ≫ a. In Section II the energy spectrum
in the presence of two impurities is discussed. In Sec-
tion III the general expressions for the effective exchange
constant are derived in terms of the integrals over the en-
ergy of conduction electrons. In Section IV those general

expressions are evaluated in the strong coupling limit.

II. ENERGY LEVELS OF A TWO-IMPURITY

SYSTEM

To understand how and why the effective interaction of
the dopants is sensitive to their relative positions on the
two sublattices, it is necessary to discuss the differences
in the electronic spectra induced by the presence of two
dopants with a strong on-site potential coupling U , elu-
cidated in Ref. 21. When only one potential impurity is
present, it may induce a low-energy state, provided that
U is strong enough. The energy of the state is determined
by the equation,

1 +
UA0E

πv2

[

ln (t/|E|) + i
π

2
sgnE

]

= 0, (3)

where A0 = 3
√
3a2/2 is the area of a graphene unit cell;

and the bandwidth of the conduction band t ∼ v/a. The
energy E ≪ t if the on-site energy is large: U ≫ t.
The energy level is quasi-localized – the overlap with the
conduction band causes it to have a finite lifetime,

E = − πv2

UA0

1

ln (|U |/t)− iπ2 sgnU
. (4)

Note that the impurity level is located in the lower Dirac
cone, E < 0, for repulsive potentials U > 0, and vice
versa.
When two impurities are present, their energy levels

split. For the impurities located on the same sublattice
(AA), the two energies are given by the equation,

1 +
UA0E

πv2

[

ln (t/|E|) + i
π

2
sgnE

]

= ±UA0E

πv2
| cos θAA| ln

(

v

R|E|

)

, (5)

where the parameter θAA(R) = 2πR
3
√
3a

cosφ is equal to

the phase difference that the states belonging to differ-
ent Dirac cones acquire when they travel between the
two impurities. It depends on both the length of the
radius-vector R and the angle φ it makes with the zigzag
direction, see Fig. 1. The oscillations in the right-hand
side described by this phase, therefore, are caused by
the interference of the wave functions of different Dirac
species.
Importantly, both solutions of Eq. (5) remain on the

same side of the Dirac point E = 0 as the single-impurity
level (4): no level can “escape” from its Dirac cone. This
is most simply seen from the fact that no solution of
Eq. (5) can ever have zero energy, E = 0.
To the contrary, when two impurities reside on differ-

ent sublattices (AB configuration), the energy levels are
determined from the equation,

1 +
UA0E

πv2

[

ln (t/|E|) + i
π

2
sgnE

]

= ±UA0

πvR
| sin θAB|,

(6)
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with the new phase being θAB(R) = φ+ 2πR
3
√
3a

cosφ. The

main new feature of the AB case is the existence of the
E = 0 solution at a specific distances R. Such solution,
from Eq. (6), has the energy (for positive U > 0),

E =
v(R0 −R)| sin θAB |

RR0[ln
RR0

a|R0−R| +
iπ
2 sgn(R0 −R)]

, (7)

where R0 = UA0

πv
| sin θAB|. It passes from the lower

Dirac cone to the upper cone as the distance between
the adatoms becomes shorter than a resonant distance

R0. Right at R = R0 one of the impurity levels lies ex-
actly at the energy E = 0. Additionally, the width of this
level becomes vanishingly small. As we are going to see
below, the effective exchange coupling between adatoms
spins is resonantly enhanced when they are separated by
the distance R0.

III. GENERAL EXPRESSION FOR THE

INDIRECT EXCHANGE COUPLING

The Hamiltonian of two impurities (adatoms) on
graphene, one positioned above a carbon atom at the
origin (the sublattice it belongs to is called A) and the
second above the atom some distance R away (which
could belong to either of the two sublattices), consists of
three parts, H = H0 +H ′ +H ′

sp, namely,

H0 = t
∑

r

∑

i=1,2,3

ψ̂†(r)ψ̂(r+ ai),

H ′ = Uψ̂†(0)ψ̂(0) + Uψ̂†(R)ψ̂(R),

H ′
sp = JS1 · ψ̂†(0)σ̂ψ̂(0) + JS2 · ψ̂†(R)σ̂ψ̂(R), (8)

Here H0 is the kinetic energy of electrons, the hopping
integral t being assumed real and positive; U is the addi-
tional on-site potential energy induced by an impurity; J
is the exchange coupling of an impurity spin with the spin
of the conduction electrons. The hat above the electron
operator ψ̂ indicates a spinor, the summation over the
spin indices is implied; σ̂ are the Pauli matrices acting
in the spin (not pseudospin) space.
Because the spin exchange is never very strong, it is

sufficient to determine the effective impurity-impurity
spin coupling Jeff to the lowest (second) order in J . Most
simply this can be done by using the standard quantum-
mechanical theorem that poses that the derivative of the
impurity-impurity interaction energy (2) with respect to
the coupling constant J is equal to the expectation value
of the corresponding derivative of the Hamiltonian (8):

∂Jeff
∂J

S1 · S2 =

〈

∂H

∂J

〉

= S1 ·
〈

ψ̂†(0)σ̂ψ̂(0)
〉

+ S2 ·
〈

ψ̂†(R)σ̂ψ̂(R)
〉

= −iS1(0) · Tr σ̂Ĝ(0, 0, t = −0)

− iS2(R) · Tr σ̂Ĝ(R,R, t = −0), (9)

where we introduced Green’s function of the system,
which in the interaction representation with respect to
the spin part of the Hamiltonian is (spin indices shown
explicitly)

Gαβ(r, r
′, t) = −i〈Tψα(r, t)ψ

†
β(r

′, 0)S(∞,−∞)〉, (10)

with the interaction matrix given by the standard expres-
sion,

S(∞,−∞) = T exp

(−i
h̄

∫ ∞

−∞
H ′

spdt

)

. (11)

Expanding the S-matrix to the first order in the spin
Hamiltonian, we obtain,

∂Jeff
∂J

= −4iJ

∞
∫

−∞

dE

2πh̄
GE(R, 0)GE(0,R). (12)

Here, GE(r, r
′) is Green’s function of the system in the

absence of the exchange coupling. Note that this function
is exact with respect to the potential coupling U which is
not presumed to be weak. The problem of finding GE in
the presence of two impurities was solved in Ref. 21. The
following identity expresses it in terms of free electron
(U = 0) Green’s function GE(r, r

′):

G0
E(R, 0) = GE(R, 0)

1 + 2TEGE(0) + T 2
EG

2
E(0)

1− T 2
EG

2
E(0,R)GE(R, 0)

. (13)

The T -matrix describes the renormalization of the impu-
rity strength from multiple scattering events,

TE =
U

1− UGE(0)
, (14)

whereas GE(0) denotes Green’s function at coinciding
points,

GE(0) ≡ GE(0, 0) = −EA0

πv2

[

ln

(

t

|E|

)

+ i
π

2
sgnE

]

.

(15)
The area of a graphene unit cell is denoted with A0 =
3
√
3a2/2 while the Dirac velocity is v = ta. The trans-

posed function GE(0,R) is given by the same expres-
sion as Eq. (13), where one simply replaces GE(R, 0) →
GE(0,R).
Integrating Eq. (12) with respect to J, and substitut-

ing the expressions for Green’s functions, we obtain the
effective exchange coupling constant in the integral form,

Jeff = 2J2

∞
∫

−∞

dω

2πh̄

Πiω(R)

[(1− UGiω(0))2 − U2Πiω(R)]2
,

(16)
where we introduced the following shorthand for the
product of two Green’s functions,

Πiω(R) = Giω(0,R)Giω(R, 0) (17)
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In writing Eq. (16) we utilized that time-ordered Green’s
functions do not have singularities in the first and third
quadrants of the complex E plane and rotated the inte-
gration path from the real axis counterclockwise to the
angle π/2 so that it coincides with the imaginary axis,
E = iω.
Conveniently, this removes the imaginary part of the

logarithm in Eq. (15), which now becomes,

Giω(0) = − iωA0

πv2
ln

(

t

|ω|

)

, (18)

To determine the coupling constant Jeff given by Eq. (16)
it only remains to ascertain the product of two Green’s
functions, Πiω(R), whose meaning is rather transparent:
it determines the likelihood of a conduction electron to
propagate from one impurity to another and then back
to the first one.
The approximation (18) is valid provided that the en-

ergies are much smaller than the bandwidth, |E| ≪ t.
If, in addition, the distance between the impurities is
much larger than the lattice spacing, R ≫ a, a small-
momentum expansion around the two Dirac points in the
Brillouin zone is applicable to the calculation of Green’s
function. The corresponding calculations have been per-
formed previously in Refs.21,22. The result is very sen-
sitive to the positions of the two points. If both belong
to the same sublattice, one obtains

ΠAA
iω (R) = −ω

2A2
0

π2v4
K2

0

( |ω|R
v

)

cos2 θAA, (19)

where K0 is the Macdonald function of the zeroth order.
When two locations belong to the opposite sublattices,

a different expression is found,

ΠAB
iω (R) =

ω2A2
0

π2v4
K2

1

( |ω|R
v

)

sin2 θAB, (20)

where K1 is the Macdonald function of the first order.
A different sign, compared with Eq. (19), is the result of
quantum interference, which is responsible for the oppo-
site signs of interaction in AA and AB configurations.
Our general result (16) can be illustrated first by cal-

culating the exchange coupling for the weak U limit,
U ≪ h̄v|R|/a2, where the denominator in Eq. (16) can
be ignored. As a result, one finds ferromagnetic coupling
for the AA configuration of the two impurities,

JAA
eff (R) = − J2

16πh̄

A2
0

vR3
cos2θAA. (21)

For the AB configuration the coupling is anti-
ferromagnetic (and stronger by a numerical factor),

JAB
eff (R) =

3J2

16πh̄

A2
0

vR3
sin2θAB. (22)

The 1/R3 dependence of the two exchange coupling con-
stants, as well as the signs, are consistent with the re-
sults in the existing literature27,30. We note that simply

replacing J with U also yields the correct expressions21

for the potential part of the impurity interaction, W (R).
This is not surprising, since the perturbation calculations
for the two parts of the interaction are identical.

IV. STRONG U LIMIT

The perturbative couplings (21)-(22) are rather short-
range falling off as the third power of the distance. How-
ever, it turns out that as the potential part U of the
electron-impurity interaction increases, so does the range
of the exchange coupling. As evident from the form of the
T -matrix, the perturbation theory fails if U ∼ h̄vR/a2,
where the integral in Eq. (16) has to be calculated differ-
ently.

A. AA configuration

Let us first consider the situation of both adatoms re-
siding on the same sublattice. Since low energies are im-
portant at large distances, R ≫ a, we can approximate
the Macdonald function asK0(x) ≈ − lnx and write with
the help of Eqs. (19) and (16),

JAA
eff (R) = −πJ

2v3R

h̄U4A2
0

cos2θAA

×
∞
∫

−∞

dxx2 ln2 x
[

(

ρ+ ix ln
[

R
a|x|

])2

+ cos2θAA x2 ln
2 x

]2 , (23)

where we introduced the dimensionless distance ρ =
Rπv/UA0. In the weak coupling limit this distance is
large, ρ ≫ 1. In contrast, in the strong coupling limit
this parameter is small. The integral in Eq. (23) con-
verges on x ∼ ρ≪ 1, thus justifying the small-argument
approximation used for the Macdonald function K0(x).
To calculate the integrals in Eq. (23) in the logarith-

mic approximation, we notice that the logarithms in the
integrand are both large and slow functions of their ar-
guments. It is therefore tempting to use the standard ap-
proach to such integrals and approximate the logarithms
with their fixed values taken at the characteristic argu-
ments of the integrand, x ∼ ρ. It is easy to see, however,
that this would lead to the vanishing of the integral, as
all the singularities would be located in the same (lower)
half-plane of the complex x. It is thus necessary to cal-
culate carefully the subleading contribution that stems
from the variation of the logarithms with x. This calcu-
lation is presented in the Appendix. Its result is

JAA
eff (R) =

J2πv2

4h̄A0U3c ln2β

[ 4c3 ln(α/β) ln3β

(ln2α− c2 ln2β)2

− 2c lnα lnβ

ln2α− c2 ln2β
+ ln

( lnα+ c lnβ

lnα− c lnβ

)]

, (24)



5

0 10 20 30 40 50 60
R/a

-0
.0

00
2

-0
.0

00
1

0
0.

00
01

0.
00

02
0.

00
03

0.
00

04

(U
A

o/π
va

)2 J A
A

/J

UA
o
/πva = 20.5

UA
o
/πva = 2.06

UA
o
/πva = 0.83

FIG. 2: Effective interaction JAA (both impurities belong to
the same sublattice) is plotted as a function of distance be-
tween the impurities R/a for several value of U : 50.0, 5.0 and
2.0 eV (corresponding to the dimensionless ratio UA0/πva
equal to 20.5, 2.06, 0.83, respectively). JAA is scaled by a fac-
tor of coupling constant J and dimensionless ratio UAo/πva.
The plot is a result of a numerical integration of the exact
effective magnetic interaction (16).

where we used the shorthands, α = UA0/πva, β =
UA0/πvR, and c = | cos θAA|. The obtained result (24)
simplifies in the limit of lnα ≫ ln β, corresponding to
strong U and large distances R, in which case the cou-
pling constant JAA

eff becomes,

JAA
eff (R) =

2J2πv2

3h̄A0U3

cos2 θAA ln(UA0

vR
)

ln3(UA0

va
)

. (25)

The limit lnα ≫ lnβ might be difficult to realize (in
which case the more general formula (24) ought to be
used), but it illustrates two features of JAA

eff (R). First,
the coupling is antiferromagnetic: exchange interaction
between adatoms reverses sign compared with the weak-
U limit, Eq. (21), quite reminiscent of the potential part
W of the adatom interaction21,22. Second, the coupling
constant JAA

eff (R) decays very weakly, logarithmically
only. Needless to say, this behavior extends only to the
distances R ∼ Ua2/h̄v, where the strong coupling limit
crosses over to the weak coupling, Eq. (21), and where
both expressions become of the same order of magnitude
(albeit of different sign).

Fig. 2 illustrates the dependence of JAA
eff on the

distance for different values of the potential coupling
strength U . For weak U the coupling is ferromagnetic.
With increasing U antiferromagnetic coupling emerges
for small distances whereas at large distances ferromag-
netic coupling reemerges. With the further increase of
U the antiferromagnetic range extends to progressively
larger distances.

B. AB configuration

When the impurities reside on different sublattices, we
obtain from Eqs. (20) and (16), upon utilizing the ap-
proximation for the Macdonald function, K1(x) ∼ 1/x,

JAB
eff (R) =

πJ2v3R

h̄U4A2
0

sin2θAB

×
∞
∫

−∞

dx
[

(

ρ+ ix ln
[

R
a|x|

])2

− sin2θAB

]2 . (26)

For small ρ ≪ 1, the poles of the integrand now re-
side on the opposite sides of the real axis. The use
of the low-x approximation of the Macdonald function
is justified by the fact that the integral converges at
x ∼ | sin θAB|/ ln(R/a). In the leading logarithmic ap-
proximation it is sufficient to take the logarithm at its
typical value within the interval of convergence. One
thus obtains,

JAB
eff (R) =

J2

2h̄

π2v3

A2
0U

4| sin θAB|
R

ln(UA0

va
)
. (27)

Interestingly, the coupling JAB
eff (R) increases with the dis-

tance between adatoms. The sign of the coupling is anti-
ferromagnetic, similar to Eq. (22) valid at large distances
where the interaction of adatoms is perturbative.
The crossover from strong coupling limit, Eq. (27), to

the weak coupling limit, Eq. (22) occurs at ρ ∼ 1. In fact,
a resonance takes place at ρ = ρ0 = | sin θAB|, which
corresponds to a localized impurity level crossing over
from one Dirac cone to another, see Eq. (7). Indeed,
the energies of the impurity levels are determined by the
zeros of the denominator of the integrand in Eq. (16).
For small values ρ − ρ0 the most important contribu-

tion into the integral in (26) comes from small arguments
x ≪ 1. Keeping only the lowest order terms in x in the
denominator of the integrand, we write for the integral
in Eq. (26), while denoting ξ = ρ2 − ρ20, in the leading
logarithmic approximation,

∞
∫

−∞

dx
(

ξ + 2iρ0x ln (
R

a|x|)
)2 = − ∂

∂ξ

∞
∫

0

2ξ dx

ξ2 + 4ρ20x
2 ln2( R

a|x|)

= − π

2ρ0|ξ| ln2( R
a|ξ| .)

, (28)

In usual notations Eq. (26) now reads,

JAB
eff (R) = − vJ2

4h̄U2|R−R0|
| sin θAB|

ln2(
R2

0

a(R−R0)
)
. (29)

The resonant coupling (29) is ferromagnetic, in con-
trast to the above considered limits of long distances and
short distances, both of which favor antiferromagnetic
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FIG. 3: Effective interaction JAB (impurities belong to differ-
ent sublattices) is plotted as a function of distance between
the impurities R/a for several value of U : 200, 10 and 2 eV
(corresponding to the dimensionless ratio UA0/πva equal to
82.6, 4.13, 0.83 respectively). JAB is scaled by a factor of
coupling constant J and dimensionless ratio UAo/πva. The
plot is a result of a numerical integration of the exact effective
magnetic interaction (16).

ordering of impurity spins. The origin of the resonant
coupling is the existence of the zero-energy states of the
two impurities at distance R0 and the ensuing increase
in the scattering of conduction electrons between the im-
purities. Fig. 3 illustrates the exchange coupling in the
AB-configuration: the weak antiferromagnetic coupling
and the stronger resonant ferromagnetic interaction.

V. SUMMARY

The impurities (adatoms) in graphene interact via the
exchange of virtual electron-hole excitations. Such inter-
action has the potential part as well as the effective spin
exchange term. The resulting coupling strength Jeff is
extremely sensitive to the strength of the on-site poten-
tial energy U that the conduction electrons experience
when they hop on the carbon atom located above the
adatom. For weak U the interaction is mediated by the
band states and can be treated perturbatively. It is an-
tiferromagnetic, Jeff > 0, and generally stronger by a
numerical factor when two adatoms reside on opposite
sublattices, compared with the ferromagnetic coupling,
Jeff < 0 for adatoms on the same sublattice. In both in-
stances, when U is weak, the impurity states have large
energies and thus play no role when the distance between
adatoms significantly exceeds the lattice spacing.

To the contrary, with increasing U the impurity levels
move closer to the Dirac points; as a result, the adatom-
adatom interaction is mediated mostly via those levels
rather than through the band states of graphene. Even
though in the limit of very large U the spin-spin coupling
Jeff vanishes, its dependence on the distance for finite U

becomes highly non-trivial. In the AA-configuration of
adatoms, the coupling becomes very long-range decreas-
ing only logarithmically with the distance while being
antiferromagnetic in sign – opposite to the weak cou-
pling limit. In the AB-configuration the presence of the
impurity levels results in two surprising features: the ap-
pearance of the interval of distances where Jeff increases
with the distance for R ≪ R0 before undergoing a sign
reversal and a resonant enhancement with the maximum
at R = R0, the distance where one of the impurity levels
crosses the Dirac point.
The effective interaction strength is obtained from the

energy integration of the two-particle Green’s function,
see Eq. (16). In general, electrons of different energies
contribute into Jeff . In a resonant coupling scenario,
however, low energies contribute most strongly into the
resonant coupling. A quasi-localized state of a single im-
purity has the wave function that in the limit E → 0
drops off as 1/r with the distance from the impurity7,33.
This form is already anticipated from the dimensional
considerations, as in the absence of E it is not possible
to construct any other wave function with the dimension
of the inverse length. Ultimately, it is this long-range
behavior of the wave function that is responsible for the
long-range nature of the RKKY and potential interac-
tions between the impurities in the resonant regime.
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Appendix: Calculation of Logarithmic Integrals

To calculate the integral in Eq.(23), let us rescale the
integration variable, x = ρz, and introduce the short-
hands α = R/(aρ), β = 1/ρ, c = | cos θAA|:

JAA
eff (R) = − v2J2

h̄A0U3

∞
∫

−∞

dz c2z2 ln2(β/|z|)

× 1
[{

1 + iz ln
(

α
|z|

)}2

+ c2z2 ln2( β
|z| )

]2

=
J2v2c

2h̄A0U3

∂

∂c

∞
∫

−∞

dz
[{

1 + iz ln
(

α
|z|

)}2

+ c2z2 ln2( β
|z|)

]

.

(A.1)

To the logarithmic approximation, we utilize the fact that
the integral converges at z ∼ 1, where ln z ≪ lnα, lnβ.
Expanding the integrand up to the first order in ln z, we
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arrive at,

JAA
eff (R) =

J2v2c

h̄A0U3
c
∂

∂c

∞
∫

−∞

dz ln |z|

× iz(1 + iz lnα) + c2z2 lnβ

[(1 + iz lnα)2 + c2z2 ln2 β]2
. (A.2)

The last integral has the form
∫∞
−∞ dz ln |z|K(z), where

K(z) is a rational function with all its singularities lo-
cated in the upper half-plane of complex z: this follows
from α > β, and the fact that c ≤ 1. Defining now a new
function Q(z) according to Q(z) =

∫ z

−∞ dzK(z), one can
use the integration by parts to obtain,

∞
∫

−∞

dz ln |z|Q(z)

dz
= −P

∞
∫

−∞

dz
Q(z)

z

= iπQ(0) = iπ

0
∫

−∞

dzK(z). (A.3)

In performing this transformation we have used that
Q(∞) =

∫∞
−∞ dzK(z) = 0 since the function K(z) does

not have any singularities in the lower half-plane of z.
Additionally, to express the principal value integral in
Eq. (A.3) via Q(0), we observe that

∞
∫

−∞

dz
Q(z)

z − i0
= P

∞
∫

−∞

dz
Q(z)

z
+ iπQ(0) = 0, (A.4)

as the integral in the left-hand side of Eq. (A.4) is zero
for the already familiar reason: all its poles reside in the
upper half-plane. From Eq. (A.3) we obtain that the
exchange coupling constant (A.2) is expressed in term of
the following integral of a rational function,

JAA
eff (R) =

iJ2πv2c

h̄A0U3

∂

∂c

0
∫

−∞

dz
iz(1 + iz lnα) + c2z2 lnβ

[(1 + iz lnα)2 + c2z2 ln2β]2
.

(A.5)
The integral is straightforward and ultimately reproduces
Eq. (24) of the main text.
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12 T. Eelbo, M. Waśniowska, M. Gyamfi, S. Forti, U. Starke,
and R. Wiesendanger, Phys. Rev. B 87, 205443 (2013).
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