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The electrical control of single spin qubits based on semiconductor quantum dots is of great
interest for scalable quantum computing since electric fields provide an alternative mechanism for
qubit control compared with magnetic fields and can also be easier to produce. Here we outline the
mechanism for a drastic enhancement in the electrically-driven spin rotation frequency for silicon
quantum dot qubits in the presence of a step at a hetero-interface. The enhancement is due to
the strong coupling between the ground and excited states which occurs when the electron wave-
function overcomes the potential barrier induced by the interface step. We theoretically calculate
single qubit gate times tπ of 170 ns for a quantum dot confined at a silicon/silicon-dioxide interface.
The engineering of such steps could be used to achieve fast electrical rotation and entanglement of
spin qubits despite the weak spin-orbit coupling in silicon.

I. INTRODUCTION

Solid state spin qubits based on quantum dots1 take
a variety of forms2–11. Silicon is an ideal host for spin
qubits thanks to the absence of piezoelectric electron-
phonon coupling, to nuclear-spin free isotopes 12,13 en-
abling isotopic purification to remove the hyperfine cou-
pling, and compatibility with industrial manufacturing
technologies. Recent experiments have realized high-
fidelity single-qubit operations 3 and two-qubit logic
gates 5 in silicon metal-oxide-semiconductor (Si-MOS)
dots in isotopically enriched 28Si, while high fidelity
single-qubit operations have been achieved in Si/SiGe
dots in both 28Si 9 and naturally occurring Si4,14.

Fast, individually addressable qubit operations are es-
sential for scalable architectures. Since electric fields can
be easier to produce and control locally than magnetic
fields, rotating electron spins electrically could not only
be faster, but would also facilitate scalability. A signif-
icant effort has therefore focused on achieving electron
dipole spin resonance (EDSR) of single spins in quantum
dots. Experimentally this relies on spin-orbit coupling,
which allows simultaneous changes of both the orbital
and spin states, an AC electric field driving purely orbital
transitions, and a static, uniform magnetic field needed
to break time reversal. Rabi frequencies f ≈ 3-4 MHz
have been achieved in GaAs 15,16 In silicon, in which the
electron spin-orbit coupling is weak, fast EDSR requires
the inhomogeneous magnetic field of a nanomagnet, and
f ≈ 4 MHz has been realized in Si/SiGe qubits 4,17.

In this work we show that spin-orbit induced EDSR
in silicon is strongly enhanced by the combination of
two ubiquitous features of silicon quantum dots: the val-
ley degree of freedom and steps at the silicon interface,
which can be either identified or engineered. An inter-
face step leads to strong coupling between ground and
excited orbital and valley states and, through the spin-

valley coupling provided by the spin-orbit interaction, a
large enhancement of EDSR can occur when the elec-
tron wavefunction is positioned in a small region near the
step. This implies that spin-orbit coupling can be used as
an intrinsic mechanism for EDSR in silicon, and its im-
pact should also be considered in nanomagnet-based spin
qubits. We consider in detail dots formed at Si/SiO2 in-
terfaces, but we note that the mechanism applies also to
Si/SiGe quantum dot qubits.

The conduction band minima in Si/SiO2 heterostruc-
tures grown along (001) lie in two equivalent valleys per-
pendicular to the interface at ±k0 = ±0.85 (2π/aSi),
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with the Si lattice constant aSi ≈ 5.43Å. The sharp
interface potential and ẑ-direction (‖[001]) electric field
give rise to a valley-orbit coupling18, whose magnitude
is responsible for the several hundred µeV splittings be-
tween valley eigenstates observed experimentally.19 Spin-
orbit coupling in Si has both intravalley and intervalley
terms,20,21 and tuning the valley-orbit coupling has a no-
ticeable effect on spin dynamics. Experimental studies
have shown the effective g-factor is modified by an out-
of-plane electric field in both valley eigenstates in silicon,
confirming the theoretical predictions of g-factor sensi-
tivity to valley composition.20

Our focus in this work is on the effect of a single inter-
face step on the Rabi frequency of an electrically driven
spin qubit, such as that depicted in Figure 1. Due to
the large interface electric field, the vertical step creates
a sizable potential offset (Fig. 1b). The electron wave-
function moving under the action of an in-plane electric
field is initially trapped at the step, but once it acquires
enough energy it surmounts the step.22 As it does so
there is a strong mixing of the orbital and valley degrees
of freedom involving all the excited states, and the EDSR
frequency goes through a sharp peak as a function of the
separation between the step and the center of the dot
potential well. This enhancement can be used for fast
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FIG. 1. (a) Top view and (b) cross sectional schematic repre-
sentation of a multi-gated metal oxide semiconductor struc-
ture with a single interface step of height d. The dot is de-
fined by the confinement barriers (CB) and located beneath
the plunger gates. Two side gates can produce both DC and
AC in plane electric fields to place the dot at a desired loca-
tion and to manipulate the spin. The top gate changes the
out of plane electric field F as well as the electron accumula-
tion. The R gate acts as reservoir supplying electrons to the
quantum dot. The potential profile is sliced at z = 0, where
the Si/SiO2 interface is located.

electrical spin rotations and entanglement even though
spin-orbit at silicon interfaces is intrinsically weak, while
the sharpness of the peak enables one to suppress spin
relaxation by detuning away from it quickly.

This paper is organized as follows. In Sec. II we present
the central results of this work and present a method to
enhance the EDSR frequency by means of an interface
step. The physical implications of the results are dis-
cussed in Sec. III and their practical applications for de-
vice engineering are addressed in Sec. IV. In Sec. V we
discuss briefly decoherence due to the interplay of rough-
ness and noise. We end with a summary and conclusions.

II. EDSR NEAR AN INTERFACE STEP

The total Hamiltonian describing the quantum dot-
step system23 is H = H0 +HSOC + Vc + Vz. Here H0 is
the unperturbed bulk Si Hamiltonian, while HSOC is the
spin-orbit Hamiltonian discussed in detail below. The
quantum dot is defined by the in-plane confinement po-
tential

Vc =
h̄2

2m∗(r)a4
[(x− x0)2 + y2] (1)

centered at (x0, 0, 0), with a radius a = 10 nm and an
orbital splitting of 3.8 meV. The effective mass m∗ has
a longitudinal component mz ranging from 0.4m0 on the
SiO2 side to 0.98m0 on the Si side, and a transverse
component 0.2m0, where m0 is the electron rest mass.
The out-of-plane confinement Vz for a flat interface is
Vz = U0θ(z) + eFz, where the hetero-junction barrier
potential U0 ≈ 3 eV for Si/SiO2 (150 meV for Si/SiGe).
In the presence of a step the interface potential is written
as Vz(x, z) = U0[θ(z)θ(−x) + θ(z + d)θ(x)] + eFz. The
step height d = 5.43Å is set to one lattice constant and
its location is fixed at x = 0.

Spin-orbit coupling in (001) heterostructures is de-
scribed generally by the matrices 21,24

hR = σxky − σykx , hD = σxkx − σyky (2)

where σx, σy are spin Pauli matrices, kx = −i ∂∂x and

ky = −i ∂∂y . The matrix hR stems from the inversion

asymmetry of the confining potential whereas hD arises
from the surface termination. We introduce pseudospin
Pauli matrices τx, τy acting in the valley subspace. The
total spin-orbit Hamiltonian

HSOC = (α11 + γτy)⊗ hR + (β11 + ζτy)⊗ hD, (3)

where α = 5.5× 10−14 eV cm and β = 8× 10−14 eV cm
respectively, and the inter-valley terms γ = 14.3× 10−14

eV cm and ζ = 20.8× 10−14 eV cm20.
In the effective mass approximation the electron wave

functions25 |Dns,ξ(x, z)〉 = Φn(x, z)uξ(r)eikξzχ(s), where
Φn(x, z) represent the n-th level envelope functions and
uξ(r) the lattice periodic Bloch functions correspond-
ing to the valleys centered at kξ = ±k0

26. The dy-
namics in the ŷ-direction are trivial and are neglected
henceforth. In the presence of a step the motion in the
x̂- and ẑ-directions is no longer separable. The enve-
lope wave function Φn is obtained by solving the ef-
fective mass Schrödinger equation with the Hamiltonian
HEMA = p̂2/[2m∗(r)] + Vc + Vz(x, z)

28 using the Lanc-
zos algorithm on a 160 × 275 finite-element grid. The
grid size along the ẑ-direction is 0.26Å, which captures
the effect of atomistic scale interface steps. χ(s) denotes
the spin wave function where s ∈ {↑, ↓}. The diagonal-
ization results in a relative precision in orbital energy of
1.1×10−3meV , and a relative error in the valley splitting
of 1.4× 10−4meV .
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For the ground orbital the valley-orbit coupling is

∆v = 〈D0s,ξ|Vz|D0s,ξ′〉 = |∆v| e−iφv (4)

where φv is the mixing phase of the two bare valley
states, which in the absence of the step is the same
for all orbitals. In the absence of the step EDSR
can be captured by a simple perturbative treatment.
We restrict our attention to the 8 × 8 subspace com-
prising the ground and first excited orbital states, namely
{D0↑,k, D0↓,k, D0↑,−k, D0↓,−k, D1↑,k, D1↑,k, D1↓,−k, D1↓,−k}.
The corresponding effective Hamiltonian can be repre-
sented as

Heff =

(
H00 H01

H10 H11

)
(5)

The block H00 = EZ11⊗σz +∆vτx⊗11, with EZ the Zee-
man energy and the ground state orbital energy set to
zero, while H11 = h̄ω11 ⊗ 11 + EZ11 ⊗ σz + ∆v,1τx ⊗ 11
with h̄ω the orbital confinement energy and ∆v,1 =

〈D1s,ξ|Vz|D1s,ξ′〉. The off-diagonal blocks H01 = H†10

represent the matrix elements of the electric dipole inter-
action and spin-orbit coupling eEacx11⊗ 11 +HSOC , with
β = ζ = 0 for simplicity.

We perform a Schrieffer-Wolff transformation30,31 to
project out the H01 and H10 blocks. Then we diago-
nalize the resulting matrix to obtain the valley eigen-
states |Dns,±〉 = 1√

2
(|Dns,k0〉 ± e−iφv |Dns,−k0〉), finding

a ground state EDSR Rabi frequency 16,32,33

f =
gµBeBEacκ〈x〉01

2πh̄3ω2 (α− γ sinφv), (6)

where 〈x〉01 and κ are the matrix elements between the
orbital ground and first excited states of the electric
dipole and momentum operators respectively. EDSR
arises from two-step virtual processes e.g. |D0↑,z〉 →
|D1↓,−z〉 → |D0↓,−z〉 and requires spin-orbit coupling,
a change in the orbital state, the ac electric field, and
time-reversal breaking by the magnetic field. Although
the process involves bare valley state mixing, the initial
and final valley eigenstates are the same, and the spin
states remain in the |D0s,− > subspace.

The resulting effective Hamiltonian for the ground
state subspace {D0↑,−, D0↓,−} has the form Heff =
1
2εzσz + 1

2εx(t)σx, which coincides with the form of the
electron spin resonance (ESR) Hamiltonian. Upon ap-
plication of a vector microwave source, a qubit can be
operated around an arbitrary axis on the Bloch sphere
via in-phase (X) or in-quadrature (Y) pulses with the
reference clock.

In the presence of the step there is a large enhance-
ment of the Rabi frequency because contributions simi-
lar to Eq. 6 arise from the stronger coupling between the
ground state (n=0) and the excited states (n=1). This
is indicated by the fact that the wave function extends
over a larger area, as higher orbital occupies a wider do-
main [Fig.3(c)]. Equally importantly, electrical control
of the VOC is enabled by the step. Intervalley and in-
travalley spin-orbit interaction terms couple one valley

FIG. 2. Evolution of the wave function as it is driven over an
interface step. The in-plane electric field is used to drag the
wave function over a 5.43Å step. During this process (a) The
wave function will initially be compressed at the step edge;
(b) At higher fields, the electron density starts leaking to the
other side of the step; (c) As the wave function pushes against
the step, the valley composition become more sensitive to the
quantum dot position: in the presence of the step, the in-
plane electric field can be used to control both eEac < x >01

and ∆v, resulting in a significant enhancement of the EDSR
frequency. (d) The wave function overcomes the barrier and
surmounts the step.

eigenstate corresponding to the orbital ground state with
the opposite valley eigenstate corresponding to the first
orbital excited state. The electric field has an additional
impact on spin dynamics, leading to a strong enhance-
ment of the Rabi frequency. We take this into account
through the spin- and valley-orbit coupling matrix ele-
ments (〈Dns,ξ|HSOC |Dn′s′,ξ′〉 and 〈Dns,ξ|Vz|Dns,ξ′〉 re-
spectively) between all pairs of states. Since we work
with the exact solution of HEMA, the electric dipole term
couples the ground state to all excited states. Our nu-
merical results show that an effective Hamiltonian anal-
ogous to Heff is sufficient to describe EDSR both quan-
titatively and qualitatively, the difference being that the
individual blocks can no longer be written out in closed
form. We determine the Rabi frequency as well as the
wave function and its time evolution as a function of the
in-plane electric field Eac. Only terms linear in Eac are
retained. The central result of this paper is displayed in
Fig. 4, which shows the Rabi frequency as a function of
the separation between the quantum dot potential center
and the step. This is closely related to the evolution of
the wave function described in Fig. 2 and Fig. 3(a).

III. DISCUSSION

On the far left of Fig. 4 we recover the Rabi frequencies
for a flat interface cf. Eq. 6. These differ slightly on the
two sides of the step because, in the presence of the strong
interface electric field, the step creates a potential barrier
eFd ≈ 15.2meV . The valley-orbit coupling magnitude
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FIG. 3. (a) A small DC in-plane electric field (≈ 1MV/m)
due to the side gates shifts the dot ground state mean position
< x > by approximately 40 nm. (b) The valley splitting is also
sensitive to the location of the center of the dot potential near
a 5.43Å step. (c) The spread of the wave function, defined as
the extent of the central 90% of its weight.

and phase are slightly different on the left and right sides
of the step. The potential barrier can be used to un-
derstand the sharp, resonance-like shape of Fig. 4. The
spin- and valley-orbit couplings between all the states
are maximized at the location of the step. As the wave
function approaches the step it initially does not have
sufficient energy to overcome it and is pushed against
it by the in-plane electric field [Fig.2(a,b)]. The EDSR
Rabi frequency gradually decreases since the additional
confinement due to the step limits the movement of the

FIG. 4. EDSR Rabi frequency fRabi,v− as a function of the
quantum dot potential center position x0 in a global magnetic
field B=1T along [001] with a step height of 5.43Å. The
enhancement appears at x0 = 20nm, on the right side of the
step.

quantum dot (〈x〉01 decreases as the wave function nears
the step). Once the confinement becomes strong enough
that the energy of the electron matches that of the step
potential barrier, the wave function passes over the step
and continues smoothly onto the other side [Fig.2(c,d)].
As the wave function quickly overcomes the step, the
EDSR Rabi frequency has a sharp maximum as a func-
tion of position.

The key to the EDSR enhancement is provided by
the intervalley spin-orbit coupling terms governed by the
structure-specific parameters γ and ζ. The step strongly
enhances intervalley dynamics by enabling the electron
to tunnel between the ground valley eigenstate and the
opposite valley eigenstates corresponding to all excited
orbital levels. Thanks to the intervalley spin-orbit cou-
pling, which flips the electron spin, the inter-orbital inter-
valley tunneling enabled by the step has a strong impact
on spin dynamics, and the strong coupling to all the or-
bital excited states results in a much faster spin rotation
than in the absence of the step. This is reflected in the
decrease in the valley splitting seen in Fig. 3(b). The
enhancement of the Rabi frequency is due to the com-
bination of the wave function sensitivity to the in plane
electric field as well as to the drop in the valley splitting.

The enhancement at a step is not present in materials
that do not possess a valley degree of freedom, such as
III-V semiconductors: we have checked this explicitly.
In Si, conversely, the effect is particularly strong since
the lowest lying valley states are perpendicular to the
interface. Using Eac = 2kV/m and B = 1T we obtain a
maximal EDSR gate time tπ of 170 ns in Si/SiO2, which
is approximately five times faster compared to tπ = 880
ns for a flat Si/SiO2 interface. In Si/SiGe, a single atomic
layer step leads to a peak gate time tπ of 225 ns, 3 times
as fast as for a flat interface.
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Fast qubit operation protects the qubit from unwanted
excitations. Given that the spin flip time is ≈ 200ns
and the orbital state splitting is 3.81meV, our perturba-
tion theory is strongly adiabatic in the orbital motion33.
Hence, even with the small intrinsic spin-orbit coupling
of Si, a spin qubit could be efficiently driven purely by
electrical means. A local oscillating electric field allows
individual qubit control. Likewise, electrical spin cou-
pling to a superconducting resonator will be enhanced,
enabling fast electrical spin entanglement of distinct spin
qubits. We note that two-qubit entanglement can also be
accomplished via exchange 1. The intervalley spin-orbit
terms γ and ζ independently result in an enhancement
of the EDSR strength. An additional relative phase may
exist between these terms, which is structure-dependent,
and slight variations are expected in the EDSR times for
individual samples. Yet the effect will be qualitatively
the same across all structures and a strong enhancement
in EDSR due to the step will occur.

IV. DEVICE APPLICATION

A typical a.c. electric voltage of approximately 1.5mV
was applied to devices in previous EDSR experimental
realizations,4,15 which we consider to be a realistic volt-
age representing the current state of the art. By means
of Technology Computer Aided Design (TCAD)34 simu-
lations, we find that in MOS architectures with a silicon
oxide thickness of 5nm, a 1.5mV side gate voltage can
produce an in plane electric of as much as 2kV/m acting
on the quantum dot. This realizes the minimum EDSR
gate time tπ of 170 ns reported above.

The results presented here are crucial for any imple-
mentation of EDSR in silicon. Recently, second harmon-
ics have been observed in a Si/SiGe spin qubit operated
using EDSR enabled by a nanomagnet6. A possible ex-
planation of these higher orders can be the presence of
disorder, as these cause a strong non-linear dependence
of the wave function position and spin-orbit terms on the
applied electric field. State-of-the-art technology can re-
duce Si/SiO2 surface roughness to as low as 0.7 Å 35–40

meaning that only one such step may be present within
a single dot device. We also anticipate the possibility of
the intentional design of quantum dots incorporating step
edges. These could be constructed using standard top-
down fabrication techniques, such as reactive ion etch-
ing, or possibly STM-based approaches. Such an inten-
tional step would dominate any effects due to interface
roughness, as we see in Fig.5(a), which shows that larger
steps lead to a stronger enhancement of the Rabi fre-
quency. As the impact of roughness on valley physics
averages out18, the effect of the intentional step becomes
more prominent. However, as the step increases in size,
a stronger DC in plane electric field is required to push
the center of the quantum dot to a position where the
spin can reach the maximum possible EDSR Rabi fre-
quency. As the step size is increased by the addition

FIG. 5. (a)The enhancement of the EDSR Rabi frequency
increases with step height (1 atomic layer=1.36Å).(b) Higher
atomic steps require a stronger in-plane DC electric field in or-
der to overcome the potential barrier introduced by the step.

of further atomic layers, it becomes increasingly difficult
for the electron to overcome the potential due to the step
[Fig.5(b)]. For large steps, which prevent the formation
of a simple, single quantum dot, the potential landscape
eventually becomes rather complicated.

V. DECOHERENCE

The step may increase the coupling to phonons and
charge noise, causing spin and valley relaxation16,19.
Since the qubit is in the lowest valley eigenstate, val-
ley relaxation will only be important around hotspots.
Yet the intervalley spin-orbit coupling could enhance de-
coherence mechanisms already active in the absence of
valley-orbit coupling15,41–48. Moreover, interface rough-
ness is unavoidable in heterostructures, giving rise to fluc-
tuations in the z-position of the interface that couple
different valley eigenstates18. Noise and phonons driving
the quantum dot over the fast-varying roughness profile
may enable intervalley tunnelling. Together with the in-
tervalley spin-orbit coupling this may lead to additional
spin relaxation and dephasing.

Nevertheless, the sharpness of the resonance in Fig.
4 means that experimentally the quantum dot position
only needs to be tuned 5 nm away from the step once the
spin rotation is accomplished for the spin relaxation and
dephasing times to return to their normal values for a flat
interface. Charge noise and phonons will only be notice-
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able during qubit operation. To preserve fidelity experi-
ment should ensure the qubit is at the maximum in Fig.
4, where the sensitivity to jitter is eliminated. Moreover,
roughness will reduce the magnitude of the valley-orbit
coupling (i.e. the valley splitting), yet as long as the
valley splitting can be resolved experimentally the spin
dynamics described in this work should be observable.

VI. CONCLUSIONS AND OUTLOOK

We have demonstrated that a single step at a silicon
heterointerface strongly enhances EDSR in a single-spin
qubit. The effect is driven by intervalley spin-orbit cou-
pling terms specific to silicon, and by the intervalley tun-
nelling enabled by the step. The Rabi frequency has a
sharp maximum as a function of the qubit position, such
that the qubit can be tuned away from the step to reduce

spin relaxation and dephasing. A high gate fidelity can
be maintained by positioning the qubit at the location
that yields the maximum EDSR frequency. Our findings
pave the way for the experimental realization of EDSR
in silicon without a nanomagnet, despite spin-orbit cou-
pling being inherently weak.
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Appendix A: Form of Spin-orbit coupling

The spin-orbit coupling in the basis
{D0↑,k0

, D0↓,k0
, D0↑,−k0

, D0↓,−k0
} has the form

HSOC =

 HDintra +HRintra HDinter +HRinter

H∗Dinter +H∗Rinter HDintra +HRintra


(A1)

In Eq.A1, the intra-valley Rashba terms have the form

HRintra = α (kyσx − kxσy) =

(
0 iαk−

−iαk+ 0

)
, (A2)

where k± = kx± iky. The inter-valley Rashba terms can
be written as

HRinter
= −iγ (kyσx − kxσy) =

(
0 γk−

−γk+ 0

)
. (A3)

The intra-valley Dresselhaus spin-orbit coupling has the
form

HDintra = β (kxσx − kyσy) =

(
0 βk+

βk− 0

)
, (A4)

with the inter-valley terms

HDinter = ζ (kxσx − kyσy) =

(
0 ζk+

ζk− 0

)
(A5)

The magnetic field is applied along [001], corresponding
to a Zeeman interaction

Hz =
gµBB

2

(
1 0
0 −1

)
. (A6)

Appendix B: Coupling matrix elements

The envelope wave function for the excited state is

Φ1(x, z) = 1
a2
√
π

(x − XD)e−
(x−XD)2

2a2 ψ(s), giving rise to

the following matrix elements

< kx >01 = −i
a3π

∞∫
−∞

dxe−
(x−XD)2

2a2 ( ∂
∂x )(x−XD)e−

(x−XD)2

2a2

= − i√
2a

= −iκ

< ky >01 = 0
(B1)

Similarly the matrix element for < x >01 is

< x >01 = ξ = 1
a3π

∞∫
−∞

dxe−
(x−XD)2

2a2 (x−XD)e−
(x−XD)2

2a2

= a√
2

(B2)
Thus the total Hamiltonian in the basis
{D0↑,k0

, D0↓,k0
, D0↑,−k0

, D0↓,−k0
, D1↑,k0

, D1↓,k0
, D1↑,−k0

, D1↓,−k0
}

with Rashba only spin-orbit coupling becomes

H =

Ez
2 0 ∆v 0 eEξ ακ 0 −iγκ
0 −Ez2 0 ∆v −ακ eEξ iγκ 0

∆∗v 0 Ez
2 0 0 iγκ eEξ ακ

0 ∆∗v 0 −Ez2 −iγκ 0 −ακ eEξ

eEξ −ακ 0 iγκ Ez
2 +h̄ω 0 ∆v 0

ακ eEξ −iγκ 0 0 −Ez2 +h̄ω 0 ∆v

0 −iγκ eEξ −ακ ∆∗v 0 Ez
2 +h̄ω 0

iγκ 0 ακ eEξ 0 ∆∗v 0 −Ez2 +h̄ω


(B3)
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We apply the Schrieffer-Wolff transformation to the
off-diagonal elements of H, ignoring all the higher or-
der spin-orbit terms α2κ2 + γ2κ2 and αγκ2. We
obtain an energy offset for ground state subspace
{D0↑,k0

, D0↓,k0
, D0↑,−k0

, D0↓,−k0
}

H(2) =
0 −αgµBeBEκξ

h̄2ω2 0
iγgµBeBEκξ

h̄2ω2

−αgµBeBEκξ
h̄2ω2 0

iγgµBeBEκξ

h̄2ω2 0

0 − iγgµBeBEκξ
h̄2ω2 0 −αgµBeBEκξ

h̄2ω2

− iγgµBeBEκξ
h̄2ω2 0 −αgµBeBEκξ

h̄2ω2 0


(B4)

As an example of the calculation, the matrix element
(1,2) is

H
(2)
12 = 1

2

∑
lH1lHl2[ 1

E1−El + 1
E2−El ]

= 1
2 (αeEξκ)[ 1

gµBB+h̄ω + 1
gµBB−h̄ω ]

(B5)

We consider the valley orbit coupling in the ground state
subspace

H =
Ez
2 −αgµBeBEκξ

h̄2ω2 ∆v
iγgµBeBEκξ

h̄2ω2

−αgµBeBEκξ
h̄2ω2 −Ez2

iγgµBeBEκξ

h̄2ω2 ∆v

∆∗v − iγgµBeBEκξ
h̄2ω2

Ez
2 −αgµBeBEκξ

h̄2ω2

− iγgµBeBEκξ
h̄2ω2 ∆∗v −αgµBeBEκξ

h̄2ω2 −Ez2


(B6)

We diagonalize this matrix using the rotation

R =
1√
2


1 0 e−iφv 0
0 1 0 e−iφv

1 0 −e−iφv 0
0 1 0 −e−iφv

 (B7)

yielding

RHR−1 =

(
Hv+ H01

H10 Hv−

)
(B8)

where

Hv+
=

 |∆v|+ 1
2Ez − gµBeBEκξ[α+γ sin(φv)]

h̄2ω2

− gµBeBEκξ[α+γ sin(φv)]
h̄2ω2 |∆v| − 1

2Ez


(B9)

and

H01 =

 0 − iBegγEκµBξ cos(φv)
h̄2ω2

− iBegγEκµBξ cos(φv)
h̄2ω2 0


(B10)

as well as

Hv− =

 −|∆v|+ 1
2Ez

gµBeBEκξ[γ sin(φv)−α]
h̄2ω2

gµBeBEκξ[γ sin(φv)−α]
h̄2ω2 −|∆v| − 1

2Ez

 .

(B11)
This finally yields the Rabi frequency in the subspace
spanned by the spin-split ground valley eigenstate

f =
gµBeBEacκ〈x〉01

2πh̄3ω2 (α− γ sinφv). (B12)


