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Understanding the effect of pinning on the vortex dynamics in superconductors is a key factor
towards controlling critical current values. Large-scale simulations of vortex dynamics can provide a
rational approach to achieve this goal. Here, we use the time-dependent Ginzburg-Landau equations
to study thin superconducting films with artificially created pinning centers arranged periodically
in hexagonal lattices. We calculate the critical current density for various geometries of the pinning
centers — varying their size, strength, and density. Furthermore, we shed light upon the influence of
pattern distortion on the magnetic field dependent critical current. We compare our result directly
with available experimental measurements on patterned molybdenum-germanium films, obtaining
good agreement. Our results give important systematic insights into the mechanisms of pinning in
these artificial pinning landscapes and open a path for tailoring superconducting films with desired
critical current behavior.
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1. INTRODUCTION

Superconducting films are exemplary systems to study
the effect of different pinning landscapes on the result-
ing critical current of the system. In general, pinning
centers reduce the mobility of magnetic vortices and as
a result their dissipative effects.1–3 Experimentally, de-
fects can be introduced into superconducting films in a
controllable fashion using advanced nanofabrication tech-
niques such as focus ion beam milling (FIB),4 electron
beam lithography (EBL),5 EBL combined with reactive
ion etching,6,7 or ion irradiation.8 Many artificial pin-
ning array structures (pinscapes) have been studied ex-
perimentally as well as numerically, for example: square
arrays of antidots,7,9–17 hexagonal (or triangular) pin-
ning lattices,18,19 honey-comb arrays,20–23 Penrose lat-
tice arrays,19,24–29 blind hole arrays,30–32 diluted peri-
odic arrays,18,33 composite lattices,34 pinscapes with a
density gradients,6,7,29,33,35–38 and pinscapes with geo-
metrically frustrated energy landscape.4,8,39 These stud-
ies were limited to either small sizes, two-dimensional
systems, and/or one particular configuration.

In the present work, we perform a systematic study of
various hexagonal pinning lattices using large-scale simu-
lations of the time-dependent Ginzburg-Landau (TDGL)
equations. This method can capture the vortex dynam-
ics in a realistic way and is the best compromise between
microscopic simulations and describing the phenomeno-
logical behavior of a superconducting material using cur-
rently available supercomputers.40,41 Within the TDGL
approach, the collective dynamics of vortices in thin, but
finite-thickness superconducting films are taken into ac-
count automatically and allows us to obtain results on
experimentally relevant length scales. We vary the size,

strength, and density of the pinning sides and study the
underlying vortex dynamics, which explains the magnetic
field dependent critical current.

Naively, one can expect to find simple matching effects
for the field dependent critical current, e.g., peaks at field
values corresponding to vortex numbers, which are inte-
ger multiples of the number of pinning sites (and minor
peaks at simple fractions). However, in reality vortex dy-
namics and pinning are much more diverse, such that this
theoretical picture is not (always) observed. For exam-
ple vortices are not only confined to the pinning centers,
but also can be caged in between them due to repulsion
at certain filling fractions, depending on the geometry of
the pinscape.

A second main aspect of this work is to study the in-
fluence of distortions on the periodic pinning array, i.e.,
the question on how matching effects can be destroyed.

Finally, we compare our numerical results with ex-
perimental data on artificially patterned molybdenum-
germanium (MoGe) films to explain the vortex behav-
ior of these system by large-scale simulations. This rep-
resents another aspect of the critical-current-by-design
paradigm.42

The article is organized as follows. We introduce the
numerical description in Secs. 2.1–2.3 and the experimen-
tal technique in Sec. 2.4. The comparison between nu-
merical and experimental results is presented in Sec. 3.1.
The dependence on inclusion strength is discussed in
Secs. 3.2 and the influence of distortions of the periodic
pinning arrays is discussed in Sec. 3.3. We summarize
our results in Sec. 4.
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Figure 1: Superconducting film patterned with a hexagonal
lattice of defects. a. Scanning electron microscopy image of
experimental pattern in a MoGe sample with hole size d =
150 nm and lattice constant l = 446 nm. b. The corresponding
Tc-modulation used in the time-dependent Ginzburg-Landau
simulations. The (red) dots correspond to the regions with re-
duced T ?c compared to bulk Tc in the rest of superconductor,
T ?c 6 Tc. c. Comparison of the experimental and numerical
Jc(B) dependence. The experimental reference curve Jc(B)
(gray diamonds) is measured in a pristine MoGe film. In
order to match the experimental critical current with simu-
lation critical current, a small amount of background inclu-
sions was added to the clean simulated system (green cir-
cles). The addition of a periodic hexagonal array of circu-
lar strong pinning centers makes the Jc(B) dependence non-
monotonic, see e.g. features in the experimental (black dia-
monds) curve at B = BΦ, 2BΦ, and 4BΦ. Here the matching
field BΦ ≡ Φ0/S ≈ 120 G (one inclusion per area S =

√
3l2/2)

is shown by vertical dashed lines. In particular, the simula-
tions (red circles) reproduce the drop at B = BΦ and the
peak at 4BΦ. However, the behavior between BΦ and ∼ 4BΦ

is somewhat different. Snapshots of the order parameter at
the magnetic field and current values marked by the colored
stars and squares in panel c are presented in Figs. 2 and 3,
respectively.

2. MODEL AND EXPERIMENTS

Here we introduce our model of artificially patterned
superconducting films and explain the experimental
setup and fabrication of the samples, which we compare
with the numerical results.

2.1. Simulations of patterned superconducting
films

In order to model the superconducting films, we use
the TDGL equations and apply it to systems with peri-
odically modulated defects.

The TDGL equations effectively capture the collective
vortex dynamics and pinning in realistic systems. As the
London penetration depth is typically large compared to
the coherence length in superconducting films, the TDGL
equations can be simplified to just the time evolution of
the superconducting order parameter ψ = ψ(r, t) with
a constant magnetic field, B, perpendicular to the film,
i.e.43

(∂t + iµ)ψ = ε(r)ψ − |ψ|2ψ + (∇− iA)2ψ + ζ(r, t), (1)

where µ = µ(r, t) is the scalar potential, A = [0, xB, 0]
is the vector potential associated with the external mag-
netic field, and ζ(r, t) is an additive thermal noise term.
This equation provides an adequate, quantitative de-
scription of strong type-II superconductors in the vor-
tex phase. Eq. (1) is written in dimensionless units,
where the unit of length is the superconducting coher-
ence length ξ, the unit of time is t0 ≡ 4πσλ2/c2, λ is
the London penetration depth, σ the normal state con-
ductance, and the unit of magnetic field is given by the
upper critical field Hc2 = ~c/2eξ2 (−e is the electron’s
charge and c the speed of light).

Thermal fluctuations, described by ζ(r, t), are deter-
mined by its time and space correlations and absolute
temperature, see Ref. 43. Since we are targeting low
temperature vortex behavior, this term becomes negligi-
ble. For comparison, the typical temperature is T ∼ 5 K
in the experiment on MoGe films (see below).

We model the superconducting film as a thin slab with
finite thickness. In order to capture the relevant collec-
tive vortex dynamics in the system, we simulate a sample
of size 512ξ × 512ξ × 2ξ = 12.8µm × 12.8µm × 50 nm,
where we used the coherence length ξ(4.8 K) ≈ 25 nm of
MoGe for the physical dimensions. This sample is spa-
tially discretized on a regular mesh with 1024× 1024× 4
grid points with quasi-periodic boundary conditions in x
(along the applied current) and y directions, and open
boundary condition in the z direction (along the mag-
netic field). The thickness of 50 nm corresponds to the
actual experimental film, but its lateral dimensions are
about four times smaller than the actual film size, but
are sufficient to capture ‘bulk’ properties correctly.

2.2. Modeling of inherent and artificial defects

We model material defects in the Ginzburg-Landau
formalism using so-called δTc pinning, where the critical
temperature is spatially modulated due to defects that
cause pair-breaking scattering.44–46 We use the dimen-
sionless coefficient of the linear term in Eq. (1), ε(r) ∝
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Tc(r) − T , to introduce spatial Tc modulations. This
means that for Tc(r) < T , the linear coefficient is nega-
tive, which models normal defects, while for Tc(r) > T
and different from the bulk Tc, weak superconducting
defects are captured. We use this modulation to both
model the inherent defects of the material as well as the
larger scale artificial periodic pinning array. Our equa-
tion is scaled such that ε(r) = 1 for the bulk super-
conductor (due to the choice of the length scale), i.e.,
ε(r) = ε? = (T ?

c − T )/(Tc − T ), where T ?
c is the critical

temperature inside the inclusions and Tc the bulk crit-
ical temperature. The pinning centers of the array are
modeled by short cylinders of diameter d and height h.
Together with the value of ε?, these are the parameters
controlling the pinning properties of the defects.

Since even the pristine material (without pinning ar-
ray) typically has a finite critical current, some mecha-
nism of pinning has to be present. In the case of amor-
phous MoGe films, there are several possible vortex pin-
ning candidates. While these films are typically very
flat and homogeneous, they still have some small surface
roughness (on the order of a few nanometers) and spatial
composition variations. However, it is not known which
type of defects cause the inherent pinning. Nevertheless,
we need to take these weak pinning centers into account
to obtain a finite critical current for the simulated pris-
tine sample. We chose different types of Tc modulations
in order to match the simulated critical currents with
that of the experimental sample without periodic pin-
ning array to obtain a baseline for the pristine sample.
For all studied cases — weak random modulation near
ε = 1 everywhere, small polycrystalline Voronoi patterns
with typical size of a few coherence length, or isolated
small spherical inclusions — we could fit the pristine field
dependence of the critical current. We therefore chose,
throughout this work, to model the inherent inhomo-
geneities of MoGe by small randomly placed background
inclusions of diameter 1.5ξ = 37.5 nm with ε? = 0 (i.e.,
T ?
c = T = 5 K) occupying 1.8% of the sample volume.
In contrast to layered high-Tc materials, MoGe films

have no large-scale δ` defects due to the anisotropy of
the material, which we therefore did not include in our
model.

2.3. Critical current calculation

In order to obtain the critical current density from the
simulations, we apply a current to the system along the
x-direction. The total (normal and superconducting) in-
plane current density is then given by the expression

J = Im
[
ψ∗(∇− iA)ψ

]
−∇µ , (2)

in units of J0 = ~c2/8πeλ2ξ. For an applied current den-
sity Jext,x, we need to solve an additional ordinary dif-
ferential equation for the voltage: Jext,x = 〈Jx〉r, where
〈·〉r is the spatial average over the complete system.
(The maximum theoretical depairing current density is

Jdp = 2J0/3
√

3.) In this case, we also need to take into
account the condition ∇J = 0, resulting in the Poisson
equation,

∆µ = ∇ Im[ψ∗(∇− iA)ψ], (3)

for the scalar potential µ in addition to Eq. (1).

In order to determine the critical current value, Jc,
we dynamically adjust the external current, Jext,x(t), in
the simulation such that the electric field or voltage drop
across the sample has a predefined value. Choosing this
electrical field, Ec, sufficiently small, and averaging the
current density Jext,x(t) over different background defect
configurations, D, and time we obtain the critical current
density, Jc = 〈Jext,x〉D,t, where 〈·〉D and 〈·〉t is the aver-
age over realizations and time, respectively. Here, we use
the finite electric field criterion Ec = 10−5E0 to deter-
mine the critical current, where E0 = J0/σ is the electric
field unit. Note, that the Ec value used in the numerical
simulations is much higher than the level of dissipation
corresponding to the value of 2µV/cm, routinely used as
a practical criterion for Jc in experiments. Therefore, the
simulated critical currents are expected to be somewhat
higher than the experimental ones, but due to the large
exponent of the I-V curve near the transition, there is
no qualitative difference expected.

We average the dynamically adjusted current over 105

Ginzburg-Landau time steps and over |D| = 16 different
realizations of the initial conditions of the order param-
eter and random background inclusions. This method
gives the same result (within 2% accuracy) as calculat-
ing the current-voltage characteristics at many different
applied currents and defining Jc from E = Ec in the I-V
curve.40,42

2.4. MoGe sample and patterning technique

Since we compare experimental results on Mo0.79Ge0.21
films with our simulations, we briefly characterize these
samples here. The 50 nm thick MoGe films were divided
into 50µm× 50µm sections using photolithography and
magnetron sputtering deposition. The resulting sam-
ple has a critical temperature of Tc = 5 K, while trans-
port (I-V ) measurements were carried out at tempera-
ture T = 4.8 K. We estimate the coherence length in this
sample to be ξ(T ) = 25 nm, with an upper critical field
of Hc2(T ) = Φ0/2πξ

2(T ) = 5300 G, and depairing cur-
rent density Jdp(T ) = 0.8 MA/cm2 using typical material
parameters for MoGe. The hexagonal array of pinning
centers of diameter 150 nm and lattice constant 446 nm
was patterned using an EBL patterned nanohole mask
and reactive ion etching technique, shown in Fig. 1a.

A representation of the Tc modulation in the simula-
tion for this sample is shown in Fig. 1b, where the defects
have a diameter of d = 6ξ and ε? = −24 and the lattice
constant of l ∼ 18ξ (in dimensionless units).
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3. RESULTS

3.1. Simulations vs experiments

Figure 1c demonstrates the comparison between the
experimental and numerical Jc(B) dependence. As men-
tioned before, we add small spherical background defect
to the clean simulation system with diameter 37.5 nm,
occupying 1.8% of the sample volume in order to repro-
duce the experimental reference curve (gray diamonds)
of the pristine sample. The resulting numerical Jc(B)
dependence averaged over 16 realizations of disorder is
shown by green circles and nicely coincides with the ex-
perimental reference curve shown by gray diamonds.

The red curve in Fig. 1c demonstrates the simulated
Jc(B) dependence in the presence of a hexagonal lattice
of patterned defects. For the simulations, the diameter
of the holes is d = 150 nm and the lattice constant is
l = 446 nm mimicking the experiment. We chose the
depth of the inclusions to be h = 12 nm and the crit-
ical temperature inside the inclusions as T ?

c = 0. The
resulting simulated curve coincides well with the exper-
imental one at fields B lower than BΦ and higher than
4BΦ. Field values with are integer multiples of the match-
ing field BΦ ≡ Φ0/S = 120 G [the field generating a
single vortex per inclusion or per lattice unit cell area
S =

√
3l2/2 = (415 nm)2] are shown by vertical dashed

lines. For BΦ < B < 4BΦ the simulations show some-
what smaller critical currents compared to the experi-
ment. However, simulations reproduce almost all of the
qualitative features of the curve such as the minimum at
B = BΦ and maximum at 4BΦ. At BΦ we see a down-
kink resulting from the vortex caging effect, where an
additional vortex is pinned in the center of a hexagonal
vortex lattice cell by repulsive forces from vortices that
reside in the inclusions.13

Next, we compare the vortex dynamics near the drop
at B = BΦ. Snapshots of the order parameter amplitude
|ψ|2 are shown in Fig. 2a for B = 0.9BΦ = 108 G and
Fig. 2b for B = 1.1BΦ = 132 G, these values are marked
by yellow and blue stars in Fig. 1c, accordingly. (The
corresponding vortex dynamics can be seen in the sup-
plementary video.48) The external current is the same for
both snapshots and chosen to be J = 0.108 MA/cm2 ∼
[Jc(0.9BΦ)Jc(1.1BΦ)]1/2. In these density plots, which
are xy cross-sections at fixed z = 17 nm, an amplitude of
|ψ|2 ∼ 1 or ‘full’ superconductivity corresponds to white
regions, while the order parameter is completely sup-
pressed in black areas with |ψ|2 ∼ 0. Since the chosen
cross-section is slightly underneath the inclusion cylin-
der pieces, they appear violet with |ψ|2 ∼ 0.1 due to the
proximity effect. Since the order parameter is completely
suppressed in the vortex cores, they appear black, thus
one can distinguish occupied and unoccupied inclusions.
Figure 2a with B < BΦ and J < Jc shows four unoccu-
pied inclusions and one ‘caged’ vortex pinned by repulsive
forces at the center of the triangular cell. In Fig. 2a with
B > BΦ and J > Jc all the inclusions pin one vortex and

(a) (b)

(c) (d)

Figure 2: a–b. Snapshots of the vortex dynamics for applied
current J = 0.108 MA/cm2 and magnetic fields B = 108 G (a)
and 132 G (b) marked by yellow and blue stars in Fig. 1c. The
pink color corresponds to the superconducting state, while
black indicates the complete suppression of the superconduct-
ing order parameter. Since B is close to BΦ, almost each
pinning center contains a single vortex. The added back-
ground weak pinning centers appear as small yellow dots. In
panel a, four inclusions are not occupied by vortices (indi-
cated by green arrows) and one vortex is stacked in the cen-
ter of triangular cell (black arrow). In panel b, five vortices
are not pinned and drift. c–d. Vortex dynamics for mag-
netic field B = 317 G (c) and 480 G (d) at applied current
J = 0.0225 MA/cm2 for positions marked by the magenta
and cyan stars in Fig. 1c. In panel c, most of the inclusions
contain two vortices and vortices outside the inclusions form
a honeycomb-like lattice.

five nearly-free vortices drift between the inclusions and
produce a finite voltage across the sample.

With increasing magnetic field, the number of vortices
in between and on pinning site increases. At a fixed ap-
plied current, we compare the order parameter ampli-
tude for two values of the magnetic field B = 2.64BΦ =
317 G and B = 4BΦ = 480 G, shown in Figs. 2c and
2d, respectively. (See also the supplementary video49

showing the vortex dynamics.) The external current is
J = 0.0225 MA/cm2. The corresponding current and
magnetic field values are marked by magenta and cyan
crosses in the J-B diagram, Fig. 1c. For these two param-
eter sets, the vortex matter behavior is quite different to
Figs. 2a and 2b. Indeed, in Fig. 2c with J > Jc inclusions
pin one or two vortices, but ‘caged’ vortices can ‘squeeze’
between the inclusions generating dissipation. In Fig. 2d
with J < Jc almost all inclusions pin two vortices each
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(a) (b)

(c) (d)

10

Figure 3: Snapshots of the order parameter dynamics for
magnetic fields at the matching fields B = nBΦ = 120, 240,
360, 480 G (with n = 1 to 4 for panels a to d) and the applied
current slightly larger than the critical current J at given
field, J = Jc(B) + δJ . We chose δJ as small as possible and
adjusted the frame rate to have approximately the same vor-
tex drifting speed of vortices in all panels. These values of
fields and current are marked by colored squares in Fig. 1c.
In panel a, each inclusion pins a single vortex and after depin-
ning, the vortex lattice moves as a whole. In panel b, half the
triangular cells making up the pinscape contains one vortex.
During the depinning process, these ‘free’ vortices individu-
ally move to neighboring unoccupied cells in the pinscape.
This process results in the suppression of the critical current
by ∼ 3.5 times compared to the first matching filed. For third
and fourth matching fields shown in panels c and d, vortices
located between inclusions form an almost perfect honeycomb
lattice. Additionally, in the situation depicted in panel d, each
pinning center nominally pins two vortices, thereby increasing
the stiffness of the caged vortices, resulting in a higher critical
current compared to panel c.

and caged vortices form a honeycomb lattice.

In this regime, the repulsion between vortices at in-
clusions and caged vortices is so strong that the latter
cannot squeeze through the hexagonal pattern of inclu-
sions and consequently results in the peak at B = 4BΦ.
The vortex lattice structure at this field, corresponding
to four times the matching field, is defined by two vor-
tices per inclusion (2BΦ) and a hexagonal lattice in be-
tween them (2BΦ). This is a typical scenario: if one can
associate two caged vortices to one inclusion and the in-
clusion pins n−2 vortices one observes a peak at the n-th
matching field, B = nBΦ. For n = 3, each inclusion pins
one vortex and cages two (see e.g. blue curve in Fig. 6a
below), for n = 4 each inclusion pins two vortices (red

(a) (b)

(c) (d)

Figure 4: Snapshots of the supercurrent dynamics for the
same parameters as in Fig. 3.

curve in Fig. 1c), and for n = 5 three vortices are pinned
by an inclusion (blue curve in Fig. 5a below). Peaks ap-
pearing at n = 1 or n = 2 can be related to single or
double occupation of pinning centers.

Before n-th peak (n > 2), at the preceding (n − 1)-th
matching magnetic field, B = (n− 1)BΦ the critical cur-
rent has a smaller value, Jc([n−1]BΦ) < Jc(nBΦ). In this
regime, one caged vortex per inclusion is missing. These
vacancies can be easily occupied by neighboring caged
vortices and therefore allow vortices to move one-by-one
by the Lorentz force. This mechanism significantly re-
duces the critical current at the (n−1)-th matching mag-
netic field and is more pronounced for stronger pinning
centers.

Figures 3 and 4 as well as the supplementary videos50

show snapshots of squared order parameter |ψ|2 config-
urations and supercurrent for external current slightly
above the critical current near the first four matching
fields, J = Jc + δJ with 0 < δJ � Jc, illustrating the
different pinning behavior and dynamics. At the first
matching field (120 G, one vortex per inclusion), vortices
move mostly by jumping from one inclusion to another,
see Fig. 3a. In contrast to that, near the second match-
ing field, some doubly occupied defects lose one vortex,
which then move in between the defects, see Fig. 3b. At
the two higher fields, Figs. 3c and 3d, vortices are also
pinned in between the defects due to their repulsive in-
teraction and defects have at most two pinned vortices in
the stationary state. Above the third matching field, the
vortex dynamics is still characterized by meandering mo-
tion in between the defects, while at the fourth matching
field they move via absorption and emission at the de-
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(b) (c)

Figure 5: a. Numerical simulation of the Jc(B) dependence
on inclusion depth h and T ?c = 0. The strongest possible
inclusions (blue) are drilled through-holes h = 50 nm with
zero critical temperature. They generate peaks at B = 2BΦ

and 5BΦ. The simulated Jc(B) curve has overall higher values
compared to experimental samples with h = 12 nm (blue) and
the peak at 4BΦ disappears. b–c. Snapshots of the vortex
dynamics for an inclusion depth of h = 50 nm, applied current
J = 0.0344 MA/cm2, and magnetic fields B = 450 G (b) and
594 G (c) marked by cyan and yellow triangles in panel a.

fects, which requires larger currents than for the second
and third matching field. The higher value of the critical
current at the fourth matching field is therefore a result
of a ‘blocking’ behavior of the vortices, which are pinned
between inclusions.

3.2. Dependence on inclusion strength

Above we discussed a particular realization of the pin-
ning array, which, at least qualitatively, explains the
experimentally observed field dependence of the critical
current. However, it is instructive to study the depen-
dence of the overall behavior on the inclusion strength.
In the framework of the chosen model we can control
the strength of the inclusions by changing the depth, h,
of the inclusions, the critical temperature, T ?

c , inside the
inclusions, and their diameter, d. All three quantities

influence the pinning strength of the inclusions and one
can expect that the effects from increasing h are similar
to the effects from decreasing T ?

c .

Inclusion depth. The Jc(B) curve for different inclu-
sion depths, h, of inclusions is shown in Fig. 5a. The
green and red curves correspond to h = 0 (reference)
and h = 12 nm (25% of the 50 nm sample thickness).
The same curves were compared to experiment in Fig. 1c.
Surprisingly, the positions of the peaks in Jc(B) changes
with h. Indeed, the blue curve in Fig. 5a for h = 50 nm
demonstrates two prominent peaks at B = 2BΦ and 5BΦ

and has a local minimum near 4BΦ.

The difference between fully and partially drilled holes
in the sample can be analyzed in the same way as in
Sec. 3.1. Snapshots of |ψ|2 density plots are shown
in Fig. 5b for B = 3.75BΦ = 450 G and Fig. 5c for
B = 4.95BΦ = 594 G [magenta and cyan crosses in
Fig. 5a], see also supplementary video51 of vortex dynam-
ics. The external current is fixed at J = 0.0344 MA/cm2.
The vortex dynamics is very similar to one depicted in
Figs. 2c and 2d. The only difference is that in Fig. 5b,
each inclusion is stronger and pins three vortices. There-
fore the resulting vortex configuration gives rise to a peak
at five times the matching field, having three vortices per
inclusion and two caged vortices (as for h = 12 nm) per
pattern unit cell.

Critical temperature inside inclusion. The depen-
dence of the critical temperature T ?

c inside the inclusion
of depth h = 12 nm is shown in Fig. 6a. Naturally, in-
creasing T ?

c reduces the pinning strength and therefore
the critical current (compare red curve for T ?

c = 0 and
blue curve for T ?

c = 4.8 K). Jc(B) curves for inclusions
penetrating the entire film, i.e. h = 50 nm, are shown
in Fig. 6b. As before, we see that increasing the pinning
depth shifts the peak from B = 4BΦ (red curve in Fig. 6a)
to 5BΦ (red curve in Fig. 6b). However, increasing the
critical temperature inside the inclusions from T ?

c = 0 to
4.8 K moves the peak back to B = 4BΦ due to decreasing
pinning strength of the inclusions (blue curve in Fig. 6b).

Dependence on inclusion diameter. Figure 7a shows
the Jc(B) dependences for different inclusion diameters.
The corresponding hexagonal patterns are displayed in
Figs. 7b–7e by the same colors. As one can see, the
strength of the inclusions increases with their diameter
until their volume fraction occupies too much of the sam-
ple. Indeed, pinning centers with relatively small diam-
eter, d = 3ξ = 75 nm, generate low critical current as
shown by the blue curve in Fig. 7a. These inclusions may
pin one vortex only, thus we observe a peak at B = 3BΦ

(BΦ from pinned vortices and 2BΦ from caged vortices).
For the increased diameter, d = 6ξ = 150 nm, the peak
shifts towards 4BΦ (red curve) as was discussed above.

The larger diameter, i.e. d = 12ξ = 300 nm, creates a
stronger pinning force resulting in higher Jc (green curve
in Fig. 7a). Concurrently, the larger pinning center may
accommodate one to approximately eight vortices, de-
pending on the applied magnetic field. This behavior
is reflected by the series of peaks at each integer mul-
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Figure 6: a. Numerical Jc(B) dependence for different critical
temperatures inside inclusions T ?c with inclusion depth h =
12 nm. b. The same for through-hole inclusions, h = 50 nm.
In the case of strongest pinning T ?c = 0 one observes peaks in
Jc(B) at B = 2BΦ and 5BΦ. However, for different T ?c , the
positions of the peaks change, for example at T ?c = 4.8 K = T
one can see two strong peaks at 2BΦ and 4BΦ.

tiple of BΦ. In this regime, the system shows behavior
similar to Josephson junction arrays frustrated by mag-
netic field. However, further increasing the inclusion di-
ameter reduces Jc (see yellow curve for d = 405 nm).
The main reason for the decrease in Jc is the reduced
superconductivity in the gaps between the inclusions,
l − d = 1.6ξ = 41 nm, which in turn reduces the ef-
fective potential barrier for hopping of vortices between
inclusions. Additionally, large inclusion diameters simply
decrease the effective superconductor cross-section for su-
percurrent transport. One sees that the matching effects
becomes much weaker in this case.

To summarize, we conclude that the vortex dynamics
responsible for the critical current depends on two main
factors: (i) matching field BΦ or hexagonal pattern con-
stant l and (ii) pinning strength of the inclusion. The

(b) (c) (e)(d)

Figure 7: a. Jc(B) dependence for different inclusion diame-
ter, d. The color-coded corresponding patterns are shown in
panel b for d = 75 nm, panel c for d = 150 nm, panel d for
d = 300 nm, and panel e for d = 405 nm.

latter depends on inclusion depth h, critical tempera-
ture inside inclusion T ?

c , and inclusion diameter d. These
three quantities are responsible for the pinning force of
the inclusion and its ability to pin more than one vortex.

3.3. Influence of randomness

Finally, we discuss the influence of random displace-
ments of the inclusions from their perfect lattice posi-
tions. This gives an insight on when matching effects
become relevant and shows how possible lattice imperfec-
tions in experimental systems affect the vortex dynamics.
Let us start with the perfect hexagonal lattice [Fig. 8c]
and add some random displacement within an interval
[−r . . . r] to the x and y positions of each inclusion. The
resulting patterns are presented in Figs. 8d–8f. Jc(B)
curves are shown in Fig. 8a for h = 12 nm and in Fig. 8b
for h = 50 nm in corresponding colors.

The perfect hexagonal pattern (red lines in Figs. 8a
and 8b), i.e., pattern with well-defined matching field BΦ,
demonstrate the most non-monotonic behavior with
peaks at some integer multiples of BΦ as discussed before.
With increasing randomness in the placement of the in-
clusions, r, these peaks become less pronounced (blue).
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(c) (f)(d) (e)

Figure 8: a. Numerical Jc(B) dependence with added ran-
domness, r, to the inclusion positions, compared with ideal
hexagonal lattice with lattice constant l = 446 nm and inclu-
sion depth h = 12 nm. For ideal (r = 0, red) and slightly per-
turbed lattice (r = 75 nm, blue) one sees the drop at B = BΦ

and the peak at 4BΦ. For a randomness value of r = 188 nm,
which is comparable with the lattice constant (case of hype-
runiform order), the Jc(B) dependence becomes monotonic
(yellow). The uncorrelated inclusion position distribution (r
larger than the system size) leads to a monotonic Jc(B) de-
pendence (magenta) which is smaller compared with the pre-
vious case. b. For through-hole inclusions, h = 50 nm, the dif-
ference in critical current between hyperuniform (yellow) and
uncorellated (magenta) inclusion placements becomes more
pronounced. c. Perfect hexagonal pattern. d. Weak random-
ness. e. Hyperuniform order characterized by randomness at
short scales and homogeneity at long scales. f. Uncorrelated
random placement.

For some random placement, peaks or kinks near integer
multiples of BΦ completely disappear (yellow) and, as a
result the Jc(B) curves become more monotonic. The
values of the critical current for moderate randomness
may be both lower or higher compared to the ordered
pattern.

This order of defects is sometimes called hyperunifor-
mity and is characterized by uniform defect placement
on large scales and disordered placement on small scales.
This hyperuniform order is characterized by higher criti-
cal current compared to uncorrelated defect placement
(magenta). This result is in the agreement with re-
cent Langevin-dynamics analysis of pinning.47 In terms of
critical current, there are two main differences between
hyperuniform and uncorrelated patterns reducing Jc in
the latter: (i) the existence of large regions without pin-
ning centers and (ii) clusters of the defects located too
close to each other. Indeed, large regions of pure super-
conductor allow vortices to move freely. On the other
hand, two defects located too close to each other might
not produce a strong enough potential barrier prevent-
ing a vortex jumping from one defect to the other. A
less important effect is the higher probability of overlap-
ping defects for uncorrelated placement, which effectively
lowers the number of pinning sites.

4. CONCLUSIONS

We carried out large scale time-dependent Ginzburg-
Landau simulations of vortex dynamics in thin, hexag-
onally patterned superconducting films and reproduced
experimentally measured critical currents in patterned
MoGe thin-film samples. We studied the vortex dynam-
ics inside the sample and revealed the underlying mecha-
nisms for the critical current dependence on the magnetic
field. In particular, we demonstrated how the position of
peaks of the magnetic field dependent critical current are
influenced by the depth and diameter of the individual
defect and discussed the different types of vortex dynam-
ics near these peaks. Overall the field dependence of the
critical current strongly depends on the defect morphol-
ogy. Finally, we observed that spatial randomness in the
position of inclusions smooths the critical current curve,
i.e., increases or decreases it in certain value ranges. We
found that a hyperuniform placement of inclusions can
generate larger critical current than completely uncorre-
lated random pinscapes.
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