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The band alignment of prototypical semiconductors and insulators is investigated using first-principles cal-

culations. A dielectric-dependent hybrid functional, where the non-local Fock exchange mixing is set at the

reciprocal of the static electronic dielectric constant and the exchange-correlation is otherwise treated as in the

Perdew-Burke-Ernzerhof (PBE0) hybrid functional, is used as well as the Heyd-Scuseria-Ernzerhof (HSE06)

hybrid and PBE semilocal functionals. In addition, these hybrid functionals are applied non-self-consistently

to accelerate calculations. The systems considered include C and Si in the diamond structure, BN, AlP, AlAs,

AlSb, GaP, GaAs, InP, ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe in the zinc-blende structure, MgO in the rocksalt

structure, and GaN and ZnO in the wurtzite structure. Surface band positions with respect to the vacuum level,

i.e. ionization potentials and electron affinities, and band offsets at selected zinc-blende heterointerfaces are

evaluated as well as band gaps. The non-self-consistent approach speeds up hybrid functional calculations by

an order of magnitude, while it is shown using HSE06 that the resultant band gaps and surface band positions

are similar to the self-consistent results. The dielectric-dependent hybrid functional improves the band gaps and

surface band positions of wide-gap systems over HSE06. The interfacial band offsets are predicted with a simi-

lar degree of precision. Overall, the performance of the dielectric-dependent hybrid functional is comparable to

the GW0 approximation based on many-body perturbation theory in the prediction of band gaps and alignments

for most systems. The present results demonstrate that the dielectric-dependent hybrid functional, particularly

when applied non-self-consistently, is promising for applications to systematic calculations or high-throughput

screening that demand both computational efficiency and sufficient accuracy.

I. INTRODUCTION

The band alignment, also denoted as band lineup, is fun-
damentally and technologically important in the design and
development of electronic devices, photovoltaics, photocat-
alysts, and so forth, which utilize the surfaces or heteroint-
erfaces of semiconductors and insulators [1–7]. The surface
band alignment provides the information of the valence band
maximum (VBM) and conduction band minimum (CBM)
with respect to the vacuum level, which are the negatives of
the ionization potential (IP) and electron affinity (EA), respec-
tively. These quantities involve surface dipole contributions
and, therefore, the band positions are dependent on the sur-
face orientation, composition, atomistic and electronic struc-
ture, and adsorption or contamination, all of which affect the
surface dipole [3, 8]. Similarly, the interfacial band alignment,
which is determined by the valence and conduction band off-
sets at heterointerfaces, includes interfacial dipole contribu-
tions [1, 2], although their effects tend to be smaller than those
of the surface dipoles due to the formation of chemical bond-
ing at the interfaces. Thus, the band alignment should be dis-
cussed after specifying the characters of the surfaces and in-
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terfaces.

Computational efficiency and accuracy are both needed for
constructing band alignment theoretically as it requires sys-
tematic evaluations of IPs and EAs at surfaces or valence and
conduction band offsets at heterointerfaces. A combination
of bulk and surface or interface calculations is typically used
to reduce computational costs, where only bulk systems are
treated at a high level of approximation and they are elec-
trostatically aligned with surfaces or interfaces treated using
standard local or semilocal density functionals [9–11]. This
approach is based on the assumption that the electrostatic po-
tential is well described using such local or semilocal func-
tionals. A hybrid functional study of Si and TiO2 surfaces [12]
and a self-consistent GW study of an Si/SiO2 interface [13]
have indeed shown that the changes in the averaged electro-
static potential from the semilocal values are less than 0.1 eV
at these surfaces and interface. Another theoretical study us-
ing an approximate exact-exchange optimized effective po-
tential suggests that the asymptotic behavior of an exchange-
correlation potential at surfaces affects the electrostatic po-
tential by up to ∼0.3 eV to lower the VBM, or increase the
IP [14]. Compared with the changes in these surface contri-
butions, the shifts in the bulk band positions by hybrid func-
tionals or GW are much larger and, therefore, dominantly con-
tribute to the improvement in the predicted surface and inter-
face band positions.

Previous studies indicate that hybrid functionals such as
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the forms of Perdew-Burke-Ernzerhof (PBE0) [15–17], Heyd-
Scuseria-Ernzerhof (HSE06) [18–20], and B3LYP [21], as
well as screened exchange functionals [22], improve the
band structures of semiconductors and insulators over lo-
cal and semilocal functionals [20, 23–27]. This is also the
case with the band positions at surfaces [28] and heterointer-
faces [29, 30], but sizable differences from experimental val-
ues are still observed for the surface band positions of some
systems such as sulfides and oxides [28]. The GW approx-
imation [31] based on many-body perturbation theory does
not necessarily perform better in the prediction of band align-
ment if a standard approach using the random phase approx-
imation for W is employed [12, 28, 30]. Vertex corrections
in the self-energy lead to good agreement with experimental
IP and EA values for a variety of surfaces [28, 30], but such
calculations are demanding. A computationally concise but
sufficiently accurate approach is needed for a systematic eval-
uation of band structures and alignments, especially for high-
throughput screening of candidate materials including as-yet-
unreported ones [32–37].

The performance of hybrid functionals can be improved by
tuning the amount of the nonlocal Fock exchange because the
optimal nonlocal exchange mixing is system dependent, re-
flecting the strength of electronic screening [15, 38, 39]. It is
fixed at one-quarter in the HSE06 and PBE0 functionals on
the basis of the connection with Møller-Plesset perturbation
theory [15]. Some other hybrid functionals such as B3LYP
also employ similar amounts of nonlocal exchange mixing,
which are empirically determined to reproduce experimental
physical quantities such as atomization energies. As a result,
hybrid functionals tend to perform worse as electronic struc-
tures deviate more from those assumed in the construction of
the functionals. For instance, the band gaps of wide-gap in-
sulators such as MgO and NaCl are severely underestimated
using HSE06 and PBE0 [27, 40, 41]. HSE06 well describes
narrow or middle-sized gap semiconductors, as long as their
electronic structures are not strongly localized [20]. PBE0
overestimates the gaps of narrow-gap semiconductors while
performs better than HSE06 for wide-gap semiconductors and
insulators such as ZnO and MgO [27, 39, 41, 42]. Clearly, a
system dependent treatment of the nonlocal exchange mixing
is required for simultaneously describing diverse materials.
An empirical tuning of the mixing has been made to repro-
duce experimental band gaps, density of states, and/or other
parameters [29, 39, 40, 43], but this approach is inapplicable
to materials for which experimental values are unavailable.

It has been discussed that the nonlocal exchange mixing in
hybrid functionals can be related to the reciprocal of static
dielectric constants on the basis of the static coulomb hole
plus screened exchange approximation to the electron self-
energy [31, 38, 39]. Such parameterized functionals, denoted
as dielectric-dependent hybrid functionals, have been reported
to generally improve band gaps over standard HSE06 and
PBE0 functionals [38, 41, 44–46]. This approach does not
require the empirical parameter tuning. In addition, it is com-
putationally less expensive than GW , especially if combined
with a non-self-consistent treatment as reported by Tran [27].
Thus, the dielectric-dependent hybrid functionals would be

suited for the prediction of surface and interface band posi-
tions as well as bulk band structures, but their performance in
the band alignment has not been examined systematically for
inorganic materials.

In the present study the band alignment of semiconductors
and insulators is investigated using dielectric-dependent hy-
brid functionals. Prototypical systems in the diamond, zinc-
blende, rocksalt, and wurtzite structures are considered for
discussing their performance comparatively with the HSE06
hybrid functional. The effect of self-consistency on the pre-
diction of the band structures and alignments is also discussed.

II. METHODS

A. Dielectric-dependent hybrid functionals

In the formalism of the generalized Kohn-Sham
scheme [47], the nonlocal exchange-correlation poten-
tial of a full-range hybrid functional is given as

vxc(r,r
′) = avnl

x (r,r
′)+ (1− a)vl

x(r)+ vc(r) (1)

where vnl
x (r,r

′) and vl
x(r) denote nonlocal and (semi-) local

exchange potentials, respectively, and vc(r) is a correlation
potential. In PBE0, the nonlocal exchange mixing parameter
a is set at one-quarter and the exchange and correlation po-
tentials of the Perdew-Burke-Ernzerhof semilocal functional
(PBE) [48] are used for vl

x(r) and vc(r) [15–17]. HSE06 di-
vides the exchange potential into short-range and long-range
terms, where one-quarter of nonlocal exchange is mixed only
in the former and the exchange-correlation potential is other-
wise treated using PBE [18–20].

By comparing Eq. (1) with the electron self-energy in
the static coulomb hole plus screened exchange approxima-
tion [31], the nonlocal exchange mixing parameter in the full-
range hybrid functional is given as a = ε

−1
∞

, where ε∞ is the
electronic contribution to the static dielectric constant of the
system considered [38, 44]. Eq. (1) with a = ε

−1
∞

thus con-
stitutes a full-range dielectric-dependent hybrid functional.
Range-separated dielectric-dependent hybrid functionals have
also been proposed [45, 46], with a slightly improved perfor-
mance over full-range functionals [46]. We use the full-range
form in the present study.

In principle, the non-local exchange mixing in the
dielectric-dependent hybrid functional can be determined self-
consistently so that the mixing value becomes consistent with
the dielectric constant evaluated using that functional [44].
However, the use of dielectric constants from PBE or PBE0
calculations has previously been shown to provide reasonably
good performance in the evaluation of band gaps while re-
ducing computational costs [44]. We take this approach in
the present study as we aim at establishing a computation-
ally concise approach to the prediction of band structures and
alignments.

Furthermore, non-self-consistent hybrid functional calcu-
lations can be effectively used when the self-consistency
does not change wavefunctions significantly from the starting
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ones [27]. In the present study the eigenvalues were obtained
by diagonalizing the Hamiltonian matrix once, where the ma-
trix elements were constructed using PBE wavefunctions and
charge density. This non-self-consistent scheme is different
from the one reported by Tran, where only the diagonal terms
of the Hamiltonian matrix are considered [27]. The non-self-
consistent approach significantly speeds up hybrid functional
calculations by a factor of ∼10. It is especially advantageous
in the evaluation of band alignments; the bulk eigenvalues
can be exactly aligned with those of surfaces and interfaces
treated using PBE as the electrostatic potential remains un-
changed from that of PBE. The band positions at the surfaces
and interfaces can thus be determined at the level of the non-
self-consistent hybrid functional approach without expensive
hybrid functional calculations of surfaces and interfaces. In
combination with the automated generation of surface and in-
terface simulation models (e.g., Ref. [49]), non-self-consistent
hybrid functional calculations would allow us to do systematic
study or high-throughput screening based on the band align-
ment.

B. Computational details

The calculations were performed using the projector
augmented-wave (PAW) method [50] as implemented in the
VASP code. [51–53] The full-range dielectric-dependent hy-
brid functional as well as the HSE06 and PBE0 hybrid func-
tionals and the PBE semilocal functional were used depend-
ing on the objectives as described later; in many cases, the
hybrid functionals were applied non-self-consistently. The ef-
fect of spin-orbit coupling, which was previously evaluated
using HSE06 [28], was considered as a correction to the band
gap and the VBM (or IP) in all the results present in this ar-
ticle. A plane wave cutoff energy of 550 eV was used in the
calculations.

Prototypical systems that are crystallized in simple struc-
tures and well-studied experimentally and/or theoretically are
considered: C and Si in the diamond structure, BN, AlP, AlAs,
AlSb, GaP, GaAs, InP, ZnS, ZnSe, ZnTe, CdS, CdSe, and
CdTe in the zinc-blende structure, MgO in the rocksalt struc-
ture, and GaN and ZnO in the wurtzite structure. This ex-
cludes materials for which PBE gives no or rather narrow
band gaps to avoid inaccurate band structures by non-self-
consistent hybrid functional calculations on top of PBE or
inaccurate dielectric constants obtained as described below
using PBE. Experimental lattice parameters summarized in
Ref. [28] were used to directly compare the theoretical band
gaps, IPs, EAs with experimental values. k point meshes of
6× 6× 6 for diamond, zinc-blende, and rocksalt crystals and
6× 6× 4 for wurtzite crystals were employed in the bulk cal-
culations.

To determine the non-local exchange mixing in the
dielectric-dependent hybrid functional, the electronic contri-
butions of the static dielectric constants were evaluated on the
basis of density functional perturbation theory (DFPT) [54,
55], using PBE with the random phase approximation or local-
field effects. A finite electric field approach [56] was also

employed in combination with PBE0, which includes local-
field effects. The number of k point meshes in these cal-
culations was increased at least by more than two times in
all the directions from the aforementioned mesh so as to at-
tain the convergence of dielectric constants within 0.2 with
respect to the multiplication of the aforementioned k mesh.
When PBE gives quite narrow band gaps, this convergence
criterion requires a finer k mesh by up to 4 times in the DFPT
calculations, while the PBE0 dielectric constants from the fi-
nite electric field approach tend to converge faster. In ad-
dition, relatively shallow semicore Zn-3d states of Zn com-
pounds are underbound and hybridized too much with va-
lence anion p states when treated using PBE [28]. This is
most serious in ZnO among the compounds considered in the
present study [57]. The Zn-3d states were therefore corrected
using the PBE+U approach when dielectric constants were
evaluated, where Dudarev’s formulation [58] was used with
Ueffective(=U − J) = 5 eV.

Nonpolar surfaces and interfaces were modeled using su-
percells with slab and superlattice geometries, respectively.
The considered surfaces are (111) 2×1 for C and Si in the di-
amond structure, (110) for the zinc-blende crystals, (100) for
MgO in the rocksalt structure, and (112̄0) for GaN and ZnO in
the wurtzite structure. The (110) surfaces of the zinc-blende
crystals were treated using 14 layer thick slabs separated by
vacuum region with the same thickness, which amounts to
18-39 Å depending on the system. 6× 4× 1 k points were
taken in these surface calculations. Similar slab and vacuum
thicknesses and k-point densities were used for the other sur-
faces. The in-plane lattice parameters were fixed to the PBE-
optimized bulk values and the internal coordinates were re-
laxed using PBE. Subsequently, PBE calculations were con-
ducted without further atomic relaxation after scaling the lat-
tice constants to the experimental values. The IPs and EAs
were then evaluated in conjunction with bulk results, respec-
tively, as

I = εvac-ref − εVBM-ref (2)

and

A = εvac-ref − εCBM-ref (3)

where εvac-ref is the energy difference between the vacuum
level and the electrostatic reference level in a bulk-like region
of a surface supercell. The reference level was determined by
averaging the local Kohn-Sham potential within PAW spheres
over atomic sites located in a region far from the surface
within a thickness of one-third of the slab. εVBM-ref (εCBM-ref)
is the energy difference between the VBM (CBM) and the
electrostatic reference level from bulk calculations. This con-
tribution was evaluated using PBE or non-self-consistent hy-
brid functional calculations on top of PBE. In previous stud-
ies, macroscopically averaged electrostatic potential in the
bulk region has been widely used as the electrostatic refer-
ence level [10, 59]. The typical change in the IPs and EAs
is less than 0.03 eV and at most 0.09 eV for the 18 systems
considered here when this approach is taken. The macroscopi-
cally averaged electrostatic potential is also used in the present
study to discuss the effects of self-consistency in Sec. III A.
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Nonpolar (110) heterointerfaces between selected zinc-
blende crystals were considered using supercells with 11 lay-
ers for each crystal and 6×4×1 k points. The in-plane lattice
parameters were fixed to the average of the PBE lattice pa-
rameters of the two constituent crystals and the out-of-plane
lattice parameter and internal coordinates were relaxed using
PBE. Natural (unstrained) interfacial band offsets at experi-
mental lattice constants were obtained using a procedure re-
ported in Ref. [60], where the results for the strained interface,
strained and unstrained surfaces, and unstrained bulk systems
were combined. More details in the surface and interface cal-
culations and the derivation of IPs, EAs, and interfacial band
offsets have been reported in Refs. [30, 60, 61].

III. RESULTS AND DISCUSSION

A. Effects of self-consistency

The effects of self-consistency are investigated using the
results of self-consistent and non-self-consistent HSE06 cal-
culations for the identical bulk and surface cells. As shown
in Fig. 1, the differences in the band gap between the self-
consistent and non-self-consistent cases are overall small,
∼0.1 eV or less. Figure 2 compares the band structures
of Si and ZnO obtained using self-consistent and non-self-
consistent HSE06 calculations. The self-consistent and non-
self-consistent results are almost identical for Si. In the case
of ZnO, the Zn-3d states located around −6 eV are slightly
deeper in the non-self-consistent result. The band structure is
otherwise similar. The non-self-consistent approach appears
to work well for the systems considered here; however, it
should be carefully used in the cases where band inversion
occurs at self-consistent steps from PBE to hybrids.

As in the case of the band gaps, the self-consistency does
not significantly affect the VBM and CBM with respect to
the vacuum level, i.e. the negatives of the IP and EA, re-
spectively. The differences between the self-consistent and
non-self-consistent values are typically ∼0.1 eV. Exceptions
are MgO and ZnO, which exhibit ∼0.4 eV differences, and
GaN with a ∼0.2 eV difference. Figure 1 also shows the
differences in the slab electrostatic potential between self-
consistent and non-self-consistent cases: the former and the
latter have been determined at the HSE06 and PBE levels,
respectively. The results imply that the differences between
the self-consistent and non-self-consistent IP values for MgO
and GaN are mostly attributed to the differences in the slab
electrostatic potential originating from the changes in surface
dipoles. In ZnO, about half the difference appears to come
from this contribution. The charge density, and therefore elec-
trostatic potential as well, is reconstructed relatively largely at
the self-consistent steps in these systems. This can be recog-
nized in Fig. 3, where the differences in the charge density
between the self-consistent and non-self-consistent results are
visualized for the BN, MgO, and ZnO surfaces. In the case of
BN almost no difference is found, while discrepancies are no-
ticeable at the O sites in MgO and both Zn and O sites in ZnO.
Relatively large changes by self-consistency in these oxides

can be attributed to the large changes in the band structures,
in particular band gaps, which affect the orbital hybridization
and thereby the charge transfer from cations to anions. In ad-
dition, the Zn-3d and O-2p states are energetically close in
the valence band of ZnO, and the degree of their hybridiza-
tion changes with self-consistency, as also recognized in the
band structures shown in Fig. 2. These changes in the charge
density prevail throughout the slabs including bulk regions.
Such a change in the bulk charge density necessarily changes
the surface charge density and therefore surface dipoles [63].
This effect is likely to be dominant in MgO and ZnO since
the degree of the charge density reconstruction at these sur-
faces is similar to the respective bulk regions; ZnO shows
an anisotropic distribution of the charge density difference
around the surface O sites, which should also contribute to
the change in the surface dipole.

In a previous study ∼0.4 eV differences have been found
in the IPs of MgO and ZnO between GW0 on top of PBE
and GW TC−TC on top of HSE06, while the results for other
compound semiconductors are similar between the two ap-
proaches [28]. This would also be explained by the different
treatment of Hartree potential, PBE or HSE06.

In summary, the self-consistency affects band gaps by only
∼0.1 eV for all materials considered here, while the IP and
EA by ∼0.4 eV for MgO and ZnO, ∼0.2 eV for GaN, and
∼0.1 eV for the others. This margin of error should be con-
sidered in the discussion on the band alignment.

B. Dielectric constants and band gaps

The dielectric constants are discussed here as they play
essential roles in the dielectric-dependent hybrid functional.
The calculated static electronic dielectric constants are listed
in Table I. The PBE0 dielectric constants are generally close
to the experimental values. Following a previous study by
Skone et al. [44], local-field effects are included in the eval-
uation: the dielectric constants are generally underestimated
without local-field effects, leading to the overestimation of
band gaps by the dielectric-dependent hybrid functional. The
dielectric constants calculated using PBE(+U) tend to be over-
estimated, mainly because of the band gap underestimation.
PBE(+U) with the random phase approximation (RPA) yields
smaller values than that with local-field effects, and the resul-
tant dielectric constants are closer to the PBE0 and experimen-
tal values. This fortuitous tendency can explain the success
of GW calculations using W from PBE(+U) with the RPA,
which yield similar results to those using vertex corrected,
self-consistently determined W [64].

In the present study we consider the dielectric constants ob-
tained using PBE(+U) with the RPA in addition to PBE0 with
local-field effects. The former requires much lower computa-
tional costs while performs reasonably well in the prediction
of band gaps and alignments as shown below.

Table II and Figure 4 show band gaps obtained using var-
ious approximations. PBE significantly underestimates the
band gaps of all systems, which is a tendency well recog-
nized. The HSE06 hybrid functional improves the band gap
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calculations. The origin of the energy is set at the valence band maximum. Band paths reported in Ref. [62] are used.

prediction. Still, underestimation is obvious for BN, ZnO and
MgO with wide band gaps; here, the non-self-consistent ap-
proach is taken, but self-consistency does not significantly af-
fect the band gaps as discussed in Sec. III A. The dielectric-
dependent hybrid functionals, which are also used non-self-
consistently, yield band gaps closer to the experimental val-

ues than HSE06 for such wide gap systems; the band gaps are
not significantly affected by the choice of the dielectric con-
stants, the values using PBE(+U) with the RPA or PBE0 with
local-field effects. On the other hand, the performance of the
dielectric-dependent hybrid functionals is comparable with
HSE06 for narrow gap systems. An exception is GaAs for
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faces. Note that the charge density is determined using HSE06 in the

self-consistent approach, while treated at the PBE level in the non-

self-consistent case.

which the underestimation of the band gap is more enhanced
with the dielectric-dependent hybrid functionals. These over-
all tendencies are consistent with previous reports by Mar-
ques et al. [38], Skone et al. [44], and Gerosa et al. [41].

C. Band alignment at surfaces

Figure 5 shows the VBM and CBM with respect to the vac-
uum level, which are negatives of the IP and EA, respectively.
Our previous GW0@PBE results [28] are also included for
comparison, which are based on the same PBE calculations
as in the present study; the VBM and CBM predicted by GW

are much improved with self-energy vertex corrections, but
such results are so far available for only those obtained on top
of HSE06 [28, 30]. The experimental VBM, or IP, reported
for the nonpolar surfaces that have the orientations and recon-
structed structures identical to those considered in our calcula-
tions are also shown [66, 67]; an exception is GaN, for which
experimental band positions for polar {0001} surfaces are in-
stead presented because values for nonpolar surfaces are not
available. The experimental CBM is estimated by adding an
experimental band gap to the VBM, where the experimental
values listed in Table II are used.

TABLE I. Static electronic dielectric constants obtained us-

ing PBE(+U) with the random phase approximation (εPBE-RPA
∞

),

PBE(+U) with local-field effects (εPBE
∞

), and PBE0 with local-field

effects (εPBE0
∞

). Experimental values summarized in Ref. [65] are

also shown. Mean absolute errors (MAEs) with respect to the exper-

imental values are listed on the bottom line.

ε
PBE-RPA
∞

ε
PBE
∞

ε
PBE0
∞

Experiment

C 5.5 5.9 5.4 5.7

Si 12.1 12.9 10.9 11.6

BN 4.4 4.6 4.4 4.46

AlP 7.5 8.1 7.1 7.4

AlAs 8.6 9.3 8.0 8.16

AlSb 10.7 11.5 9.8 9.88

GaN 5.5 5.8 5.0 5.4

GaP 9.7 10.4 8.7 8.8

GaAs 12.9 13.7 10.1 10.86

InP 10.3 11.0 8.7 9.9

MgO 3.0 3.1 2.9 3.1

ZnO 4.8 5.0 3.6 3.7

ZnS 5.6 5.9 5.1 5.1

ZnSe 6.7 7.2 5.9 5.9

ZnTe 8.3 8.9 7.2 6.9

CdS 5.7 6.1 5.1 5.4

CdSe 7.2 7.6 5.9 6.2

CdTe 8.1 8.6 6.9 7.1

MAE 0.7 1.1 0.3

The experimental values show a spread, in particular for C
and CdS. This would be partly due to the sensitivity of the
band positions to the characters of surfaces, not only orienta-
tions and reconstructed structures but also chemistry and ad-
sorption. This makes a direct comparison between experiment
and theory difficult in some cases. Nevertheless, it is clear
that PBE yields systematically too high VBM with respect
to the vacuum level, or too small IP. The VBM of most sys-
tems is slightly too high with the hybrid functionals, while the
GW0@PBE values are too low in a similar magnitude. In this
sense, the hybrid functionals can predict the VBM positions
almost on par with GW0@PBE. Among the hybrid function-
als, noticeable differences are found for MgO and ZnO. Non-
self-consistent HSE06 tends to yield the VBM higher than the
experimental value while the values with dielectric-dependent
hybrid functionals are lower. As discussed in Sec. III A,
the self-consistent HSE06 calculations shows ∼0.4 eV higher
VBMs than the non-self-consistent results for MgO and ZnO,
deviating more from the experimental values. Assuming the
same tendency with dielectric-dependent hybrid functionals,
the agreement with experiment would become much better
than HSE06 when treated self-consistently.

Turning to the CBM, PBE shows good agreement with ex-
periment, except for GaN, MgO, and ZnO, for which the
CBMs are too deep with respect to the vacuum level. The
hybrid functionals improve the CBM of these materials. It
appears that the CBM from the hybrid functionals are better
than GW0@PBE. Among the hybrid functionals considered,
the dielectric-dependent hybrid functionals yield better agree-
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TABLE II. Band gaps obtained using various approximations compared with reported GW0@PBE and experimental values (in eV). nsc-

hybrid(εPBE-RPA
∞

) and nsc-hybrid(εPBE0
∞

) denote non-self-consistent dielectric-dependent hybrid functionals with static electronic dielectric

constants obtained using PBE(+U) with the RPA and PBE0 with local-field effects, respectively. The GW0@PBE and experimental values are

collected from Ref. [28]. Mean absolute errors (MAEs) with respect to the experimental values are listed on the bottom line.

PBE nsc-HSE06 nsc-hybrid(εPBE-RPA
∞

) nsc-hybrid(εPBE0
∞

) GW0@PBE Experiment

C 4.13 5.23 5.50 5.53 5.81 5.48

Si 0.55 1.12 0.95 1.01 1.21 1.17

BN 4.46 5.75 6.37 6.34 6.66 6.25

AlP 1.56 2.22 2.28 2.32 2.62 2.45

AlAs 1.32 1.91 1.90 1.94 2.35 2.16

AlSb 0.99 1.42 1.39 1.42 1.76 1.65

GaN 1.93 3.14 3.32 3.44 3.48 3.4

GaP 1.62 2.25 2.16 2.22 2.40 2.26

GaAs 0.40 1.21 0.84 0.96 1.21 1.52

InP 0.69 1.41 1.21 1.31 1.33 1.42

MgO 4.73 6.45 8.10 8.15 8.03 7.8

ZnO 0.80 2.60 3.36 3.50 3.40 3.4

ZnS 2.09 3.29 3.51 3.56 3.72 3.6

ZnSe 1.18 2.24 2.25 2.32 2.66 2.7

ZnTe 0.96 1.87 1.74 1.80 2.15 2.25

CdS 1.22 2.21 2.35 2.51 2.35 2.42

CdSe 0.57 1.46 1.39 1.57 1.60 1.73

CdTe 0.49 1.27 1.17 1.28 1.44 1.45

MAE 1.30 0.34 0.23 0.19 0.14
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FIG. 4. (Color online) Band gaps obtained using various approximations compared with reported GW0@PBE and experimental values. nsc-

hybrid(εPBE-RPA
∞

) and nsc-hybrid(εPBE0
∞

) denote non-self-consistent dielectric-dependent hybrid functionals with static electronic dielectric

constants obtained using PBE(+U) with the RPA and PBE0 with local-field effects, respectively. The GW0@PBE and experimental values are

collected from Ref. [28].
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FIG. 5. (Color online) (a) CBM and (b) VBM with respect to the vacuum level (negatives of the IP and EA, respectively) obtained using

various approximations compared with reported GW0@PBE and experimental values. nsc-hybrid(εPBE-RPA
∞

) and nsc-hybrid(εPBE0
∞

) denote

non-self-consistent dielectric-dependent hybrid functionals with static electronic dielectric constants obtained using PBE(+U) with the RPA

and PBE0 with local-field effects, respectively. The GW0@PBE values are collected from Ref. [28]. The experimental values are for the

nonpolar surfaces identical to those considered in the present study [66, 67]: an exception is GaN, for which experimental values for polar

{0001} surfaces are shown. The experimental CBM is estimated by adding a reported experimental band gap to the VBM (see Table II).

ment with experiment than HSE06 for MgO and ZnO. This
is partly due to the improvement in the band gap prediction;
as shown in Sec. III B, non-self-consistent HSE06 calcula-
tions underestimate the band gaps of MgO and ZnO by 1.3
and 0.9 eV, respectively, while the dielectric-dependent hy-
brid functionals reproduce the band gap with errors of 0.3
and 0.2 eV. This superior feature of the dielectric-dependent
hybrid functionals would, however, be weakened with self-
consistency, where the CBMs of MgO and ZnO are raised by
∼0.4 eV in the case of the HSE06 results shown in Fig. 1.

Overall, the performance of the non-self-consistent hybrid
functionals, in particular, dielectric-dependent ones are re-
markable. It is also noted that they are advantageous than GW

in terms of computational costs, especially when PBE-RPA
dielectric constants are used.

D. Band alignment at heterointerfaces

The calculated natural valence band offsets at zinc-blende
(110) heterointerfaces are listed in Table III, along with ex-
perimental values. Interfaces with small lattice misfits be-
tween the constituent crystals (less than 0.5%) are selected to
reduce the ambiguity associated with possible strain effects.
The experimental values listed in Table III are not necessarily
for the (110) heterointerfaces considered in the present calcu-
lations. In addition, atomically flat interfaces without inter-
diffusion have been modeled in the present study, while ac-
tual interfaces may include misfit dislocations to relieve the
strain [76–78], reconstruction at the atomic level, and/or in-
terdiffusion [79]. Still, a comparison between theory and ex-
periment would be meaningful, assuming that these effects on
interfacial band offsets are not significant at the considered
interfaces comprised of the isostructural crystals with small



9

TABLE III. Natural valence band offsets at zinc-blende (110) heterointerfaces obtained using various approximations compared with reported

GW0@PBE and experimental values (in eV). Positive values mean that the valence band maximum of semiconductor A is higher than that

of semiconductor B at the A/B heterointerface. nsc-hybrid(εPBE-RPA
∞

) and nsc-hybrid(εPBE0
∞

) denote non-self-consistent dielectric-dependent

hybrid functionals with static electronic dielectric constants obtained using PBE(+U) with the RPA and PBE0 with local-field effects, respec-

tively. The GW0@PBE values are collected from Ref. [30] while the experimental values are from Refs. [68–75]. Note that the experimental

values are not necessarily for the (110) heterointerfaces.

Interface (A/B) PBE nsc-HSE06 nsc-hybrid(εPBE-RPA
∞

) nsc-hybrid(εPBE0
∞

) GW0@PBE Experiment

GaP/AlP 0.46 0.48 0.58 0.56 0.56 0.57 [68], 0.43 [69]

GaAs/AlAs 0.45 0.43 0.57 0.52 0.56 0.40 [70], 0.15 [70], 0.55 [71]

GaAs/ZnSe 0.65 0.92 1.08 1.06 1.20 0.96 [72], 1.10 [72]

AlSb/ZnTe 0.24 0.46 0.44 0.45 0.55 0.42±0.07 [73], 0.35±0.11 [74]

ZnTe/CdSe 0.62 0.75 0.74 0.82 0.77 0.64±0.07 [75]

lattice mismatches.

Compared with the surface band positions, the dependence
on the approximation is smaller due to the cancellation ef-
fects between the two interface constituents. Therefore, even
PBE gives reasonable values with some exceptions. Although
the experimental values are not necessarily for the (110) in-
terfaces and show a spread, the hybrid functionals appear
to yield values closer to experiment. Again, their perfor-
mance is almost on par with GW0@PBE. For the interface
constituents considered here, the differences between the non-
self-consistent HSE06 and dielectric-dependent hybrid func-
tionals are small for both band gaps and surface VBM po-
sitions. As a result, similar values are obtained for the va-
lence band offsets. The situation would, however, be different
when wide gap oxides such as MgO and ZnO are involved,
for which improved band gaps by dielectric-dependent hybrid
functionals are expected to provide better predictions of the
valence and/or conduction band offsets.

IV. CONCLUSIONS

The band gaps, surface band positions, and interfacial
band offsets of 18 prototypical semiconductors and insulators
have been investigated using hybrid functionals. The self-
consistent and non-self-consistent HSE06 calculations yield
band gaps close to each other for all the systems consid-
ered: the differences are only ∼0.1 eV. Surface band posi-
tions also agree at a similar level, except for ZnO and MgO
with ∼0.4 eV differences and GaN with a ∼0.2 eV differ-

ence. Apart from these discrepancies, the non-self-consistent
approach is advantageous as it can greatly reduce computa-
tional costs.

The performance of dielectric-dependent hybrid function-
als, where the non-local Fock exchange mixing is set at the
reciprocal of static electronic dielectric constants, has been
investigated for predicting band gaps and alignments. Im-
provements over the HSE06 hybrid functional are found for
the band gaps and surface band alignments of wide-gap sys-
tems. The band offsets at selected heterointerfaces are pre-
dicted with a similar degree of precision. The present study
focuses on prototypical semiconductors and insulators that
have relatively simple band structures for benchmarking pur-
poses, while previous dielectric-dependent hybrid functional
studies have demonstrated good descriptions of electronically
more complex systems such as 3d transition-metal oxides as
well [27, 41, 44]. Thus, the dielectric-dependent hybrid func-
tional in conjunction with the non-self-consistent treatment is
suited for high-throughput calculations that require both effi-
ciency and accuracy.
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[30] Y. Hinuma, A. Grüneis, G. Kresse, and F. Oba, Phys. Rev. B

90, 155405 (2014).

[31] L. Hedin, Phys. Rev. 139, A796 (1965).

[32] S. Curtarolo, G. L. W. Hart, M. B. Nardelli, N. Mingo, S. San-

vito, and O. Levy, Nat. Mater. 12, 191 (2013).

[33] I. E. Castelli, T. Olsen, S. Datta, D. D. Landis, S. Dahl, K. S.

Thygesen, and K. W. Jacobsen, Energy Environ. Sci. 5, 5814

(2012).

[34] G. Hautier, A. Miglio, G. Ceder, G.-M. Rignanese, and

X. Gonze, Nat. Commun. 4, 2292 (2013).

[35] A. Zakutayev, A. J. Allen, X. Zhang, J. Vidal, Z. Cui, S. Lany,

M. Yang, F. J. DiSalvo, and D. S. Ginley, Chem. Mater. 26,

4970 (2014).

[36] R. Gautier, X. Zhang, L. Hu, L. Yu, Y. Lin, T. O. L. Sunde,

D. Chon, K. R. Poeppelmeier, and A. Zunger, Nat. Chem. 7,

308 (2015).

[37] Y. Hinuma, T. Hatakeyama, Y. Kumagai, L. A. Burton, H. Sato,

Y. Muraba, S. Iimura, H. Hiramatsu, I. Tanaka, H. Hosono, and

F. Oba, Nat. Commun. 7, 11962 (2016).

[38] M. A. L. Marques, J. Vidal, M. J. T. Oliveira, L. Reining, and

S. Botti, Phys. Rev. B 83, 035119 (2011).

[39] A. Alkauskas, P. Broqvist, and A. Pasquarello, phys. status so-

lidi (b) 248, 775 (2011).

[40] W. Chen, C. Tegenkamp, H. Pfnür, and T. Bredow, Phys. Rev.

B 82, 104106 (2010).

[41] M. Gerosa, C. E. Bottani, L. Caramella, G. Onida,

C. Di Valentin, and G. Pacchioni, Phys. Rev. B 91, 155201

(2015).

[42] F. Oba, M. Choi, A. Togo, and I. Tanaka, Sci. Technol. Adv.

Mater. 12, 034302 (2011).

[43] F. Oba, A. Togo, I. Tanaka, J. Paier, and G. Kresse, Phys. Rev.

B 77, 245202 (2008).

[44] J. H. Skone, M. Govoni, and G. Galli, Phys. Rev. B 89, 195112

(2014).

[45] T. Shimazaki and T. Nakajima, J. Chem. Phys. 141, 114109

(2014).

[46] J. H. Skone, M. Govoni, and G. Galli, Phys. Rev. B 93, 235106

(2016).

[47] A. Seidl, A. Görling, P. Vogl, J. A. Majewski, and M. Levy,

Phys. Rev. B 53, 3764 (1996).

[48] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,

3865 (1996).

[49] Y. Hinuma, Y. Kumagai, F. Oba, and I. Tanaka, Comput. Mater.

Sci. 113, 221 (2016).
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