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The magnetic correlations within the cuprates have undergone intense scrutiny as part of efforts
to understand high temperature superconductivity. We explore the evolution of the magnetic corre-
lations along the nodal direction of the Brillouin zone in La2−xSrxCuO4, spanning the doping phase
diagram from the anti-ferromagnetic Mott insulator at x = 0 to the metallic phase at x = 0.26.
Magnetic excitations along this direction are found to be systematically softened and broadened
with doping, at a higher rate than the excitations along the anti-nodal direction. This phenomenol-
ogy is discussed in terms of the nature of the magnetism in the doped cuprates. Survival of the
high energy magnetic excitations, even in the overdoped regime, indicates that these excitations are
marginal to pairing, while the influence of the low energy excitations remains ambiguous.

INTRODUCTION

The past several decades have witnessed a consider-
able scientific effort within the condensed matter com-
munity to unravel the true origin of high temperature
superconductivity (HTS) [1–4]. Due to the proximity of
antiferromagnetic order and HTS in the doping phase di-
agram, as shown in Fig. 1(a), the relationship between
magnetism and superconductivity has been discussed ex-
tensively. This even includes postulating that supercon-
ducting pairing is driven by the exchange of magnetic ex-
citations, although putting such a scenario on firm the-
oretical footing remains very challenging [5]. What is
clear, however, is that the Coulomb repulsion, U , plays a
dominant role in the formation of the anti-ferromagnetic
(AFM) insulating state in the cuprate parent compounds
and that this leads to the emergence of well-defined spin
wave or magnon excitations [6–14]. These disperse up
to very high energies (about 300 meV) along the anti-
nodal direction in the Brillouin zone [(0, 0) → (0.5, 0)
in commonly used tetragonal notation] and up to com-
parable but somewhat lower energies along the nodal
[(0, 0) → (0.25, 0.25)] direction. Such a large energy
scale would naturally be expected to play a central role
over a large fraction of the phase diagram. There have
consequently been extensive efforts to characterize the
nature of magnetism across the cuprate phase diagram
[11, 12, 15–29], which have demonstrated that substan-
tial magnetic spectral weight persists to at least optimal
doping (i.e. a hole concentration x ≈ 0.15). A more
controversial issue is what happens for the overdoped

cuprates with hole concentration 0.15 <∼ x <∼ 0.3. In this
doping range inelastic neutron scattering (INS) indicates
that the energy, ω, and wavevector, Q, integrated mag-
netic spectral weight is strongly reduced [30]. This even
encompasses discussions of whether magnetism might ef-
fectively disappear completely in the overdoped regime
and whether this might be the reason that HTS is sup-
pressed at a similar doping level [3, 31, 32]. More exten-
sive studies of the overdoped cuprates, and how their ex-
citations relate to the magnons in the parent compounds,
are therefore desirable. In recent years resonant inelastic
x-ray scattering (RIXS) [12, 33] has emerged as a com-
plementary tool to INS in the investigation of magnetic
excitations in the cuprates [11, 12, 21, 23–26, 28, 29].
In particular, RIXS offers the possibility to probe very
small sample volumes [10] and to perform more extensive
doping dependence as the large single crystal samples re-
quired for INS are often highly challenging to produce
for overdoped cuprates.

In this article, we use RIXS to investigate
La2−xSrxCuO4 (LSCO) along the nodal direction
of the Brillouin zone in samples spanning the AFM
insulating to overdoped superconducting phases in
order to unravel the doping systematics of the magnetic
excitations. Combined with our previous equivalent
data along the anti-nodal direction [10, 11], this consti-
tutes an extensive characterization of the high energy
magnetic excitation spectrum throughout the LSCO
phase diagram. In this article we will refer to damped
magnetic excitations that evolve from the magnon
excitation in the insulator as paramagnons. Our use
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FIG. 1. a) Doping phase diagram for LSCO. b) RIXS geom-
etry used for the experiment. c) Plot of the cuprate Brillouin
zone. Red squares represent Q-points measured for this re-
port, purple circles for previous work by this group [11]. The
green semi-circles represent the regions of reciprocal space ac-
cessible to Cu L3-edge RIXS. d) RIXS spectra for each doping
at Q = (0.24, 0.24) showing dd-excitation and paramagnon
features. Data are offset vertically for clarity. The grey line
denotes the zero-energy loss position.

of this term is not meant to imply anything about the
presence or absence of magnetic order. We find a gradual
softening and broadening of the paramagnon feature
with doping. The high-energy magnetic excitations
studied here do not show any strong changes that
correlate with the suppression of superconductivity in
the overdoped regime, consistent with previous work
asserting that these modes have a marginal role in
HTS [11]. This is notably different from the low-energy
AFM correlations around (0.5, 0.5) which are strongly
modified in the overdoped regime. Qualitatively similar
differences between the nodal and anti-nodal directions
are captured by calculations of the magnetic excitation
spectrum based on itinerant quasi-particles, which is
discussed in terms of conceptualizing magnetism in the
overdoped cuprates [23, 34–37].

EXPERIMENTAL METHODS

Thin film LSCO samples were synthesized on single-
crystal LaSrAlO4 substrates with atomic layer-by-layer
molecular beam epitaxy [38]. Typical surface root-mean-
square roughnesses, as determined by atomic force mi-
croscopy, were about 3 Å, which helps to reduce the

contribution of diffuse elastic scattering to the RIXS
spectra. The sample thicknesses for x = 0, 0.05, 0.11,
0.16 and 0.26, were 53, 79, 99, 53 and 99 nm respec-
tively, as determined by measuring the Kiessig fringes
in x-ray diffraction, consistent with counting the layers
during the growth process. The RIXS data presented
were collected using the SAXES spectrometer [39] at
the ADRESS beamline [40] of the Swiss Light Source
at the Paul Scherrer Institute. Further checks were per-
formed at the AGS-AGM spectrometer [41] at BL05A1
– the Inelastic Scattering Beamline at the National Syn-
chrotron Radiation Research Center, Taiwan. Energy
resolution measurements carried out on carbon tape im-
mediately before sample measurements gave an overall
energy resolution of ∼ 120 meV full width at half max-
imum (FWHM) and served as a reference for the zero
energy loss calibration. All data shown were collected at
low temperature (approximately 20 K).

Figure 1(b) displays the horizontal scattering geom-
etry used for this study. The momentum transferred
in-plane was varied by changing the incident angle, θi,
giving, Q‖ = 2|ki| sin(2θ/2) sin(δ), where δ = 2θ/2 − θi.
The x-ray scattering angle, 2θ, was fixed at 130◦ and
measurements were taken with grazing exit geometry
(θi > 65◦) and horizontal incident x-ray polarization
equivalent to previous studies [11, 21, 23, 24, 42]. Fig-
ure 1(c) plots the two dimensional Brillouin zone as a
function of Q = (H,K), which is defined in terms of the
high temperature tetragonal unit cell with a = b ≈ 3.8 Å.
Within this study, measurements were taken along the
nodal direction (from Γ towards M), which we consider
in the context of previously collected data taken along
the anti-nodal direction (from Γ towards X) [11].

RESULTS AND ANALYSIS

Figure 1(d) shows example RIXS spectra at Q =
(0.24, 0.24) as a function of doping. La2CuO4 shows a
small elastic feature with sharp magnetic and well de-
fined dd features consistent with the localized insulating
nature of the parent compound. As the doping traverses
the antiferromagnetic (AFM), pseudogap and spin-glass
(x = 0.05), and under- and over-doped superconducting
regions the dd features become broadened [30].

Magnetic excitations along the nodal direction in the
Brillouin zone in the parent compound La2CuO4 have
been studied in detail and can be adequately modeled
using spin-wave theory [6, 7, 9, 10]. In RIXS spectra
these spin wave or magnon excitations are present along-
side an optical phonon and high-energy magnetic contin-
uum [7, 8, 10, 12]. We performed a similar analysis to
that used previously in Refs. [11, 12, 21, 24, 42] in or-
der to facilitate direct comparisons with previous work.
An example fit is shown in Fig. 2(a). Here, the magnon
and magnetic continuum features were modeled with an
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anti-symmetrized Lorentzian convolved with a Gaussian
resolution function with FWHM ∼ 120 meV, Fig. 2(a)
[43]. The anti-symmetrized Lorentzian is used to account
for the time reversal symmetry of the imaginary part of
the dynamical susceptibility, χ′′(Q, ω). Following previ-
ous work, this is proportional to the scattering function
corrected by the Bose factor

S(Q, ω) ∝ χ′′(Q, ω)

1− exp(−ω/kBT )
, (1)

where kBT is the thermal energy scale [11, 21, 24]. The
elastic scattering and optical phonon were fit with Gaus-
sian functions. Finally, a smooth background was fit with
a 3rd-order polynomial to account for the tail of the dd ex-
citations that carry much higher intensity, see Fig. 1(d).
This model provides a good description of the spectral
lineshape for the x = 0 insulator below 1 eV. The broader
features at higher dopings makes it impossible to convinc-

FIG. 2. La2CuO4 RIXS spectra. a) An example spectrum
at Q = (0.24, 0.24) showing the different components of the
fit including magnon, multi-magnon, phonon and elastic as
well as the total fit in gray. b) Dispersion of the phonon,
multi-magnon, and single magnon features.

FIG. 3. Plots of the RIXS spectra dispersion for each doping
represented as a 2D colormap. The broadening of the param-
agnon feature with increased doping is readily apparent. All
panels share the same intensity scale as shown on the top
panel. The doping, x, is noted in white in the top left corner
of every panel.

ingly separate the multi-magnon and the phonon features
from the paramagnon and we perform fits in which a sin-
gle peak accounts for all these features to allow for di-
rect comparison with previous work [11, 21, 24]. We also
note that a recent report discussed the appropriateness
of this widely used scheme in the case of heavily over-
damped modes [44]. We examined this issue in detail as
described in the Supplemental Material, concluding that
the functional form we use is adequate for the damping
rates found in this study [45].
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FIG. 4. Individual RIXS spectra for each sample (horizontal) and every Q-point (vertical) with underlain fit. For all samples
except the parent compound only the elastic (red), paramagnon (blue), and smooth background (dashed black) were used as
components in the fit. The features of the spectra are displayed added to the background from the dd-excitations. The total
fit is represented by a grey line. For the x=0 case, the multimagnon feature is shown in purple, which was not resolved for the
doped samples. The detailed fitting procedure is discussed in the text.

Figure 2(b) shows the fitting results for La2CuO4

x = 0. A dispersive magnon is observed with a max-
imum energy transfer of ∼ 290 meV around the Bril-
louin zone boundary consistent with spin wave theory
predictions based on INS [6, 9] and previous RIXS stud-
ies [10]. The magnetic continuum feature is challenging
to unambiguously separate from the magnon, but, as ex-
pected, it lies at higher energies and is less dispersive
than the magnon. The 90 meV feature has negligible Q-
dependence (<∼ 25 meV), limited by the errorbars, con-
sistent with it being an optical phonon [46–48].

We now discuss the doping evolution of the nodal
excitations plotted as a colormap in Fig. 3. Low en-
ergy spectral features are visible for all studied dopings.

Detailed incident energy dependence has confirmed the
magnetic nature of these spectral features [28, 49], con-
sistent with theoretical calculations [50] and the smooth
evolution of these features with respect to the unambigu-
ously magnetic feature in La2CuO4. Future experiments
that explicitly resolve the scattered x-ray polarization
would be a valuable addition to this issue [51]. In com-
parison to the parent compound, the magnetic spectral
weight is broadened and appears to be softened. Both
these effects appear to occur continuously as the doping
spans the phase diagram from the pseudogap (x = 0.05),
underdoped (x = 0.11), nearly optimal (x = 0.16),
and all the way to the overdoped phase (x = 0.26).
This phenomenology is consistent with previous examina-
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FIG. 5. a) The paramagnon dispersion for each doping with applied fit. b) Paramagnon peak width for each Q-point
defined as Lorentizian half-width at half-maximum (HWHM). c) Paramagnon spectral weight for each sample and Q-point. d)
Maximum energy transfer for each doping. e) Q-averaged widths with cumulative error. f) Q-averaged intensities. The error
bars represent the statistical error from the fitting procedure.

tions of the nodal dispersion in Bi2Sr2Can−1CunO2n+4+δ

[24, 25, 28] and LSCO (x = 0.26, 0.30) [26, 29]. The
present data, alongside Ref. [11], provide the first com-
prehensive RIXS study of undoped, underdoped, op-
timally doped and overdoped samples within a single
cuprate system. The characteristic energy of the exci-
tations was addressed in more detail by fitting analysis
as shown in Fig. 4. As can be seen, the fitting procedure
is able to reliably reproduce the experimental curves de-
spite the significant broadening at higher dopings.

Figure 5 provides the values from the least squares fit-
ting analysis. A softening of the paramagnon mode with
doping in Fig. 5(a) is very apparent, with the overdoped
sample in particular showing a significant drop of around
80 ± 10 meV, with respect to x = 0, at high Q. The
paramagnon energy also becomes progressively less Q-
dependent with doping. We extracted a characteristic en-
ergy scale for the excitations by fitting a sinusoidal func-
tion [6], Figure 6, to the Q-dependence at different x and
plot the results in Fig. 5(d) [52]. The maximum energy
transfer follows a nearly linear dependence upon doping,
irrespective of the notable changes in the electronic state
of the sample (i.e. insulating, pseudogap, superconduct-
ing). Moving to the paramagnon width [Fig. 5(b)], fit-
ting the x = 0 spectrum yields a value of around 75 meV,

which is likely to come from difficulties separating contri-
butions from phonons and the magnetic continuum from
the magnetic pole [11] and should be thought of as an up-
per limit on the width. Upon doping the average width
[Fig. 5(e)] increases strongly. The integrated spectral in-
tensity, normalized to the dd intensity, [Fig. 5(c)] peaks
at intermediate Q values and persists without strong
changes as a function of doping[53]. Self-absorption can
satisfactorily explain the decrease towards higher Q, as
the x-ray emission angle is progressively lowered. Fig-
ure 5(e)&(f) show that the spectra broaden continuously
with increasing doping without strong changes in inte-
grated spectral weight.

DISCUSSION

A comparison between the nodal and anti-nodal dis-
persions, and how they relate to the dispersion in the
parent compound, is presented in Fig. 6. The dashed
line represents the dispersion from spin-wave theory for
La2CuO4 [6]. Both the nodal and anti-nodal directions
are shown, with the results for the same samples from a
previous work displayed as purple circles [10, 11]. Dis-
persive magnetic excitations are clearly present for all
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FIG. 6. Comparison of the nodal and anti-nodal [10, 11] data
for each doping. Dashed lines represent the spin-wave the-
ory predictions for La2CuO4. x = 0.05 was not previously
measured.

dopings, albeit with strongly reduced dispersion particu-
larly in the nodal direction. This extends the discussion
of the behavior of the magnetic excitations in the anti-
nodal direction [11] to the nodal direction within the
Brillouin zone. It is clear that the overdoped cuprates
do not become trivial, completely non-magnetic, Fermi-
liquids. Rather the effects of U still appear to be present
in the form of strongly damped high energy magnetic ex-
citations within the region in reciprocal space we have
studied [shown in Fig.1(c)].

These results help constrain theoretical models of mag-
netism in the cuprates. The Hubbard model, in either
its one or three band variants, is often considered to be
the best-justified starting point for modeling magnetism
in the cuprates (and strongly correlated materials more
generally) [2]. Calculations of the Hubbard model indeed
capture the persistent high energy magnetic excitations
in good accord with experiments [50, 54]. However, such
calculations are typically confined to small lattices and
there is significant interest in conceptualizing magnetism
in terms of either local moment [55, 56] or (renormal-
ized) itinerant quasiparticle methods [23, 34–37]. A local
moment based approach is well justified in La2CuO4 and
has been used a lot in terms of describing stripe physics
in the underdoped regime [55]. Such an approach also
naturally explains why the intensity of the excitations
in the doped cuprates is of a comparable magnitude to
those in the insulator. Itinerant quasi-particle pictures,
in which correlations are treated within several different
approximate schemes, are also popular. These have a sig-
nificant advantage in terms of allowing predictions with
high Q-resolution [23, 29, 34–37]. They also capture the

fact that the nodal excitations are more strongly doping
dependent than the anti-nodal excitations, as observed
here.

It is also important to consider the data presented here
in the context of previous INS measurements [6, 9, 12, 15–
20, 26]. Spin wave theory for AFM La2CuO4 implies that
the dispersion around (0, 0) and (0.5, 0.5) should be sym-
metric. On this basis, it is tempting to compare RIXS
and INS data on doped cuprates assuming this symmetry.
Figure 6 shows that for x = 0.26 the magnetic excitations
at wavevectors accessed by RIXS around (0, 0) have a
significantly lower energy scale than excitations seen by
neutrons around (0.5, 0.5) [26] suggesting that this sym-
metry breaks down in the doped cuprates and such a
comparison appears invalid. Unfortunately, there is very
little directly comparable RIXS and INS data taken at
the same Q, however, the one available study suggests
that both methods provide similar access to magnetic
dispersions [26]. Unfortunately, there is very little di-
rectly comparable RIXS and INS data taken at the same
Q, however, the one available study suggests that both
methods provide similar access to magnetic dispersions
on the samples with x = 0.25 and 0.30 [26]. Our results
are consistent with these measurements over a large dop-
ing range [11, 19, 20].

In the context of HTS, we note that the high energy
excitations studied here show minimal changes in go-
ing from the optimally doped to the overdoped regime.
As such, they further support previous assertions that
the high-energy magnetic excitations observed here are
marginal to superconducting pairing [11]. This hypoth-
esis tallies with a simple consideration of how a repul-
sive interaction might contribute to d-wave pairing in the
cuprates via transitions between different states near the
Fermi level. In such a scenario the excitations around
(0.5, 0.5) would be expected to have a stronger contribu-
tion than excitations elsewhere in Q and excitations far
from (0.5, 0.5) can even lead to pair breaking and reduc-
tion of Tc [3].

CONCLUSIONS

The paramagnon dispersion along the nodal direction
in the Brillouin zone is reported for samples spanning
the LSCO phase diagram from the AFM insulator to the
overdoped superconductor. We found a gradual soften-
ing and damping of the paramagnon excitation with dop-
ing as predicted by Hubbard model calculations [50, 54].
The character of the excitations indicates that magnetic
correlations in the cuprates have both localized and itin-
erant character. These findings further support sugges-
tions that the high energy magnetic excitations studied
here have a marginal role for HTS [11]. Likely, the de-
struction of other pairing interactions, such as the low
energy magnetic excitations, is instead culpable for the
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drop in Tc with overdoping.
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