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Quasi-Topological Electromagnetic Response of Line-node Semimetals

Srinidhi T. Ramamurthy and Taylor L. Hughes
Department of Physics, Institute for Condensed Matter Theory,
University of Illinois at Urbana-Champaign, IL 61801, USA

Topological semimetals are gapless states of matter which have robust surface states and charac-
teristic electromagnetic responses. In this paper, we consider the electromagnetic response of gapless
phases in 3 + 1-dimensions with line nodes. We show through a layering approach that an intrinsic
antisymmetric tensor Bµν (2-form), which is determined by the geometry and energy-embedding of
the nodal lines, emerges in the effective response field theory. Bµν is shown to be simply related
to the charge polarization and orbital magnetization of the sample; hence the geometry of the line
nodes determine these electromagnetic observables. We conclude by discussing the relevance for
recently proposed materials and heterostructures with line-node fermi-surfaces.

Topological insulators (TIs) have been of great inter-
est in recent years after their theoretical proposal and
experimental discovery in the past decade. Their elec-
tronic properties led to a wide search for novel topolog-
ical band structures in many materials[1, 2]. TIs are
characterized by a gapped bulk and protected bound-
ary modes that are robust in the presence of disorder.
They also exhibit quantized properties in their electro-
magnetic (EM) response[3, 4]. A classification of non-
interacting fermionic states protected by discrete time-
reversal (T ), charge-conjugation (C), and chiral symme-
tries has been worked out in Refs. 4–6. This has fur-
ther been expanded on in recent years to include trans-
lation, reflection, and rotation symmetries of crystalline
systems[7–10]. These theoretical advances have been ac-
companied by experimental discoveries of several TIs in
various symmetry classes. The 3D T -invariant strong
TI (e.g., BiSb[11], Bi2Se3[12–14]), the 2D quantum spin
Hall insulator (e.g., CdTe/HgTe quantum wells[15–17]),
the 2D quantum anomalous Hall (Chern) insulator (e.g.,
Cr-doped (Bi,Sb)2Te3[3, 18]), and a 3D topological crys-
talline insulator (PbSnTe)[19, 20].

A defining characteristic of TIs is a gapped bulk, but
one can also ask if there are gapless states of matter
which harbor protected boundary modes and have un-
usual EM responses and transport properties. This ques-
tion has been asked, and answered in the affirmative
with the discovery of topological semimetals (TSMs).
The most studied TSMs all have point-like Fermi sur-
faces, e.g., 2D Dirac semi-metals/graphene[21], 3D Weyl
semimetals[22], and 3D Dirac semimetals[23, 24]. In
recent work, we proposed a unifying structure to un-
derstand TSMs with point-like Fermi-surfaces, from
which one can straightforwardly determine the quasi-
topological EM responses[25], and which expands on pre-
vious work[26–29]. The main perspective which helps us
understand these TSMs are models produced by a layer-
ing construction, and we claim that a similar idea, to
be discussed below, is applicable for TSMs with line-
like Fermi surfaces. Generically, a TI phase in d spa-
tial dimensions can be layered/stacked into d + 1 di-
mensions by introducing “trivial” tunneling between the

layers, i.e., tunneling that does not immediately gener-
ate a d + 1-dimensional strong topological phase. As
the tunneling coefficient is increased, generically the ma-
terial will transition from a weak topological insulator
phase, which is formed in the decoupled limit, to a triv-
ial insulating state with an intervening semimetallic gap-
less phase with point-nodes, i.e., a TSM phase. To en-
sure the stability of the gapless phase, additional sym-
metries are often required. We can extend this idea
by layering a d-dimensional topological phase into d + 2
dimensions. When the d-dimensional elements are de-
coupled, the d + 2-dimensional system will be in a sec-
ondary weak topological phase characterized by an anti-
symmetric tensor/2-form invariant νij [30, 31]. When the
lower dimensional topological phases are coupled with
strong-enough “trivial” hopping, then they will produce
line-node Fermi surfaces (FLs).

The EM response of point-node TSMs is generally
characterized by an intrinsic 1-form b = (b0, bi) which
is related to the locations of the nodes in momentum
and energy space[25, 29]. The actual dependence of the
EM response on b depends on the type of point-node
semimetal, and can generate a wide variety of effects in
2D and 3D TSMs. We mentioned in Ref. 25 that in line-
node TSM (LTSMs) phases we expect the EM response
to be characterized by an analogous 2-form Bµν , which is
an intrinsic property of the electronic structure of LTSMs
that is determined by the geometry of the nodal subman-
ifolds, and is the analog of a secondary weak invariant,
though for a gapless phase. In this article we explicitly
prove this to be generically true, and we find that the ef-
fective quasi-topological electromagnetic response action
for LTSMs is given by

S[A,B] =
e

16π2

∫
d4x εµνρσBµνFρσ. (1)

Crucially, we show that Bµν can be determined from
the geometry of the nodal Fermi surfaces in energy-
momentum space. From the form of Eq. 1 we see that
the components of Bµν can be related to the magnetiza-
tion and polarization of the LTSM via eB0i = 4π2Mi and
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eBij = 4π2εijkP
k for i = x, y, z. We note that Bµν also

includes components where µ, ν are in the time direction,
which can be generated in a gapless system, but are not
available for a time-independent gapped system. How-
ever, such components would appear in cyclically-driven
gapped systems where they would take values dependent
on the driving frequency.

Before we begin let us make some important com-
ments. In this article, we only consider the EM response
of 3D LTSMs with non-degenerate line-like Fermi sur-
faces. Furthermore, we only focus on a particular con-
tribution to the response, i.e., the quasi-topological piece
that is explicitly dependent on the geometry of the FLs.
In contrast, we will not discuss, e.g., dissipative aspects
of the LTSM EM response such as its pseudo-Ohmic con-
ductivity, which was discussed in Ref. 32. We also make
the assumption that electron-electron interactions do not
destroy the quasi-particle picture of Fermi-liquid theory
and, at most, renormalize the geometry of the line-node
Fermi surface, and hence may create a suitably renor-
malized Bµν . In general, interactions may destabilize the
line-node to create point nodes, fully gapped systems,
or when strong, may even invalidate the quasiparticle
picture. We will leave questions regarding these phe-
nomena to future work since there exist real materials
for which our assumption is valid[33–35]. We also note
that a version of our stacking construction for gapped
phases has also been considered in Ref. 36, while a su-
perconducting version of this, including line nodes, has
been considered in [37, 38]. Additionally, in very recent
work, several proposals for materials that realize line-
node TSM states have appeared which utilize magnetic
heterostructures[32, 39], carbon allotropes [40, 41], and
inversion symmetric Cu3PdN[42, 43]. After our primary
discussion, we comment on how our analysis could be
used to generate an EM response in these systems, in-
cluding systems with nominally spin-degenerate FLs.

To aid our discussion it will be helpful to consider an
explicit model. Although we will illustrate the EM re-
sponse phenomena using a model at first, we also pro-
vide explicit general proofs that will apply to generic
systems with non-degenerate FLs. Let us take the 3D
Bloch Hamiltonian

H3(k) = sin kxσ
y + (1 + β + γ −m− cos kx − (2)

β cos ky − γ cos kz)σ
z,

which has inversion I = σz and time reversal T = σzK
symmetries, where σa represent two (non-spin) degrees
of freedom, and the lattice constant a = 1. When β =
γ = 0, and |m| 6= 1, this model reduces to decoupled
1D insulators aligned parallel to the x-direction. Since
each 1D wire is inversion symmetric, their polarizations
will be quantized (and all equal). In the topological
phase (|m| < 1), the polarization of a single wire will

be Px(ky, kz) = e
2π

∫
Tr[Ax(~k)]dkx = e/2 mod e[44, 45],

where Ai(~k) is the adiabatic connection matrix Aabi (~k) =
−i〈ua,k| ddki |ub,k〉, where a, b run over the occupied bands.
If each insulator was instead in a trivial state (|m| > 1),
we would have Px(ky, kz) = 0 mod e.

In addition to the bulk topological properties, the 1D
TIs have degenerate mid-gap modes localized at oppo-
site ends of the system, the filling of which determines
the bound surface charge. To unambiguously determine
the sign of the bulk polarization, and hence the sign of
the surface charge, one must break the degeneracy by
adding an infinitesimal (inversion) symmetry breaking
mass, e.g., mIσ

y and take the limit as mI → 0. Hence,
for β = γ = 0, |m| < 1 this model represents a secondary
weak TI phase protected by inversion symmetry, and the
EM response is given by Eq. 1, but for the special case
when Byz = sgnmI( 1

2Gy ∧Gz) =⇒ Px = sgnmI
e

2ayaz
.

Now, we can find a simple example of a gapless phase
if γ = 0 and β is increased until we effectively create
layers of 2D Dirac semimetals. This gapless system will
have two gapless lines in the Brillouin zone (BZ) at k±y =

± cos−1 β−m
β for each value of kz. These FLs are locally

stable in the BZ as long as the composite T I-symmetry
is preserved. The response is given by Eq. 1 with B =
sgnmI(by ∧Gz) where 2by = k+

y − k−y , and is a special
case of our general results. We could also reverse the role
of β and γ and find a phase with B = sgnmI(Gy ∧ bz)
instead.

Now let us consider a more generic/isotropic case by
increasing the tunneling strengths γ, β large enough so
that the insulating gap closes and a single closed FL in-
side the BZ forms. Performing an expansion around the
origin, gaplessness will imply the constraints kx = 0, π
and βk2

y + γk2
z = 2m, i.e., the equation for an ellipse.

Assuming that β, γ > 0 to be explicit, this constraint
only has a solution when m > 0. Now to be concrete, we
expand the Hamiltonian by assuming β = γ = 2m = 2 so
that there is a only a single FL circle located in the kx = 0
plane, and none at kx = π. It is convenient to switch to
cylindrical coordinates: (kx, ky, kz) → (kx, κ, θ) where θ
winds around the FL, and κ represents the (signed) ra-
dial distance away from the FL in the kykz-plane. Using
this definition, (kx = 0, κ = 0, θ) lies on the FL and we
find the Hamiltonian near the FL is

HFL(k) ≈ δkxσy+(1/2(δkx)2+2δκ)σz ≈ δkxσx+m(δκ)σz

(3)
where the mass function m(δκ) ≡ 2δκ, and nothing de-
pends on θ. Thus, near the Fermi surface we find a fam-
ily of 1D Dirac Hamiltonians along the x-direction with
masses depending on the radius in k-space away from
the Fermi-surface (δκ) in the kykz-plane which can be
positive or negative. This expansion shows that at each
(ky, kz) we have the Hamiltonian of a massive 1D Dirac
model, and the sign of the mass (and thus topological
phase) changes as a function of (ky, kz) as one passes
through the FL. This validates our perspective of a LTSM
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FIG. 1. (a) The polarization for the model in Eq. 2 is plotted
vs. the parameter m in the model with β = γ = 2. (b) The
magnetization for the model in Eq. 2 with the extra term
tpp sin kyI is plotted vs various values of m for β = γ = 2. (c)
The location of the line node is plotted in the E−ky−kz space
with kx = 0 for tpp = 0 and various values of m with β =
γ = 2. The polarization is proportional to the area enclosed
by the FL. (d) The location of the line node is plotted in the
E − ky − kz space with kx = 0 for m = 1 and various values
of tpp with β = γ = 2. The magnetization is proportional to
integral of the energy around the FL in momentum space.

as a collection of 1D wires where the FL represents the
topological phase transition between contiguous regions
of wires in the BZ. We expect the low-energy Hamilto-
nian near any non-degenerate FL to take a similar form,
regardless of the microscopic lattice model from which it
emerges. One immediate conclusion we can draw from
this analysis is that this model will have a surface charge
from the localized topological modes at the ends of the
wires in the topological region in momentum space, i.e.,
the region either inside or outside the FL. Below we will
explicitly show that this surface charge is a consequence
of a bulk polarization, and also that this model has the
EM response Eq. 1 with Byz 6= 0.

Now, let us step away from our example model and
generically determine the polarization of a LTSM in some
fixed direction n̂. It is useful to treat our 3D Bloch Hamil-
tonian as a family of 1D Bloch Hamiltonians H~k⊥(k‖)

parameterized by ~k⊥, k‖, which are the components of
the momentum perpendicular and parallel to n̂. Gener-
ically, the family H~k⊥(k‖) is a set of 1D gapped Bloch

Hamiltonians except when the point (k‖,~k⊥) lies on one
of the FLs (which only occupy a set of measure zero in
the 3D BZ). Note that while the FLs in our model are
planar, our results below apply to non-planar cases as
well. To calculate the charge polarization we first need

to first calculate the quantity[45]

Θ‖(~k⊥) =
e

2π

∫
dk‖Tr

[
A‖(k‖,~k⊥)

]
(4)

where A‖ is the component of the Berry connection along
n̂. Let us first consider a special case where we eval-
uate Θ(~k⊥) at ~k⊥ = ~Λa, where ~Λa is any inversion-

invariant momentum in the ~k⊥ plane, i.e., ~Λa = −~Λa
mod ~G. Then Θ( ~Λa) is quantized to be 0 or e/2 mod e,
if H~Λa

(k‖) is gapped, since this 1D Bloch Hamiltonian
has inversion symmetry. We then consider a deviation
away from ~k⊥ = Λa which is still in the plane normal to
n̂, and such that the HamiltonianH~Λa+ ~δk⊥

(k‖) is gapped.
However, this 1D Bloch Hamiltonian does not have to be
inversion invariant, and thus it is not immediately obvi-
ous how to evaluate Θ‖. However, we can use the follow-
ing general argument to simplify the calculation. Let us
evaluate the difference in the 1D polarizations

∆Θ‖ = Θ‖(~Λa + ~δk⊥)−Θ‖(~Λa) =
e

2π

∫
S

Tr [F ] (5)

where the last expression is a surface integral of the Berry
curvature 2-form F over the region S bounded by the two
closed circles located at ~Λa and ~Λa + ~δk⊥, and spanned
by k‖ through the cycle of the BZ in the n̂ direction.
Crucially, since our system has T I symmetry, the only
sources of Berry curvature are the π-flux lines carried by
the FLs. Thus, generically ∆Θ‖ itself is quantized to
be either 0 or e

2 mod e depending on the parity of the
number of Dirac line-nodes enclosed in the surface S. The
quantization of ∆Θ‖ is completely general and does not
rely on starting at an inversion-invariant momentum, it
only relies on the existence of T I symmetry. The ability
to start at an inversion-invariant momentum just informs
us that the global constant needed to determine the full
Θ‖(~k⊥) from the knowledge of only the ∆Θ‖(~k⊥) is either
0 or e

2 ; data which is ultimately encoded in the secondary
weak invariant νij of the occupied bands.

For a system with a single FL we see that Bij , and
hence, the overall charge polarization is simply propor-
tional to the projected area of the FL in the n̂ boundary
BZ, i.e.,

eBij ≡ 4π2εn̂ijPn̂ =

∫
⊥BZ

d~k⊥Θ‖(~k⊥) = (−1)νij
e

2
Ξ Ωij

(6)
where Ωij is the area of the FL projected onto the
ij-plane of the boundary BZ, Ξ = χ(sgnmI), χ =
±1 corresponds to the FL helicity, i.e., the clock-
wise/counterclockwise flow of the Berry flux along the
FL with respect to the normal n̂, and νij is the sec-
ondary weak invariant defined as the holonomy of the
Berry gauge field of the occupied bands along the line
ki = kj = π. This is a bulk calculation for the polar-
ization, and only holds up to the addition of a quantum
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of polarization[45]. Also, changing the secondary weak
invariant νij , can change the polarization by a quantum,
and/or a sign, since it can switch the projected area to its
complement in the surface BZ. For a single FL this effect
is already taken into account in Eq. 6. However, for more
than one FL, the bulk calculation will result in the sum of
the projected areas of all the FLs modulo regions where
an even number of FLs have overlapping projections. As
shown in Appendix A, when FLs have overlapping pro-
jected areas, the connection between the bulk result and
the surface charge requires some knowledge of the filling
of the boundary states[25, 46].

One corollary of these general arguments is that, while
it is not forbidden to have just a single closed FL in sys-
tems with T I symmetry, it is forbidden to have only one
FL (or an odd number) which traverses a non-trivial cy-
cle of the BZ and meets itself. We can see this because
calculating any component of the polarization would in-
dicate that the polarization must jump on either side of
the FL, however this is not compatible with the period-
icity of the BZ, and thus must be forbidden. This is a 3D
line-node generalization of the fermion doubling theorem
for Dirac nodes in 2D with T I symmetry.

To illustrate these results with our example model we
calculate the polarization numerically in Fig. 1a where
Px of H3(k) is plotted vs. m with the correspond-
ing geometry of the FL shown in Fig. 1c. We choose
β, γ = 2 so that there is a single FL in the kx = 0
plane and centered around the origin of the BZ. Px
should be proportional to the area enclosed by the FL
given by cos ky + cos kz = 2 −m/2. For small values of
m, the FL is approximately a circle of radius

√
m and

Px ≈ sgnmI
m
8π . This approximation works well when m

is small, but underestimates Px as m is increased. At
m = 4, the FL given by cos ky + cos kz = 0 will enclose
half the area of the BZ. The polarization has the sym-
metry Px(m) = e

2 − Px(8 −m) since for m > 4, the FL
is just centered around (ky, kz) = (π, π) on the boundary
BZ instead of (0, 0). Hence, we only show 0 ≤ m ≤ 4 in
Fig. 1a.

Now let us move on to studying the contributions
of B0i to the EM response. Similar to the 2D Dirac
TSMs, which have a non-vanishing orbital magnetiza-
tion when there is an energy difference between the Dirac
nodes, LTSMs can also have a magnetization that de-
pends on how the band touching lines are embedded in
energy/momentum space. To produce this effect in our
model, we need to change the energy along the nodal sub-
manifold while preserving T I, and we can do this, e.g., by
adding an extra kinetic energy term ε(~k)I to H3(k). How-
ever, before calculating the result for our explicit model
we will evaluate the magnetization in a generic system
with T I symmetry.

Following Refs. 27 and 47, the orbital magnetization

is given by

Ma =
eεabc

2~

∫
ddk

(2π)d

M∑
α=1

Im 〈∂bα|H(k) + εα(k)|∂cα〉

(7)

where we have absorbed the dependence on the chemical
potential µ into H(k) and εα(k), assumed M occupied
bands, and a total of N bands with M ≤ N . εα(k) is the
energy of the α-th band, and |α〉 is shorthand notation
for the Bloch state |uα,k〉. This sum can be simplified as
follows. First, consider the terms which depend on the
band energies εα(k) and rewrite them as

M∑
α=1

Im εα(k)〈∂bα|∂cα〉 =

M∑
α=1

[
Im εα(k)〈∂bα|PE(k)|∂cα〉

+ Im εα(k)〈∂bα|PG(k)|∂cα〉
]
,

where PE(k) and PG(k) are the projectors onto the un-
occupied and occupied bands respectively at each value
of k, and they satisfy PG(k) + PE(k) = IN×N . Then, we
see that the first term is related to the U(M) Berry cur-
vature of the occupied bands since εα(k) is real-valued
and[48]

Fααbc (k) = Im [〈∂bα|PE(k)|∂cα〉] .

So, we have
∑M
α=1 εα(k)Fααbc (k) +∑M

α=1 Im εα(k)〈∂bα|PG(k)|∂cα〉.
To simplify further let us consider the terms with

H(k). We can rewrite H(k) =
∑N
γ=1 εγ(k)|γ〉〈γ|. Then

we have the sum
∑M
α=1

∑N
γ=1 Im εγ(k)〈∂bα|γ〉〈γ|∂cα〉.

We note that 〈∂bα|γ〉 = −〈α|∂bγ〉. Using
this on both of the matrix elements, we have∑M
α=1

∑N
γ=1 Im εγ(k)〈α|∂bγ〉〈∂cγ|α〉. Now, we note that

this is the same as −
∑M
α=1

∑N
γ=1 Im εγ(k)〈∂bγ|α〉〈α|∂cγ〉

with the overall minus sign coming from taking the com-
plex conjugate. Next, the sum over α can be done to give
us PG(k). So, we have −

∑N
γ=1 Im εγ(k)〈∂bγ|PG(k)|∂cγ〉.

Combining both sets of terms we find:∑M
α=1 εα(k)Fααbc (k) −

∑N
β=M+1 εβ(k)Fββbc (k) where

we have used the fact that Fββbc (k) = Im 〈∂bβ|PG(k)|∂cβ〉
is the U(N − M) Berry curvature of the unoccupied
bands. So, the magnetization is given by:

Ma =
eεabc

2~

∫
ddk

(2π)d
× M∑

α=1

εα(k)Fααbc (k)−
N∑

β=M+1

εβ(k)Fββbc (k)

 .(8)

So far this expression is generic and does not use the
T I symmetry that is present in the models we consider,
but there is a key simplification in the Berry curvature
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Fααbc (k) in the presence of this symmetry: Fααbc (k) =

−Fααbc (k)[49]. Similarly, we have Fββbc (k) = −Fββbc (k) un-
der T I. Thus, nominally the (diagonal matrix compo-
nents) of the Berry curvature vanish everywhere in the
Brillouin zone. However, as discussed earlier, stable band
touchings can act as sources of quantized Berry curva-
ture. For example, if bands α1 and α2 touch along a
FL they will have Fα1α1

bc = −Fα2α2

bc = Ξπδ(k − k0) (re-
call Ξ = ±1). Bands can touch each other along FLs
with a crossing which can be linear as we consider in this
paper, quadratic or any higher order. The higher order
band crossings will act as sources of Berry curvature with
higher multiples of π, but they are not stable without the
addition of more symmetries, and can be broken down
to a number of linear crossings with the minimal, non-
vanishing flux quantization. Bands which do not touch
any other bands in the BZ, or touch along accidental
crossings, will have vanishing Berry curvature at each
point of the BZ and will not contribute to the magneti-
zation. Since we are only interested in LTSMs we will not
consider cases with point-like sources of Berry curvature
coming, e.g., from Weyl or Dirac nodes, and instead only
calculate the contributions from FLs.

Before we move on, we quote a technical result, derived
in Appendix B, which is needed for further analysis:

Im 〈∂bα1|α2〉〈α2|∂cα1〉 = −Im 〈∂bα2|α1〉〈α1|∂cα2〉

when T I symmetry is enforced. Hence
Im 〈∂bα1|α2〉〈α2|∂cα1〉 = 0 or πΞδ(k − k0) when
the α1-th and α2-th band either do not touch, or touch
at k0 respectively. If we consider the full non-abelian
Berry curvature Fααbc =

∑N
β=M+1 Im 〈∂bα|β〉〈β|∂cα〉, we

see that terms involving bands β ∈M +1, . . . , N that do
not touch the α-th band along FLs drop out in the sum
because they are zero. The ones that do touch satisfy the
δ-function property. In the case that α touches a single
band α among the unoccupied bands along a FL, we have
Fααbc = πΞδ(k−kαᾱ) where kαᾱ is the location of the ap-
propriate line node. This follows by looking at the only
non-zero element in the sum and its properties under
T I. If we had more bands touching the α-th band along
a nodal line, we have Fααbc =

∑
β touchα πΞαβδ(k − kαβ).

Similar properties hold for those unoccupied bands
which form the FLs with the occupied ones, i.e.,

Fββbc = −
∑
α touch β πΞαβδ(k − kαβ).

In the magnetization integral, we have to integrate∑M+1
α=1 εαFααbc −

∑N
β=M+1 εβF

ββ

bc . For each δ-function in
the first term, there is a corresponding δ-function in the
second term with an opposing sign. Further, since the
only contributions to the Berry curvature are at band
touching points, the energies of the two bands must co-
incide εα = εα. Crossings which are completely beneath
the Fermi level do not contribute to the magnetization
since they will cancel out in the sum over occupied bands
from Eq. 8. Combining these results, we find that the

quantity that needs to be integrated is 2εαFααbc for each
band α that has a FL crossing the Fermi level. Thus, the
expression for the magnetization can then be written as:

Ma =
∑

α∈bands that cross at µ = 0

eεabc

2~

∫
d3k

(2π)3
2εαFααbc

(9)

=
∑
α

e

4π~

∫
∂Rα

εα(k) dka (10)

where ∂Rα denotes the location of the line-node arising
from the α-th band in the BZ at the Fermi level; ∂Rα = ∅
if there is no band crossing for the α-th band at the Fermi
level. Our result now shows the appropriate generaliza-
tion to FLs of the energy difference between point-nodes
that was previously shown to contribute to the EM re-
sponse Weyl and Dirac semimetals. Thus, for each FL
we can define the mixed space and time components of
the 2-form:

B0a =
πΞ

~

∫
∂R

ε(~k)dka =
4π2

e
Ma (11)

where the integration is over the nodal line. The total
magnetization, and total 2-form, include a sum over all
FLs that cross the Fermi-level. This is a 3D generaliza-
tion of the results of Refs. 25 and 28 that relate the
magnetization of the 2D Dirac semimetal to the energy
differences between the band-touching points. As an ex-
plicit illustration, in Appendix B we calculate the mag-
netization for a generic two-band model and show that
the results match our calculation.

One can give a microscopic argument for the existence
of the magnetization/boundary currents for surfaces that
harbor protected, low-energy modes. The surface states
of H3(k) are initially flat-bands that do not disperse, and
ε(k) will impart a dispersion as a function of (ky, kz). In
general, this will create a bound surface current in the y−
z plane which is the consequence of a non-vanishing bulk
magnetization density. There will be similar currents on
surfaces without low-energy modes, but there is not as
simple of an interpretation[25].

We confirm this result numerically by adding an ex-
tra term tpp sin kyI to H3(k) and plotting the magneti-
zation vs. m in Fig. 1b. The magnetization has the
symmetry Mz(m) = Mz(8 − m), and we restrict our-
selves to 0 ≤ m ≤ 4 in Fig. 1b. The magnetization is

given by Mz(m)
tpp

= sgnmI
e

4π~
∫ k0
−k0 sin ky dkz. Again we

have fixed β, γ = 2 so that there is only one FL, which
has χ = +1. The magnetization for this case can also be
evaluated analytically from Eq. 25 since the energy only
depends on ky. The limits to which kz extends for the FL
can be calculated using the equation for the nodal line
(cos ky + cos kz = 2−m/2). Hence, on the nodal line, ky
is a function of kz. The maximum value of cos ky = 1,
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0
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ky

kz
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S0

0

0

ky

kz

π

π π

π
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FIG. 2. Dotted yellow lines represent initial four-fold degen-
erate Fermi-line (S0). Purple and blue solid lines represent
spin-split Fermi-surfaces (S+, S−) with (a) a majority and
minority spin Fermi-line induced by certain T -breaking terms
(b) spin-split Fermi-lines with equal sizes for each spin rem-
iniscent of a Rashba-type splitting from spin-orbit terms in-
duced by strain/inversion breaking. For both panels the gray
shaded region represents the magnitude of the polarization
in the x-direction from the projected areas of the Fermi lines
after Z2 overlap cancellation.

and this means that the maximum/minimum kz is given
by ±kz0 = ± cos−1(1 − m/2). This is valid only when
m < 4, while for m > 4, the FL is centered around (π, π)
instead of the origin. The magnetization is a function of
m, and does not have a simple closed form expression.
However, it does have a linear profile in the regime when
m is small.

We have now completed our goal of showing that the
LTSM EM response given by Eq. 1 can be related to the
geometry of the line-nodes in energy momentum space.
To conclude, we comment on the applicability of our re-
sults to real materials. The magnetic heterostructure
proposed in Refs. 32 and 39 breaks T explicitly, hence
the spins are not degenerate, and the line nodes occur
with just two overlapping bands. Thus, this model cor-
responds precisely to an effectively spinless case that has
been described throughout this paper, and our results
can be directly applied. We expect, and have confirmed
numerically, that this system will have a charge polariza-
tion. It is worth noting that the two form Bµν explicitly
enters the continuum Hamiltonian of this system as, for
example, H = ~k·~Γ+iByzΓ0Γyz where Γµ are a set of Dirac
matrices. One could pursue a continuum diagrammatic
calculation of our result using this spinful system, but we
will not do so in this paper. In the case of spin degener-
ate models, which are found, for example, in the carbon
allotrope materials in Refs. 40 and 41, a further reflec-
tion symmetry is required to stabilize the LTSM arising
from four overlapping bands as shown in Ref. 50. For
doubly-degenerate bands the charge polarization, being a
Z2 quantity, is trivial. However, we can break spin degen-
eracy by including certain T -breaking terms, or inducing
additional spin orbit terms via strain, with the require-
ment that the FLs are not completely destabilized to a

gapped, or point-node, phase. If we take two copies of
our model, one for each spin, then two illustrations of ini-
tially spin-degenerate FLs (in the kx = 0 plane) split by
two types of spin-dependent terms are shown in Fig. 2.
In these cases, the polarization Px can be nontrivial and
is not completely Z2 canceled. In fact, in both cases, the
shaded areas correspond to the magnitude of the polar-
ization, assuming a vanishing secondary weak invariant.
The magnetization, on the other hand, is not a Z2 quan-
tity and can be non-vanishing even for four-fold degen-
erate FLs. Hence, we expect that these systems would
exhibit charge polarization when the FLs are spin-split
via strain or other spin-dependent perturbations.

We would like to thank P.Y. Chang, V.K. Chua, V.
Dwivedi, and A. Tiwari for discussions. We acknowledge
support from ONR YIP Award N00014-15-1-2383.

Appendix A: Multiple FLs and the polarization

When we have multiple FLs, the problem of calculating
the polarization precisely is not quite as simple because
the boundary charge is decided by the overlap and filling
of the low energy boundary states that are enclosed by
the multiple FLs. Despite this, even in the most general
setting, the polarization can be written down as a signed-
sum of the various projected areas enclosed by the vari-
ous FLs. As described in the main text, we showed that
we can perform a simple bulk calculation to determine
a set of values for these signs. However, a precise sur-
face theorem giving the bound charge associated to the
polarization change at an interface is meaningful only
when the occupations of the surface states are specified
(similar to the complications in Refs. 25 and 46 for the
polarizations in a Chern insulator or 2D Dirac semi-metal
respectively). If the boundary occupations are precisely
known, then one can determine the necessary sign for
each area contribution that will determine the correct
surface charge. Hence, the projected areas that deter-
mine the surface charge are decided by the geometry of
the FLs, but the signs multiplying each area can differ
from the bulk calculation, and depend explicitly on the
boundary state occupation.

The results simplify when there is only one or two FLs
in the system. In the former case, the surface charge
is determined (up to a sign decided by the inversion-
symmetry breaking) by whether the surface states ex-
ist inside or outside the FL. For two (or more) FLs an-
other complication appears due to the possibility of the
projected areas overlapping in the surface BZ. In these
cases we can have edge states overlapping, and we expect
generically that a Z2 cancelation will occur for the over-
lapping states. Now, let us show how we can determine
the bulk value of the polarization precisely for the case
of two line nodes. A natural guess for a generalization of
the polarization formula we have derived in Eq. 6 would
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(a)

(b)

FIG. 3. Rules for the modification of χsgnmI for the deter-
mination of the boundary charge for the case of two FLs are
illustrated. The green shaded areas represent regions where
edge states exist, and the dark green area represents areas
where there are overlapping edge states. Case (a) needs a
reassignment of arrows while case (b) does not.

be

P i = εijk(−1)νjk
∑
a

e

8π2
ΞaΩa,jk, (12)

but this unfortunately does not account for the possi-
ble Z2 cancelations. To account for this we start off
by drawing the projected FLs in the appropriate sur-
face BZ perpendicular to the polarization direction. We
must take care to include arrows indicating the direction
along which Berry flux is flowing along the FL with re-
spect to the surface normal. The flow is clockwise when
the product χsgnmI = +1 and counterclockwise for the
product χsgnmI = −1 where χ corresponds to the FL
helicity with respect to the normal along the ith direc-
tion. If there are some regions where the projected areas
of the FLs overlap, we have to carefully handle the Z2

cancellation. We assume that any place where two FL
areas overlap there is a cancellation. We can effectively
take this into account in our formula after performing
a simple graphical analysis. First, if the weak invariant
(−1)νij = −1, we start off by shading the region around
(π, π), else we leave it unshaded. Then every time we
cross a FL, we change from shaded to unshaded and vice
versa. This prescription gives us a unique way of shading
the entire surface BZ with the projected FLs where alter-
nating regions are shaded. The shaded regions naturally
represent regions of the surface BZ with stable surface
states. After we are done with shading, we check if the
regions which are shaded have an arrow consistently go-
ing clockwise/counterclockwise on its boundary. If they
do, we sum over the areas of the regions shaded with
the product χsgnmI for that region coming from the di-

rection of the arrow on the boundary. If the direction
of arrows is inconsistent, we follow the reassignment of
the arrows as shown in Fig. 3 and sum over the modified
areas.

With more FLs, this prescription does not give us a
unique answer in regions which have more than two sets
of edge states overlapping. The sign of the polarization
arising from these regions depends on the details of how
the surface states are coupled to give the Z2 cancelation,
and hence how the states are occupied. The value of
the polarization that matches the surface charge is ulti-
mately still a signed sum of the projected areas, but these
signs can only be determined after the occupation of the
edge state branches is chosen. All of these issues arise
due to the Z2 stability of the edge states, as opposed to
the Z stable chiral case. We will leave the problem of ex-
haustive treatment of generic FL configurations to future
work.

Appendix B: T I symmetry and Berry curvatures

To prove the result about the properties of the Berry
curvature for a line-node, we switch back to writing out
the ket |α〉 = uα,k as a column vector with uiα being
the ith component (the bras will be row vectors and we
will use lowered indices for them). Let us consider the
following matrix element M = Im 〈∂bα1|α2〉〈α2|∂cα1〉 =
Im (∂bu

∗
α1,i

)uiα2
u∗α2,j

(∂cu
j
α1

) and its transformation prop-
erties under T I, where we assume that T I = UK with
U being a constant unitary matrix. Repeated indices of
i, j, k are assumed to be summed. The action of T I on
the matrix element gives us the following:

M = Im ((U†)ki ∂buα1,k)(U iru
r,∗
α2

)((U†)sjuα2,s)(U
j
p∂cu

p,∗
α1

)

= Im (∂buα1,k)(uk,∗α2
)(uα2,s)(∂cu

s,∗
α1

)

= −Im (∂bu
∗
α1,i)u

i
α2
u∗α2,j(∂cu

j
α1

) (13)

where the asterisk denotes complex conjugation. We have
summed over i, j when we go from the first to the second
line to get rid of factors of U . The minus sign from the
second to the third line comes from conjugation. Further,
we have used the following symmetry properties of the
Bloch states under T I given by:

uiα = U iju
j
α, u

∗
α,i = (U†)jiu

∗
α,j (14)

Put together, what we have proved is that
Im 〈∂bα1|α2〉〈α2|∂cα1〉 = −Im 〈∂bα1|α2〉〈α2|∂cα1〉 under
T I. We also note that Im 〈∂bα1|α2〉〈α2|∂cα1〉 = Fα1α1

bc,proj

is the Berry curvature of the α1th band coming from
the Hamiltonian H12 = εα2

|α2〉〈α2| + εα1
|α1〉〈α1| (We

call this the projected α1, α2 subsystem). What we have
proved with our analysis of the matrix element under T I
is that Fα1α1

bc,proj = −Fα1α1

bc,proj mod 2π. If the two bands do
not cross, clearly the projected Berry curvature should
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be zero at every point in the BZ. If on the other hand,
they do touch along stable FLs we can see that it must
be equal to πΞδ(k − k0) where k0 is the location of
the nodal line. The other identity which we use is that
Im 〈∂bα1|α2〉〈α2|∂cα1〉 = −Im 〈∂bα2|α1〉〈α1|∂cα2〉, i.e.
Fα1α1

bc,proj = −Fα2α2

bc,proj in the projected system. This simply
follows from the property that 〈α2|∂aα1〉 = −〈∂aα2|α1〉.
Thus, we must have:

Im 〈∂bα1|α2〉〈α2|∂cα1〉 = Im 〈α1|∂bα2〉〈∂cα2|α1〉
= Im (〈∂bα2|α1〉〈α1|∂cα2〉)∗

= −Im 〈∂bα2|α1〉〈α1|∂cα2〉 (15)

as claimed.

Appendix C: Magnetization in a LTSM Model

Let us now calculate the magnetization for our model,
which will eventually give us insight into the generic form
for all LTSMs. The calculation of the (orbital) magneti-
zation in crystalline systems was developed in Refs. 27
and 47, and the result of our calculation is essentially an
extension of the results of the 2D Dirac semimetal shown
in Refs. 25 and 28. To proceed, the adiabatic (Berry)
curvatures Fxy,Fyz,Fzx for the following generic two-
band model are calculated:

H(k) = A(~k)σx +mIσ
y +B(~k)σz (16)

where mI represents an infinitesimal inversion-breaking
mass term that must be added to properly calculate the
magnetization. Note that for the purposes of calculating
the adiabatic curvatures, the additional ε(~k)I term that
we will add to change the energy of the FL can be ignored
since its inclusion will not affect the Bloch wavefunctions.
The adiabatic curvature can be represented by defining
the unit vector d̂ as

d̂(~k) =
(A,mI , B)√
A2 +m2

I +B2
(17)

which yields

Fij = εabcd̂a∂id̂b∂j d̂c (18)

where ∂i = ∂
∂ki

for i = x, y, z. So for the model in Eq. 16
we have

Fij = mI
∂iA∂jB − ∂jA∂iB
(A2 +m2

I +B2)3/2
. (19)

For the case of the semimetal, the limit of mI → 0
must be taken. Using the identity that limε→0

ε
ε2+α2 =

π sgnmI δ(α), the curvature can be simplified to

Fij = π sgnmIδ(
√
A2 +B2)

∂iA∂jB − ∂jA∂iB√
A2 +B2

. (20)

If we think about the actual terms A(~k) and B(~k) from
the model H3, then we quickly see that the δ-function
only has non-zero support exactly on the line-nodes.
Generically, when A(~k) and B(~k) both vanish, then the
system is gapless (when mI → 0), and these gapless re-
gions are the only sources of adiabatic curvature for a sys-
tem with T I symmetry. Thus, in the gapless, semimetal-
lic limit the only adiabatic curvature in the BZ is local-
ized exactly on the FL, which we know must be the case
for a model with T I symmetry.

To finish the magnetization calculation, consider the
model H̄3(~k) = ε(~k)I + H3(~k) which now has broken T
and broken I, but preserves T I. The expression for the
magnetization density in terms of Bloch bands is given
by[47]

Ma = εabc
e

2~

∫
d3k

(2π)3
Im〈∂bu−|(H̄3(k) + E−(k))|∂cu−〉

(21)
where E−(k), |u−〉 are the energy and Bloch functions of
the lower occupied band, and the derivatives are with
respect to momentum. From symmetry, and from the
fact that the extra kinetic term is proportional to the
identity matrix, the above expression simplifies to

Ma = sgnmI
eεabc

4~

∫
BZ

d3k

(2π)3
2ε(~k)Fbc. (22)

The expression from Eq. 20 for the curvature can now
be substituted. Notice that we can do a coordinate
transformation under the integral from (ka, kb, kc) →
(ka, A,B) and the Jacobian of the transformation J =
|∂iA∂jB − ∂jA∂iB| is already sitting in the curva-
ture up to a total sign. Using the property that∫
X
δ(g(x))f(g(x))|g′(x)|dx =

∫
g(X)

δ(u)f(u)du, we can

rewrite Eq. 22 as

Ma = ± sgnmI
e

4~

∫
dkadAdB

(2π)2
2ε(~k)

δ(
√
A2 +B2)√
A2 +B2

(23)
where the domain of integration has now changed to the
range of values which A,B take over the BZ and the outer
signs represent the helicity of the FL, i.e. the sign of the
Jacobian. We can make a coordinate transformation to
polar coordinates in A,B → r, θ where we note that r, θ
could in general depend on ka.

Ma = ± sgnmI
e

4~

∫
dka × rdrdθ

(2π)2
2ε(~k)

δ(r)

r
(24)

which can be simplified by integrating the expressions
over r, θ. The δ function localizes the integral to the FL
and the integral over θ gives us a factor of 2π.

~M = ± sgnmI
e

4π~

∫
∂R

ε(~k)d~k (25)
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where we have explicitly indicated that the integration in
Eq. 25 is over the FL which is equivalent to ∂R. We note
that the magnetization results from integrating the en-
ergy of each point on the FL along the line node. Again,
the ± sign in front of the magnetization tells us the sense
in which the Berry flux circulates along the string, i.e.,
clockwise or counter-clockwise. This is a simple deriva-
tion of the bulk magnetization in the case of a single line
node. If there are multiple FLs, contributions to the mag-
netization from each FL using Eq. 25 must be added up,
but the result is not as complicated as the polarization
with multiple FLs since the magnetization adds up nor-
mally, not as a Z2 quantity. It is important to note that
the connection between the bulk magnetization calcula-
tion and the boundary current can depend on the details
of how the boundary states are filled similar to what was
shown in Refs. 25 for 2D Dirac semi-metals.
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