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Topological Weyl semimetals (TWS) can be classified as type-I TWS, in which the density of states
vanishes at the Weyl nodes, and type-II TWS, in which an electron pocket and a hole pocket meet at
a singular point of momentum space, allowing for distinct topological properties. We consider various
minimal lattice models for type-II TWS. The simplest time-reversal-breaking band structure, with
a pair of Weyl nodes sharing a single electron pocket and a single hole pocket (“hydrogen-model”),
exhibits relics of surface Fermi arc states only away from the Fermi energy, with no topological
protection. Topologically-protected Fermi arcs can be restored by an additional term (“hydrogen-
model”) that produces a bulk structure where the electron and hole pockets of each Weyl point
are disjoint. In time-reversal-symmetric but inversion-breaking models, we identify non-topological
surface “track states” that arise out of the topological Fermi arc states at the transition from type-I
to type-II and persist in the type-II TWS. The distinctions among these minimal models can aid
in distinguishing between generic and model-dependent behavior in studies of superconductivity,
magnetism and quantum oscillations of type-II Weyl semimetals.

PACS numbers: 71.10.Fd,71.18.+y,71.90.+q

I. INTRODUCTION

The band theory of solids was revolutionized by the
discovery of topological insulators1,2. The abundant list
of topologically nontrivial quadratic Hamiltonians has
been extended by the recent discovery of topological Weyl
semimetals (TWS). These materials have band crossings,
at isolated points in momentum space, between two non-
degenerate bands. The resulting nodes appear analogous
to the Dirac nodes of graphene3, but here exist in three
dimensions rather than two. The three linearly indepen-
dent momenta couple to all three Pauli matrices in the
Hamiltonian, hence perturbations can shift the position
of the node in momentum space but cannot open a gap.

There have been many recent theoretical proposals for
the emergence of Weyl nodes in the band structure of
solid state materials4–10. In such a TWS, breaking either
inversion or time reversal symmetry results in a pair of
Dirac nodes separating into Weyl nodes. These Weyl
nodes are monopoles of Berry curvature in the Brillouin
zone and the charge associated with such a monopole is
known as its chirality. Weyl nodes must come in pairs of
opposite chirality11 such that the net chirality over the
Brillouin zone is zero. A consequence of these bulk Weyl
nodes is the existence of topological Fermi arcs on the
surface of a TWS7.

Both the bulk Weyl nodes and the surface Fermi arcs
have unique signatures in angle resolved photoemission
spectroscopy (ARPES) experiments. Searching for these
signatures has proven to be extremely fruitful and sev-
eral groups12–18 have discovered a TWS phase in the
transition metal pnictide family: TaAs, TaP, NbP and
NbAs. These materials all belong to the so-called type-
I TWS phase where the Weyl points are formed from
a direct gap semiconductor closing linearly at a discrete

set of Weyl points. A separate class, known as type-II
TWS, was recently predicted to arise from an indirect-
gap semimetal, with the direct gap closing linearly at
the Weyl nodes. These predictions have been made for
a variety of compounds19–22. Recently, signatures of a
type-II TWS have been reported23–25 in MoxW1−xTe2,
stoichiometric MoTe2, and LaAlGe, opening the door for
further experimental study of the type-II TWS.

Although there have been some studies of lattice
models for TWS,26–28 much of the theoretical work on
topological Weyl semimetals has focused on low en-
ergy effective models of single Weyl nodes. In a type-
I TWS, where the density of states vanishes at the
energy of the Weyl nodes, these effective models cap-
ture much of the essential physics including electro- and
magnetotransport,29–37 thermoelectric properties,38–41

magnetic properties,42 and effects of disorder43–45. In
a type-I TWS, when the chemical potential is shifted
slightly away from the nodal energy, the Fermi pock-
ets enclosing the projections of the Weyl nodes are very
small. However, in a type-II TWS extended pockets
of holes and electrons exist already at the node energy.
Doping away from the node energy then results in the
surface projections of the Weyl nodes, for typical crystal
surfaces, becoming enclosed within large Fermi pockets.
Understanding the interplay of these large Fermi pock-
ets and any topological properties associated with the
type-II nodes can require explicit lattice models, rather
than just a low-energy theory. Here we present a study
of a few such relatively simple lattice models for type-II
TWS.

We begin by discussing models for time-reversal-
breaking type-II TWS. We distinguish between two types
of basic models: the simplest model (“hydrogen-like
model”) has a single pair of Weyl nodes which share a



2

a b c

d e f

g h i

Type I 
Simple Model

Type II
Simple Model

Type II
Separate Pockets

FIG. 1. Surface and bulk dispersions in the minimal time-reversal-breaking models. a-c Bulk Fermi pockets
(black) and surface Fermi arcs (red and blue), shown at E = −0.2t, for three models: (a) the simplest type-I case (Eq. 8 with
γ = 0), (b) the simple two pocket type-II case (Eq. 8 with γ = 3t), and (c) the two node TRB case with isolated pockets
surrounding each node (γ = 1.5t). The thin green and purple lines correspond to the cuts shown in panels (d-f) and (g-i)
respectively. d-f Bulk surface dispersions with kx at kz = 0. Surface states at the top and the bottom surfaces are degenerate
and shown in purple. g-i Bulk surface dispersions with kx at kz = 0.2. Surface states at the top and the bottom surfaces are
nondegenerate and shown in red and blue respectively.

single electron pocket and a single hole pocket. How-
ever, we argue that this simplest model fails to capture
some important properties. These are instead captured
by the next-simplest model (“helium-like model”), with
an additional term that splits both the electron pocket
as well as the hole pocket into pairs of separate pock-
ets. Each Weyl node is now formed from the intersec-

tion of an isolated pair of electron and hole pockets.
The hydrogen-like model has no topologically-protected
Fermi arcs, though it exhibits relics of them away from
the Fermi energy; in the helium-like model, the topolog-
ical Fermi arcs are restored. The development of surface
states between the models is summarized in Figure. 1.
We also study inversion-breaking type-II TWS models,



3

and find that even simple toy models support an addi-
tional set of surface states (”track states”) which are not
topological but nonetheless play a role, as summarized
in Figure. 1, in how the Fermi arc connectivity changes
when either the Fermi energy is changed or when the tilt
of the Weyl nodes is changed.

The paper is organized as follows. In Sec. II, we
outline the general form of the dispersion of a type-II
Weyl node and summarize the symmetry properties that
a TWS must obey. In Sec. III, we consider the minimal
hydrogen and helium models for a time reversal breaking
type-II TWS with a single pair of Weyl nodes. In Sec.
IV, we consider an inversion breaking model for a type-
II Weyl semimetal and study the Fermi arcs as well as
the non-topological surface state denoted as“track state.”
Sec. V contains a discussion of the types of surface states
supported by these lattice models, and a discussion of the
requirements for Fermi arcs to be topologically protected
in a type-II TWS. Sec. VI contains a comparison with
experiments. We conclude in Sec. VII with prospects for
future investigations.

II. GENERAL CONSIDERATIONS

The defining features of a TWS are the nodal energy
crossings in the Brillouin zone, so a minimal lattice model
for a TWS must have at least two bands of the form

Ĥ =
∑
k

ĉ†kα

(
Ĥ(k)

)
αβ
ĉkβ (1)

where ĉ
(†)
kα annihilates (creates) an electron at momentum

k in orbital α and

Ĥ(k) =
∑

i=0,1,2,3

di(k) σ̂i. (2)

Here σ̂i is the i-th Pauli matrix for i = 1, 2, 3 whose
indices correspond to an orbital degree of freedom and
σ̂0 is the 2 × 2 identity matrix. If such a Hamiltonian
has at least two points around which the Hamiltonian is
described locally by

ĤWP(k) =
∑

i=1,2,3

γikiσ̂0 +
∑

i,j=1,2,3

kiAij σ̂i, (3)

it describes a Weyl semimetal with nodes of chirality χ =
det(Aij). It is straightforward to show that the energy
spectrum for the Hamiltonian in Eqn. (3) is given by

E±(k) =
∑

i=1,2,3

γiki ±

√√√√√ ∑
j=1,2,3

 ∑
i=1,2,3

kiAij

2

= T (k)± U(k), (4)

where T (k) tilts the Weyl cone. The definition19,46 of a
type-II Weyl node is one where there exists a direction
ek in the Brillouin zone such that

T (ek) > U(ek). (5)

Since in the presence of both inversion and time re-
versal symmetry the Berry curvature is identically zero
throughout the Brillouin zone, the presence of Weyl
nodes relies on breaking either inversion (henceforth la-

beled P̂) or time reversal symmetry (labeled T̂ ). For
spinless fermions, we choose a definite representation for
the P̂ and T̂ operators,

P̂ ↔ σ̂1, T̂ ↔ K̂, (6)

where K̂ is the anti-Hermitian complex conjugation op-
erator. Each of P̂ and T̂ also reverse the sign of the
momentum such that k → −k. In this paper we in-
vestigate lattice models for Weyl semimetals that break
either T̂ or P̂, and using the definitions in Eqn. (6) it
will be straightforward to show this symmetry breaking
explicitly for each model we consider.

III. TIME REVERSAL BREAKING MODEL

We begin by investigating a lattice model given by
a Hamiltonian Ĥ(k) that hosts Weyl nodes and breaks
time reversal symmetry but preserves inversion symme-
try such that

P̂†Ĥ(−k)P̂ = Ĥ(k), T̂ †Ĥ(−k)T̂ 6= Ĥ(k). (7)

The minimal number of Weyl nodes for such a Hamil-
tonian is two and we find that such a minimal model
can be used to investigate a wide range of possible TWS
Fermi surface and arc connectivity. We begin by writing
down the simplest possible two node time-reversal break-
ing (TRB) Hamiltonian with a type-II tilt and investigat-
ing its band structure. A pair of Weyl nodes are formed
from the nodal crossing of exactly one electron band with
one hole band. By calculating the band structure for the
system in a finite slab geometry, we investigate the sur-
face Fermi arc behavior. We then show that this minimal
model can be modified with a term that splits these elec-
tron and hole pockets into pairs that exist around each
node.
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A. The “Hydrogen atom” for a type II time
reversal breaking TWS

The following Hamiltonian

ĤTRB
A (k) = γ

(
cos(kx)− cos(k0)

)
σ̂0

−
(
m(2− cos(ky)− cos(kz)) + 2tx(cos(kx)− cos(k0))

)
σ̂1

− 2t sin(ky)σ̂2 − 2t sin(kz)σ̂3 (8)

satisfies the symmetry conditions in Eqn. (7) and pos-
sesses two Weyl nodes at k = (±k0, 0, 0). When γ = 0,
this Hamiltonian is known47 to host nodes of type-I. How-
ever, the addition of the term γ

(
cos(kx) − cos(k0)

)
σ̂0

bends both bands and when γ > 2tx it is simple to see
these nodes become type-II as defined by Eqn. (5). We
see this evolution from type-I to type-II very clearly in
Fig. 2. When γ = 0, the hole band (blue) touches the
electron band (red) at the two Weyl points where the
density of states vanishes, as seen in Fig. 2a,d,g. When
the system is in the type-II regime, the Weyl cones are
tilted and this leads to a nonzero density of electron and
hole states at the node energy, as seen clearly in Fig.
2c,f,i. When γ = 2tx exactly, the system is at a critical
point between a type-I and a type-II Weyl semimetal.
This is clearly seen in Fig. 2b,e,h, where a single line
of bulk states connect the Weyl points at E = 0. The
states seen in Fig. 2h open up into the electron and hole
pockets seen at E = 0 for the type II case in Fig. 2i.

In a type-II TWS, it is important to consider the net
chirality enclosed by the bulk Fermi pockets when deter-
mining the Fermi arc connectivity. If one encloses a bulk
pocket by a Gaussian surface in a region where the bulk
band structure is gapped, the number of Fermi arcs im-
pinging on the Gaussian surface are quantized and equal
to the net chirality of Weyl nodes enclosed. When the
model in Eqn. (8) is in the type-II regime and the chem-
ical potential is shifted away from E = 0, the projections
of both Weyl nodes are either enclosed in the electron
pocket (E > 0) or the projections are both enclosed in
the hole pocket (E < 0). Since the projections of both
nodes lie within the same Fermi pocket, we expect that
Fermi arcs in this system are not topologically protected
in general. Surface states may exist, but their lack of
topological protection stems from the fact that there are
no isolated Fermi pockets that enclose Weyl nodes with
nonzero net chirality. As a result, the surface states can
hybridize with bulk states and are therefore trivial.

In order to investigate the structure of the Fermi arcs,
we introduce an edge by considering a slab with a finite
thickness in one direction. We partially Fourier trans-
form the Hamiltonian in Eqn. (8) into real space for a
L layer system in the y-direction, while keeping the sys-
tem infinite in the x- and z-directions. In Fig. 3, we
show the results of such a slab calculation for the model
given by Eqn. (8) in the type I regime (γ = 0) with the
same bulk parameters as in Fig. 2a,d,g and in the type
II regime (γ = 3tx) with the same bulk parameters as

in Fig. 2c,f,i for L = 50 layers. We calculate the expec-
tation of the finite position 〈y〉 and label the states as
“top” (“bottom”) if they are exponentially localized at
〈y〉 = 1 (〈y〉 = L). We color these top and bottom states
red and blue respectively.

As we expect, for the type-I case when γ = 0, a Fermi
arc on each surface connects the Weyl nodes, as seen in
Fig. 3a-c. This is seen clearly in Fig. 3b where two Fermi
arcs connect the two nodes from (kx, kz) = (−π/2, 0) to
(kx, kz) = (π/2, 0). At E = 0, both the top and bottom
arcs are degenerate at kz = 0, shown as a purple line.
When we lower the Fermi energy below the node energy,
each node is enclosed in a small isolated Fermi pocket.
Since each pocket encloses a net chirality χ = ±1, the
pockets are connected by an arc on each surface, as seen
in Fig. 3a. The same is seen at higher energies E > 0 in
Fig. 3c.

We calculate the band structure in the slab geome-
try for a type-II TWS (γ = 3tx) and find that there
are marked differences in the surface state behavior (see
Fig. 3d-f). Since both nodes are formed from a single
electron and a single hole pocket, we cannot construct
a simply connected 2D Gaussian surface in the Brillouin
zone that encloses a single node. When the energy is
lower than the Weyl energy in Fig. 3d, we see that the
projections of both nodes are enclosed by the same hole
pocket. Although there are two sets of surface states
connecting the hole and electron pockets, they are trivial
in a topological sense. When one considers a Gaussian
surface that encloses the central hole pocket, it is pierced
by four arcs, two on each real-space surface. The Fermi
velocity of each arc is opposite on a given real-space sur-
face and so the net chirality of the arcs is zero. We see
that as we raise the chemical potential to the node en-
ergy and above, these arcs disappear completely. This is
completely different from the type-I case where the arcs
exist at all energies since the nodes were always isolated
in separate Fermi pockets.

B. The “Helium atom” for a type II time reversal
breaking TWS

In order to study the physics of type-II Weyl nodes
surronded by isolated Fermi pockets which they do not
share, we seek to introduce a term to the Hamiltonian
separates the single pair of pockets possessed by the
”Hydrogen-atom” model. In particular, this new term
must gap out the bulk band structure in the kx = 0
plane and the kx = π plane. Due to the pairs of elec-
tron and hole pockets supported by this model, we call it
the “Helium model” for a type-II time-reversal-breaking
TWS in analogy with the “Hydrogen model” above. We
consider the following Hamiltonian

ĤTRB
B (k) = ĤTRB

A (k)− γx(cos(3kx)− cos(3k0))σ̂1, (9)
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FIG. 2. Bulk band structure for the “Hydrogen atom” of type-I and type-II Weyl semimetal. a-c The bulk
band structure for the Hamiltonian in Eqn. (8). Electron pockets shown in red and hole pockets shown in blue merge at the
Weyl nodes shown in green. Here we have chosen parameters ky = 0 with parameters k0 = π/2, tx = t, m = 2t for (a) type-I
Weyl semimetal with γ = 0, (b) the critical point between type-I and type-II Weyl semimetal with γ = 2t and (c) type-II Weyl
semimetal with γ = 3t. The cones comprising the Weyl nodes develop a characteristic tilt of the type-II TWS as γ is increased.
d-f Cuts through the Weyl nodes at ky = kz = 0 for the same parameters as (a-c). g-i Constant energy cuts through the nodal
energy (E = 0) for the same parameters as (a-c). We see that for a type-I TWS, there are no states at the Fermi energy. At
the critical point between a type-I and type-II TWS, we see lines of bulk states appearing between the nodes. These lines open
into bulk hole and electron pockets (in the repeated zone scheme) when the system becomes a type-II TWS.

where we have added to Eqn. (8) the term propor-
tional to γx. In general, this model supports up to six
Weyl nodes. However, so long as |2tx| > |3γx|, there
are only two Weyl nodes in the Brillouin zone. These
nodes are located at E = 0 and k = (±k0, 0, 0) and
they are type-II if γ > 3γx − 2tx. The addition of the
term γx(cos(3kx)− cos(3k0)) gaps out the bulk spectrum
along the lines (ky, kz) = (0, 0) and (ky, kz) = (0, π) at
the nodal energy. This leads to a pair of isolated hole
pockets touching a pair of isolated electron pockets at
the Weyl nodes when the system is type-II. In Fig. 4, we
find that as γ grows relative to 3γx−2tx, the Fermi pock-
ets grow in size. This is because as the tilt of the nodes
gets larger, more electron and hole states exist at the

Fermi energy. As we shift the chemical potential away
from the node energy, the projections of the nodes are
now isolated with each node in a single electron (hole)
pocket when the chemical potential is raised (lowered).

We again consider the slab geometry described in the
section above in order to investigate the interplay of the
bulk pockets and the Fermi arcs for the model given by
Eqn. (9). Unlike the simpler model described by Eqn.
(8), we see in Fig. 5 that Eqn. (9) supports isolated
Fermi pockets enclosing the Weyl nodes in the type-II
regime when γ = t (Fig. 5a-c) and γ = 1.5t (Fig. 5d-
f). Unlike the Fermi surfaces and arcs generated by Eqn.
(8), in Fig. 5 we see that each node is isolated in its own
hole (Fig. 5a,d) or electron (Fig. 5c,f) pocket when the



6

a b c

d e f

Type I

Type II

FIG. 3. Fermi surface and arc configuration for the “Hydrogen atom” of type-I and type-II TWS. a-c Bulk
Fermi surfaces and surface Fermi arcs for a type I TWS with the same bulk parameters as in Fig. 2a,d,g calculated in a slab
geometry with L = 50 layers in the y-direction. The slab calculations are done at the following constant energy: (a) E = −0.2t,
(b) E = 0, (c) E = 0.2t. We color the states which are exponentially localized to the y = 1 (y = L) surface red (blue) and
note that such surface states form topological arcs connecting the two Weyl nodes (shown as green dots and marked with pink
arrows). We note that at E = 0 the two Fermi arcs are degenerate along kz = 0 and we color them purple to signify this. d-f
Bulk Fermi surfaces and surface Fermi arcs for a type-II TWS with the same bulk parameters as in Fig. 2c,f,i calculated in a
slab geometry with L = 50 layers in the y-direction. The slab calculations are done at the same constant energies as above:
(d) E = −0.2t, (e) E = 0, (f) E = 0.2t.

chemical potential is away from E = 0. We emphasize
that this is due to the extra σ̂1 term in the Hamiltonian
in Eqn. (9). These isolated pockets in Fig. 5 are con-
nected by arcs confined to the surface in the y-direction.
However, in this type-II TWS the Fermi pockets enclos-
ing a Weyl node can be quite extended and, unlike a
type-I TWS, the arcs can terminate on a pocket quite
far away from the projection of the nodes. We see that
as the tilt grows in Fig. 5d-f, so do the pockets enclosing
the nodes. We note that a trivial electron pocket appears
around the (kx, kz) = (π, π) point. This pocket encloses
no Weyl nodes and therefore it is not connected via Fermi
arcs to any other pockets.

Although the local linearized Hamiltonian describing
the spectrum close to a node in Eqn. (9) is identical to
the effective Hamiltonian of nodes of the model described
by Eqn. (8), the full lattice models describe topologically
distinct configurations of bulk Fermi surfaces and surface
Fermi arcs. When there is only one electron pocket and

one hole pocket with the projections of the Weyl nodes
enclosed by the same pocket, the topological protection
of the Fermi arcs is lost. However, we see that once each
node is enclosed in its own isolated pocket, the topologi-
cal protection of the Fermi arcs is restored.

Finally, we consider the energy dispersion of the Fermi
arcs near a node. Again using the slab geometry as above,
we calculate the energy spectrum, this time at a constant
kz, as shown in Fig. 1. We see that for the simplest type-
I case (Eqn. (8) with γ = 0), the surface arcs do not
disperse in kx for a fixed kz. This changes in the type-II
case for both the simple Hamiltonian in Eqns. (8) and
(9). At fixed kz, the arcs connecting the node inherit the
tilt proportional to γ and now bend. This characteristic
bend of the Fermi arc dispersion has been observed in
ARPES studies of type-II Weyl semimetal24.
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FIG. 4. Bulk band structure for type-I and type-II TRB model with separate pockets (the “Helium atom”).
a-c The bulk band structure for the Hamiltonian in Eqn. (9). Electron pockets shown in red and hole pockets shown in blue
merge at the Weyl nodes shown in green. Here we have chosen parameters ky = 0 with the parameters k0 = π/2, tx = t,
m = 2t and γx = t/2 for (a) type-I TWS with γ = 0, (b) type-II TWS with γ = t and (c) type-II TWS with γ = 1.5t. The
cones comprising the Weyl nodes again develop a characteristic tilt of the type-II TWS as γ is increased. d-f Cuts through the
Weyl nodes at ky = kz = 0 for the same parameters as (a-c). g-i Constant energy cuts through the nodal energy (E = 0) for
the same parameters as (a-c). Note that for a type-I TWS, there are no states at the Fermi energy while in the type-II regime,
there are two sets of electron and hole pockets on either side of the Weyl nodes. We see that unlike the Hydrogen-atom model,
the Helium-atom model has disjoint pairs of electron and hole pockets and a pair of each meet at the two Weyl nodes.

IV. INVERSION BREAKING MODEL

We now turn to a lattice model for a topological Weyl
semimetal that breaks inversion symmetry but is invari-
ant under time-reversal. Analogous with Eqn. (7), we

seek a Hamiltonian Ĥ(k) that satisfies the following sym-
metry conditions

P̂†Ĥ(−k)P̂ 6= Ĥ(k), T̂ †Ĥ(−k)T̂ = Ĥ(k), (10)

where P̂ and T̂ are again given by Eqn. (6). Unlike
a time-reversal-breaking Weyl semimetal, the minimum
number of Weyl nodes for a spinless inversion-breaking

(IB) TWS is four. More importantly, the lattice model
for an IB TWS exhibits what we term ”track states” that
are loops of states that live on the surface of the TWS
and are degenerate with the states forming the topolog-
ical Fermi arcs. However, unlike topological Fermi arcs,
these track states form closed contours rather than open
ones; they are not topological, but do evolve from the
topological arc states upon the transition from type-I to
type-II.
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FIG. 5. Fermi surface and Fermi arc configuration for type I and type-II time-reversal-breaking model with
separate pockets (the “Helium atom”). a-c Bulk Fermi surfaces and surface Fermi arcs for a type-II Weyl semimetal
given by Eqn. (9) with the same bulk parameters as in Fig. 4b,e,h calculated in a slab geometry with L = 50 layers in the
y-direction. The slab calculations are done at the constant energies: (a) E = −0.2t, (b) E = 0, (c) E = 0.2t. As in Fig. 3,
we color the states that are exponentially localized to the y = 1 (y = L) surface red (blue) and note that such surface states
form topological arcs connecting the two Weyl nodes (shown as green dots). We note unlike in Fig. 3, each node is isolated
in its own hole (a) or electron (c) pocket when the chemical potential is away from E = 0. These pockets are connected by
arcs confined to the surface in the y-direction. However, in this type-II TWS the Fermi pockets enclosing a Weyl node can be
quite extended, unlike a type-I TWS, the arcs can terminate on a pocket quite far away from the projection of the nodes. d-f
Bulk Fermi surfaces and surface Fermi arcs for a type-II TWS with the same bulk parameters as in Fig. 4c,f,i calculated in a
slab geometry with L = 50 layers in the y-direction. The slab calculations are done at the same constant energies as above:
(d) E = −0.2t, (e) E = 0, (f) E = 0.2t. We see that as the tilt grows, so do the pockets enclosing the nodes. We note that a
trivial electron pocket appears around the (kx, kz) = (π, π) point. This pocket encloses no Weyl nodes and so is not connected
via Fermi arcs to any other pockets.

It is easy to show that the Hamiltonian

ĤIB(k) = γ(cos(2kx)− cos(k0))(cos(kz)− cos(k0))σ̂0

− (m(1− cos2(kz)− cos(ky)) + 2tx(cos(kx)− cos(k0)))σ̂1

− 2t sin(ky)σ̂2 − 2t cos(kz)σ̂3 (11)

satisfies the conditions in Eqn. (10). When γ = 0,
Eqn. (11) describes a TWS with four nodes located
at kW = (±k0, 0,±π/2) that breaks inversion but pre-
serves time-reversal symmetry. The term γ(cos(2kx) −
cos(k0))(cos(kz) − cos(k0))σ̂0 causes a different shift in
both band than those considered in the time reversal
breaking cases and results in both bands bending in both
the kx- and kz-directions. This can produce isolated

Fermi pockets around the Weyl points without having
to add an additional σ̂1 term like in the time-reversal-
breaking case in Eqn. (9). The inversion-breaking model
above also easily generates trivial Fermi pockets that ex-
ist in isolation from those that meet at the Weyl nodes.

We show the bulk band structure for Eqn. (11) in Fig.
6. We see that indeed when γ = 0 (Fig. 6a,d,g), the
electron band meets the hole band at four isolated type-
I Weyl points and the density of states vanishes at the
nodal energy. As γ increases, the Weyl nodes begin to
tilt in the kz-direction. When γ is tuned to the critical
point between the type-I and type-II phases (Fig. 6b,e,h),
the electron and hole pockets still meet at the four Weyl
nodes with a vanishing density of states, but we see in



9

Fig. 6e that the Weyl nodes are now tilting in the kz-
direction. As γ is further increased into the type-II limit
(Fig. 6c,f,i), we now see that the nodes are tilted as seen
in Fig. 6f and the electron (hole) pockets are shifted
below (above) the node energy. In particular, we see in
Fig. 6i that there are four electron and four hole pockets
that exist at E = 0 and meet at the Weyl nodes. There
is also a trivial hole pocket centered at k = (0, 0, 0) and
a trivial electron pocket centered at k = (π, 0, 0).

In order to study the Fermi arcs, we again construct a
slab geometry by transforming the terms dependent on
ky in Eqn. (11) into real space and considering a system
with L layers in the y-direction and infinite in the x- and
z-directions. In the type-I limit with γ = 0 shown in Fig.
7a and b, we find that away from E = 0, the projections
of the nodes are enclosed by isolated small Fermi pockets.
These pockets are connected to one another by topologi-
cal Fermi arcs in the kx-direction. At E = 0, the top and
bottom arcs are degenerate along the lines kz = ±π/2.
In a sense, this type-I (γ = 0) limit in the inversion-
breaking model is effectively composed of two copies of
a time-reversal-breaking Weyl semimetal separated by π
reciprocal lattice vectors along the kz direction.

When γ is increased to the type-II limit, the Fermi arc
and bulk Fermi surface configuration in the inversion-
breaking case is very different from the time-reversal-
breaking model as we see in Fig. 7c and d. The pro-
jections of the Weyl nodes are now enclosed by extended
hole pockets for E < 0 (Fig. 7c) and electron pock-
ets for E > 0 (Fig. 7d). These Fermi pockets are con-
nected by topological Fermi arcs, shown by thick red and
blue lines, to pockets containing Weyl nodes of oppo-
site chirality. Unlike in the type-I limit, here the Fermi
arcs connect pockets along the kz-direction rather than
the kx-direction. One might expect that the transition
point where the Fermi arcs connect nodes in one direc-
tion rather than another is concurrent with the transition
point between a type-I and type-II Weyl semimetal and
indeed our numerical calculations show that is the case
(see Fig. 8). Hence we see that for the same model
with all other parameters held constant, merely tilting
the nodes can lead to a dramatic recombination of the
Fermi arcs and a qualitatively different pocket connec-
tivity.

In Fig. 7c and d, we see that there are many states
that are exponentially localized on the surface, however
many of them form closed loops. We term these closed
loops “track states”; they are degenerate in energy with
the Fermi arcs but do not share their topology. Unlike
Fermi arcs, track states form closed rather than open
contours of surface states. By investigating the evolu-
tion of the Fermi arc and Fermi surface configuration as
a function of γ (Fig. 8), we see that when the Fermi
arc connectivity changes from the the kx-direction to the
kz-direction, they leave behind track states around the
(kx, kz) = (π, π) point.

V. SURFACE STATES: TOPOLOGICAL AND
TRACK

We briefly recapitulate the argument7 for the existence
of topologically protected Fermi arcs in a Weyl semimet-
als. It can be shown that a Weyl node is a monopole
source of Berry curvature with charge equal to its chi-
rality χ. We enclose an isolated Weyl node by a closed
2D subspace of the Brillouin zone. It is well known that
the integral of Berry curvature over a 2D manifold is a
quantized integer known as the Chern number48 when
the bulk band structure is gapped over the region of in-
tegration. In the case of a surface enclosing a Weyl node,
the Chern number calculated in this way is equal to the
chirality χ of the node enclosed. By definition, such a
surface enclosing a Weyl node defines a 2D Chern insu-
lator and therefore possesses |χ| chiral edge modes on its
boundary. As we consider various families of such closed
surface in the Brillouin zone, these chiral edge modes
trace out the open contours of surface states known as
Fermi arcs that must terminate on Weyl nodes. In this
way, there is a correspondence between the Berry cur-
vature of the Weyl nodes, a topological property of the
bulk, and the surface Fermi arcs (see sketch in Fig. 9a)
that are also topological in nature.

A. Topological Protection of Fermi Arcs in Type-II
Weyl Semimetals

The chirality and Berry curvature of a Weyl node are
unaffected by its type19. In the case of the lattice mod-
els we consider in the sections above, this can be shown
explicitly by noting that the ith component of the Berry
curvature of each band (E+ and E−) is given by

Ωk,±,i = ±εijl
dk ·

(
∂dk

∂kj
× ∂dk

∂kl

)
4|dk|3

, (12)

where εijl is the rank 3 Levi-Civita tensor and dk ≡
(d1(k), d2(k), d3(k)) as defined in Eqn. (2). Since the
type of the Weyl node is determined by d0(k) which does
not enter Eqn. (12), the Berry curvature around a node
is indeed manifestly invariant with respect to its type.

The presence of topologically protected Fermi arcs re-
lies on the quantized edge modes of 2D surfaces enclosing
Weyl nodes. We again emphasize that it is necessary for
such 2D surface to exist in a region which is fully gapped
in the bulk. If one constructs such a surface which inter-
sects a bulk pocket, then it no longer describes a Chern
insulator and the quantization of the edge modes is de-
stroyed. It is clear that the extended pockets around
type-II Weyl nodes play an important role in the nature
of the connectivity of the Fermi arcs and the pockets,
since by definition one necessarily cannot take a gapped
2D surface to lie within these pockets. Therefore, the
presence of Fermi arcs in a type-II Weyl semimetal is
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g ih

FIG. 6. Bulk band structure for type-I and type-II inversion breaking TWS. a-c The bulk band structure for the
Hamiltonian in Eqn. (11). Electron pockets shown in red and hole pockets shown in blue merge at the Weyl nodes shown in
green. Here we have chosen parameters ky = 0 with the parameters k0 = π/2, tx = t/2, m = 2t for (a) type I TWS with
γ = 0, (b) the critical point between a type-I and a type-II TWS with γ = 2t and (c) type-II TWS with γ = 2.4t. The cones
comprising the Weyl nodes develop a characteristic tilt of the type-II Weyl node as γ is increased. d-f Cuts through the Weyl
nodes at ky = 0 and kz = −π/2 for the same parameters as (a-c). These cuts are shown as the green lines in (g-i). g-i Constant
energy cuts through the nodal energy (E = 0) for the same parameters as (a-c). We see that for a type-I Weyl semimetal, there
are no states at the Fermi energy. At the critical point between a type-I and type-II TWS, the density of states still vanishes.
In the type-II regime, electron and hole pockets form near the Weyl nodes. These pockets enclose the projections of the Weyl
nodes when the chemical potential is shifted away from E = 0. Trivial pockets also appear at k = (0, 0, 0) and k = (0, 0, π).

only guaranteed by ensuring that the Gaussian surfaces
one constructs in the Brillouin zone enclose Fermi pock-
ets rather than bare nodes.

We provide a simple counting argument that limits the
possible connectivity of Fermi arcs in a Weyl semimetal
of either type:

1. If a Weyl node is type-I with chirality χ, then |χ|
pairs of Fermi arcs will terminate on the Weyl point
when the Fermi energy lies at the nodal energy.
This well-known result is illustrated for the lattice
models in Fig. 3b.

2. If an isolated Fermi pocket fully encloses n Weyl
node of either type such that a closed 2D subspace
where the bulk band structure is gapped can com-
pletely surround the pocket, then the Fermi arcs on

a given surface will have net chirality χtot and ter-
minate on the pocket. Here χtot is the total chiral-
ity of all Weyl nodes enclosed by the Fermi pocket
such that χtot =

∑n
i=1 χi. For type-I nodes, this

is illustrated by Fig. 3a,c and Fig. 7a,b. The lat-
tice models illustrate Fermi pockets enclosing the
projections of isolated type-II Weyl nodes in Fig.
5a,c,d,f and Fig. 7c,d. We see in Fig. 3d,f that
when the net chirality enclosed is zero, Fermi arcs
are not present.

3. When the chemical potential lies at the energy of
a type-II Weyl node at least two Fermi pockets are
connected at the Weyl node. In this case, it is nec-
essary to consider the set of all connected Fermi
pockets when determining the possible Fermi arc
configuration. When multiple Weyl nodes connect
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c d
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Type II

FIG. 7. Fermi surface and Fermi arc configuration for type-I and type-II inversion-breaking Weyl semimetal.
a,b The Fermi surface and Fermi arc configuration for the Hamiltonian given in Eqn. (11) in the type-I limit (γ = 0) calculated
in a slab geometry with L = 50 layers and with bulk parameters the same as in Fig. 6a,d,g. We show this calculation at
constant energies: E = −0.25t (a) and E = 0.25t (b). Here we see that Weyl nodes located at (kx, kz) = (±π/2,±π/2) are
connected by surface states (red and blue lines) to one of opposite chirality across the Brillouin zone in the kx-direction. c,d
The Fermi surface and Fermi arc configuration for the Hamiltonian given in Eqn. (11) in the type II limit (γ = 2.4t) calculated
in a slab geometry with L = 50 layers and with bulk parameters the same as in Fig. 6c,f,i. We show these for the same
constant energies as above: (c) and E = 0.25t (d). The locations of the Weyl nodes are marked with pink arrows. We term
the exponentially localized surface states that form closed loops “track states”. Fermi arcs are shown as bold lines and connect
Weyl nodes in the kz-direction.

a set of Fermi pockets such that the only gapped 2D
subspace of the Brillouin zone surrounding it con-
tains a net chirality χtot = 0, then the net chirality
of Fermi arcs on a surface is also zero, even though
Weyl nodes are present at the Fermi energy. This
is illustrated in Fig. 3e where two Weyl nodes of
opposite chirality connect a single pair of hole and
electron pockets and Fermi arcs are absent even at
the nodal energy. However, when the net chirality

of nodes connecting the set of pockets is nonzero,
then a set of Fermi arcs with net chirality χtot must
satisfy is that they must terminate somewhere on
the set of Fermi pockets. This has the striking con-
sequence that even when the Fermi level lies at the
node energy and topologically protected Fermi arcs
are present, the termination of the surface arcs on
the bulk pockets can occur at any point on the sur-
rounding Fermi pockets. We see this illustrated
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a b c d

FIG. 8. Evolution of Fermi surface and Fermi arc configuration for inversion-breaking Weyl semimetal as a
function of γ. a-d The evolution of the Fermi surface and Fermi arc configuration in a slab geometry for Eqn. (11). Bulk
states are down in black, surface states are shown in red and blue. We have chosen the parameters k0 = π/2, tx = t/2, m = 2t.
The calculations are done at constant energy E = −0.25t for γ = 0 (a), γ = 0.8t (b), γ = 1.4t (c), and γ = 2. (d) shown in an
extended Brillouin zone where both kx and kz range from −1.5π to 1.5π. We see that at the critical point between a type-I
and type-II (d), the Fermi arcs that previously connected Fermi pockets in the kx-direction now connect Fermi pockets in the
kz-direction and track states have formed on the bottom surface (blue) around the (kx, kz) = (π, π) point.

for type-II Weyl nodes connecting isolated pairs of
electron and hole pockets in Fig. 5b,e, where the
Fermi level is at the Weyl energy but Fermi arcs
terminate on a bulk pocket a substantial fraction
of a reciprocal lattice vector from the Weyl nodes.

B. Surface ”Track States” in Type-II Weyl
Semimetals

Topological Fermi arcs are not the only novel surface
states possible in a type-II Weyl semimetal. We have
shown that due to the finite density of states available
at type-II Weyl nodes, new surface states can be appear
which we term “track states.” These track states are de-
generate with the Fermi arcs but do not share the topo-
logical properties of the arcs; instead track states form
closed contours on a given surface which are contractible
to points in the Brillouin zone. Although topologically
trivial, track states appear to play an important role in
determining the locations Fermi arcs may appear in the
surface Brillouin zone.

Track states are generated when the connectivity of
Weyl nodes changes as we tune the parameters of a sys-
tem with multiple pairs of Weyl nodes. In Fig. 8, we
see that by tuning the parameter γ in the Hamiltonian
in Eqn. (11) through the type-I to type-II transition, the
Fermi arcs shift locations. When the nodes are type-I,
Fermi arcs pair up nodes of opposite chirality in the kx-
direction; when the nodes are type-II, Fermi arcs pair up
nodes in the kz-direction. Because the Berry curvature is
invariant with respect to γ, the Chern number of a bulk-
gapped 2D subspace of the Brillouin zone surrounding an
isolated node does not change. Although the Fermi arcs
can shift locations in the Brillouin zone, the net chirality
of modes on a given surface is conserved. When γ = 2t,

track states appear at the (kx, kz) points where Fermi
arcs were located in the type-I limit.

In a type-II Weyl semimetal, track states can also ap-
pear as the Fermi energy shifts. It is shown in Fig. 7c,d
that as the Fermi energy changes from below the Weyl
energy in Fig. 7c to above the Weyl energy in Fig. 7d,
the locations of the arcs shift. For E < 0, the arcs on the
bottom surface (shown as thick blue contours) connect
across the kz = π line while track states are seen as closed
blue contours encircling the points (kx, kz) = (±π/2, 0)
points. For E > 0, this pair of track states have become
a single track state encircling the (kx, kz) = (±π, 0) point
and a pair of arcs connecting electron pockets across the
kz = 0 line. A precisely analogous reconfiguration of
states on the top surface also occurs as shown by the
reorientation of the red contours.

We note that these track states can appear very sim-
ilar to Fermi arcs when track states and arcs lie close
together. Caution must therefore be taken when an-
alyzing the surface Fermi state configurations of type-
II Weyl semimetals in DFT calculations or in ARPES
data. There is experimental evidence for the existence of
track states in MoTe2

24, WTe2
49–51, and a recent ARPES

study of Ta3As2
52 has revealed closed contours of sur-

face states which are strong track state candidates. The
Ta3As2 system is particularly promising as it has been
predicted that pressure can tune a type-I to type-II tran-
sition where track states are likely to appear.

VI. COMPARISON WITH EXPERIMENTS

In this section, we describe the current state of ex-
perimental realizations of topological Weyl semimetals.
Our results are summarized by Table I. Although vari-
ous ab-inito studies have proven useful in the study of the
materials in Table I, as well as the prediction of a variety
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Topological Arcs Trivial Track Statesa b c

FIG. 9. Sketch of the three types of surface states in a topological Weyl semimetal. a Two type-I Weyl nodes of
opposite chirality connected by a Fermi arc on the top (red) and bottom (blue) surfaces. In an arbitrary type-II TWS at an
energy away from the Weyl energy, these arcs would connect Fermi pockets instead of nodes. b A single Fermi pocket enclosing
two nodes of opposite chirality. Since no Gaussian surface can be constructed in a region that is both gapped and encloses only
one node, the only possible surface states are trivial ones, shown in red and blue at the boundary of the pocket that hybridize
with bulk states due to lack of topological protection. c Pairs of Weyl nodes, two of each chirality with each node surrounded
by a Fermi pocket. The pockets are connected by Fermi arcs (thinner red and blue contours) as well as track states (thicker
blue lines) on the bottom surface. Note that states on opposite sides of a given loop of track states will disperse in opposite
directions and so a Gaussian surface enclosing a given Fermi pocket will still have one net surface state of each chirality.

of Weyl semimetals yet to be discovered experimentally,
it is clear that there is a distinct need for a set of minimal
models which describe the general features of topological
Weyl semimetals. From the abundance of type II TWS
in Table I, it is particularly evident that our models pro-
vide a general framework for understanding the topolog-
ical features of type II TWS which is complimentary to
DFT.

In Table I, we note that other than the transition metal
monophosphides, all of the Weyl semimetals which have
been uncovered by spectroscopic experiments are of type
II. Additionally, they all break inversion symmetry with
strictly more than the minimum of two pairs of nodes.
For this reason, we expect track states may be common
in Weyl semimetals. Indeed, we have found that a de-
tailed examination of the spectroscopic results indicate
that evidence of track states is found in nearly all of the
type II Weyl semimetals so far discovered.

The transition metal dichalcogenides MoTe2 and WTe2
each feature long surface states which begin on bulk elec-
tron pockets and terminate on bulk hole pockets. These
bulk pockets each enclose the projections of a net zero
chirality of Weyl nodes and, by the arguments in Section
V above, cannot have a nonzero net chirality of Fermi
arcs terminating on it. This is borne out in both the ab-
initio calculations as well as the ARPES results24,49–51.
The long surface state in WTe2 has been shown51 to have
both topological and trivial character, depending on the
material parameters used in the ab-initio calculations and
therefore the configurations of the Weyl nodes. This is
manifestly a characteristic of a track state.

The transition metal pnictide Ta3S2 features54 4 pairs

of Weyl nodes which are formed from the merging of two
hole pockets with an electron pocket. As we have shown
in Sec. V above, in such a configuration, there cannot
exist a closed and gapped region of the Brillouin zone
which encloses a net chirality of Weyl nodes. In this way,
all surface states shown in Fig. 4 of Ref.54 are in fact
trivial in a topological sense. Additionally, Ta3S2 has set
of surface states that lie close in momentum to the bulk
hole pockets. The bulk band structure of Ta3S2 is pre-
dicted to be highly tunable and is has been predicted54

that strain can tune transitions between type I and type
II Weyl semimetals as well as between these semimetal
phases and a strong topological insulating phase. It is
possible that the track state nature of these surface states
will be revealed by such an experiment.

VII. CONCLUSIONS

The models we present here comprehensively describe
the four classes of Weyl semimetals which can be delin-
eated by the type of the nodes and whether they break
inversion or time-reversal symmetry. Examples from each
class have been predicted by theory and have been ex-
perimentally observed in quantum materials. Particu-
lar realizations obey point group symmetries different in
general than those presented here. It is straightforward
to extend the models we present here to study a Weyl
semimetal with a chosen point group symmetry.

This summary of minimal models for type-I and type-
II Weyl semimetals for both time-reversal-breaking and
inversion-breaking cases may contribute to future inves-
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Material Type Broken symmetry Pairs of Weyl nodes Surface states

TaAs13–15, TaP16, NbAs[REF], NbP53 I Inversion 12

MoTe2
24 II Inversion 4 possible track states

WTe2
49–51 II Inversion 4 possible track states

LaAlGe25 II Inversion 20

Ta3S2
54 II Inversion 4 long Fermi arcs, possible track states

TABLE I. Experimental realizations of Weyl semimetals.

tigations of their properties in applied electric and mag-
netic fields. In particular, we expect our models to shed
light on the nature of quantum oscillations in type-II
Weyl semimetals. Preliminary calculations19 show the
absence of a chiral zero-energy Landau level when the
direction of the applied magnetic field lies outside of the
tilt cone of the type-II Weyl node. However, these calcu-
lations rely on a linearized model for type-II Weyl nodes
and a proper treatment should include the full Fermi
pockets surrounding the Weyl nodes. The models pre-
sented here provide an ideal framework for such a cal-
culation which we leave for future study. These models
also provide a foundation for additional effects of repul-
sive and attractive interactions. Experimental discoveries

of magnetism and superconductivity in Weyl semimetals
could provide impetus for such theoretical studies.
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