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We derive an effective Z2 gauge theory to describe the quantum kagome ice (QKI) state that
has been observed by Carrasquilla et. al. in Monte Carlo studies of the S = 1/2 kagome XYZ
model in a Zeeman field. The numerical results on QKI are consistent with, but do not confirm
or rule out, the hypothesis that it is a Z2 spin liquid. Our effective theory allows us to explore
this hypothesis and make a striking prediction for future numerical studies, namely that symmetry-
protected vison zero modes arise at lattice disclination defects, leading to a Curie defect term in
the spin susceptibility, and a characteristic (Ndis − 1) ln 2 contribution to the entropy, where Ndis

is the number of disclinations. Only the Z2 Ising symmetry is required to protect the vison zero
modes. This is remarkable because a unitary Z2 symmetry cannot be responsible for symmetry-
protected degeneracies of local degrees of freedom. We also discuss other signatures of symmetry
fractionalization in the Z2 spin liquid, and phase transitions out of the Z2 spin liquid to nearby
ordered phases.

I. INTRODUCTION

Quantum spin liquids (QSLs) are remarkable zero-
temperature phases of insulating spin systems.1–3 These
states lack any sort of symmetry-breaking order, but in-
stead exhibit long-range quantum entanglement. Some
QSLs are stable phases with gapless excitations, while
others are gapped and topologically ordered, support-
ing fractional excitations, as in fractional quantum Hall
liquids. Over the last several years, a number of can-
didate materials for gapless QSLs have emerged (see [3]
and references therein). Recent Knight shift4 and inelas-
tic neutron scattering5 measurements suggest a gapped
spin liquid ground state in ZnCu3(OD)6Cl2, but inter-
pretation of these results is complicated by significant
impurity effects, while other measurements point to a
gapless state3,6,7. It remains an important problem to
find candidate materials for gapped QSLs.

In a closely related development, numerical studies
of simple and fairly realistic quantum spin models have
found evidence for two types of gapped QSLs, namely
Z2 QSLs,8–16 and chiral spin liquids.17,18 There is evi-
dence for a Z2 QSL in the S = 1/2 kagome Heisenberg
antiferromagnet,19–22 although there are also contrary in-
dications that the ground state may be gapless.23–26 In
the same model, a chiral spin liquid phase arises upon
adding second and third neighbor interactions, with or
without XXZ anisotropy.27–29 Recently, in the S = 1/2
J1 − J2 triangular Heisenberg antiferromagnet, density
matrix renormalization group studies have found evi-
dence of a gapped spin liquid,30,31 although a variational
wave function approach favors a gapless spin liquid.32

These works raise the prospects for finding gapped QSLs
in real materials, and provide clues where to look for such
states. However, especially given that gapped QSLs are
not conclusively established in some of these models, it
continues to be important to identify simple, fairly real-
istic candidate models for gapped QSLs.

In an exciting addition to this body of work,
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FIG. 1. Schematic zero-temperature phase diagram of the
XYZh model, based on the quantum Monte Carlo results of
Ref. 33, showing quantum kagome ice (QKI), ferromagnetic
(FM) and valence bond solid (VBS) states. Only h > 0, Ja >
0 is shown, as the phase diagram is symmetric under h → −h
and Ja changes sign under unitary π/2 spin rotation. At small
Ja/Jz, the system can be mapped to a honeycomb lattice
quantum dimer model where we believe VBS order is the most
likely possibility,34 although VBS order was not observed in
Ref. 33; this point is discussed further in the text. The phase
transition from QKI to FM was found to be first-order.

Carasquilla, Hao and Melko (CHM) have identified a
gapped, quantum disordered phase in a S = 1/2 XYZ
model on the kagome lattice in a z-axis Zeeman mag-
netic field (XYZh model).33 CHM proposed this state,
dubbed quantum kagome ice, to be a gapped Z2 QSL.

The XYZh model has potential relevance to f -electron
pyrochlore magnets where effective spin-1/2 degrees of
freedom transform not as magnetic dipoles, but instead
as dipolar-octupolar Kramers doublets.35 Together with
G. Chen, we showed that such systems are described by
a XYZ model, which was argued to be particularly rel-
evant for A2B2O7 pyrochlores with A = Nd;35 experi-
ments have found evidence for dipolar-octupolar doublets
in some such systems.36–39 Following prior work on the
“kagome ice” state of classical spin ice pyrochlores,40–47

CHM noted that the pyrochlore XYZ model descends
to the XYZh model on approximately decoupled kagome
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layers upon applying a magnetic field.
In more detail, CHM considered the Hamiltonian

HXYZh=
∑

〈r,r′〉

JzS
z
r
Sz
r
′ − h

∑

r

Sz
r

(1)

−
∑

〈r,r′〉

[

J⊥
2

(

S+
r
S−
r
′ + h.c.

)

+
Ja
2

(

S+
r
S+
r
′ + h.c.

)

]

where Jz > 0, r labels Kagome lattice sites, and 〈r, r′〉
denotes nearest-neighbor bonds. CHM set J⊥ = 0 and
used quantum Monte Carlo to obtain the phase diagram
as a function of Ja/Jz and h/Jz, finding two “lobes” of
QKI centered at h/Jz = ±1, as shown in Fig. 1
CHM examined various candidate orders in the QKI

state and concluded that it lacks symmetry-breaking or-
der. Moreover, following prior works,48–50 they showed
that HXYZh can be exactly rewritten as a U(1) gauge
theory, with the Ja term a pair-hopping of spinons that
can lead to condensation of spinon pairs and thus to a
Z2 QSL. Based on this insight, CHM described how to
obtain this state within a gauge mean-field treatment.49

For small Ja/Jz, the XYZh model onto a honeycomb
lattice quantum dimer model, which can be seen using
degenerate perturbation theory. The phase diagram of
two-dimensional bipartite dimer models, including on the
honeycomb lattice,34 is dominated by different types of
valence bond solid (VBS) order, and we believe that a
VBS state is likely present within the lobe for sufficiently
small Ja. However, we are aware of no general argument
ruling out, for instance, a Z2 QSL or a trivial quantum
paramagnet in the honeycomb dimer model. Indeed, it
has recently been shown that a trivial paramagnet can
occur for S = 1/2 spins on the honeycomb lattice. This
is likely also possible for the dimer model, because it
can viewed as an effective theory for such a spin model.
It is important to note that CHM did not observe VBS
order, but this may be due to a small temperature scale
or problems with equilibration at small Ja.

The results of CHM are consistent with the hypoth-
esis that quantum kagome ice is a Z2 QSL, but this
has not been directly confirmed or ruled out. No Lieb-
Schultz-Mattis type theorem51–53 is believed to hold for
the XYZh model, so that a trivial quantum paramagnet
is expected to be a possible ground state54 and is also
consistent with the results of CHM. It is therefore im-
portant to devise signatures that can distinguish the Z2

QSL and trivial paramagnet, as well as other possible
states.

In this paper, we derive an effective gauge theory of
QKI as a Z2 QSL, study its properties, and use it to
make a striking prediction that we expect can be tested
in future quantum Monte Carlo studies. In particular,
we show that lattice disclination defects host vison zero
modes, i.e. there is no energy cost to insert a vison at a
disclination. The resulting degeneracies only require the
Z2 Ising symmetry of the XYZh model for their protec-
tion, which is remarkable because a unitary Z2 symmetry
cannot protect degeneracies of local degrees of freedom.
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FIG. 2. (a) The sites of the kagome lattice, where spins of
the XYZh model reside, are identified with nearest-neighbor
links of the honeycomb lattice. Honeycomb sites, which cor-
respond to kagome triangles, naturally divide into A and B
sublattices, shown as open and closed circles, due to the bi-
partite nature of the honeycomb lattice. The generators of
the p6m space group are shown, with Pd and Py reflections
(dashed lines) and T1 and T2 translations (thick arrows). (b)
and (c) illustrate the hopping processes in the U(1) gauge
theory that correspond to J⊥ and Ja terms, respectively.

The vison zero modes lead to a Curie spin susceptibility
localized at the defects. In addition, in a system with-
out boundary where Ndis disclinations host vison zero
modes, there are 2Ndis/2 degenerate states associated
with the zero modes, where the factor of 1/2 comes from
the global constraint of an even number of visons. The
resulting (Ndis − 1) ln 2 contribution to the entropy di-
rectly distinguishes vison zero modes from local doublets
bound to disclinations, which would have a degeneracy of
2Ndis . We also discuss other possible signatures related
to the symmetry properties of spinon and vison excita-
tions, both within the Z2 spin liquid phase and at phase
transitions to nearby symmetry-breaking phases.
In Sec. II we derive the effective Z2 gauge theory, start-

ing from an exact rewriting of the XYZh model as a U(1)
gauge theory.33,48–50 We then discuss the role of symme-
try in the Z2 QSL (Sec. III). We find that the spinon has
non-trivial symmetry fractionalization, while the symme-
try fractionalization of the vison is trivial; the computa-
tion of the symmetry fractionalization is discussed in Ap-
pendix A. Section IV describes the vison zero modes at
lattice disclinations their signatures in spin susceptibility
and entropy. Other properties of the Z2 QSL, includ-
ing phase transitions to nearby phases, are discussed in
Sec. V, and the paper concludes with a brief discussion
(Sec. VI).
We would like to note other current work on the the-

ory the spin liquid state in the XYZh model, using an
approach complementary to our own.55

II. DERIVATION OF EFFECTIVE GAUGE

THEORY

Our effective gauge theory is based on an exact rewrit-
ing of the XYZh model as a U(1) gauge theory. Before
getting into details, we motivate the rewriting by consid-
ering the classical limit J⊥ = Ja = 0 and h = Jz, where
the ground states are configurations of Sz

r
with two spins

up and one spin down on every triangle. Kagome sites
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correspond to nearest-neighbor links of the dual honey-
comb lattice, while kagome triangles correspond to hon-
eycomb sites (Fig. 2a). We can view up-up-down spin
configurations as dimer coverings of the honeycomb lat-
tice, associating down spin (up spin) with presence (ab-
sence) of a dimer. Moving slightly away from the classical
case by allowing 0 6= Ja, J⊥ ≪ Jz, we obtain a honey-
comb quantum dimer model, which is a U(1) gauge the-
ory.
Now we proceed to rewrite the XYZh model as a U(1)

gauge theory, without making any assumptions about the
size of the various couplings in the Hamiltonian. This
rewriting follows CHM,33 who in turn followed Refs. 48–
50. We first introduce the Hilbert space and operators of
the gauge theory, and then describe their relationship to
the Hilbert space and spin operators of the XYZh model.
We label the sites of the honeycomb lattice by sans serif
letters r. On each honeycomb link we place a U(1) quan-
tum rotor, with number err′ that will be the electric field,
and phase arr′ that will be the vector portential. On
the same link, these operators satisfy the commutation
relation [arr′ , err′ ] = i, and we define er′r = −err′ (simi-
larly for arr′). On honeycomb sites we also place U(1)
quantum rotors with number nr and phase θr, satisfy-
ing [θr, nr] = i. The site degrees of freedom are matter
fields carrying the U(1) gauge charge. To fully specify
the gauge theory Hilbert space we need to specify the
Gauss’ law constraint, which we take to be

(div e)r = 2ηr +Qr, (2)

where Qr ≡ nr is the gauge charge at r, 2ηr is a static
background charge, and we have defined ηr to be 1 (−1)
for r in the A (B) sublattice. The lattice divergence is
defined by (div e)r =

∑

r
′∼r

err′ , where the sum is over the
three neighbors of r.
The gauge theory Hilbert space is identical to that of

the spin model, if we impose the additional “hardcore”
constraint err′ = 0, 1, with r in the A sublattice. Then
we impose the relation

err′ = ηr(S
z
rr

′ + 1/2), (3)

where we take Sz
rr

′ ≡ Sz
r
′
r
. This says that Ising spin con-

figurations are the same as electric field configurations.
Gauss’ law then determines Qr, giving

Qr = ηr
(

∑

r∈△

Sz
r
− 1/2

)

, (4)

where △ is the triangle whose center is r. We see that Qr

is zero for triangles in an up-up-down spin configuration,
and measures the deviation of the total spin on a triangle
from 1/2. In fact, we included the background charge 2ηr
in Gauss’ law in order to make this property hold.
To complete the mapping between the gauge theory

and spin model, we write

S+
rr

′ = exp
(

iηr(θr − θr′ + arr′)
)

, (5)

r

r
✁✁

r
✁

FIG. 3. Illustration of how Ja and J⊥ terms can combine to
give nearest-neighbor charge-two hopping. Three different Ja

coordinated hopping processes are shown. Two of these are
shown with red dashed arrows, one with green solid arrows.
Acting in succession with the two red/dashed processes gives
a charge-one hopping from r

′′ to r, the same process as the
J⊥ term. Combining this with the green/solid process then
gives a charge-two hopping from r

′′ to r
′.

where again we take S+
rr

′ ≡ S+
r
′
r
. This formula has a sim-

ple interpretation, namely that S+
rr

′ hops a gauge charge
between two neighboring sites of the honeycomb lattice.
Taking h = Jz for simplicity, which puts us at the cen-

ter of one of the lobes of QKI, in terms of the gauge the-
ory degrees of freedom the XYZh Hamiltonian becomes

Hgauge =
Jz
2

∑

r

n2
r
+ U

∑

r∈A

∑

r
′∼r

(err′ − 1/2)2 (6)

− J⊥
∑

〈〈r,r′′〉〉

cos(θr − θr′′ + arr′ + ar′r′′)

− Ja
∑

〈〈r,r′′〉〉

cos(2θr′ − θr − θr′′ + ar′r + ar′r′′).

The sum in the latter two terms is over pairs of next-
nearest neighbor honeycomb sites r, r′′, with r

′ the site
“in between” r and r

′′ as shown in Fig. 2b,c. In order
to obtain a useful effective theory, we have softened the
hardcore constraint on electric fields with the U term,
which restores this constraint in the limit U → ∞, where
the original spin model is recovered. We see that the J⊥
term is a next-nearest neighbor hopping of gauge charges
(Fig 2b). The Ja term is a coordinated hopping, which
moves unit charges from sites r and r

′′ together into site
r
′ (Fig. 2c).
The coordinated Ja hopping can loosely be thought

of as motion of a charge-two object. As was suggested
for very similar U(1) gauge theories on the pyrochlore
lattice,50 and in the present context by CHM,33 it is thus
reasonable that Ja may drive condensation of a charge-
two field, while leaving single charge excitations gapped.
Such a condensation breaks the U(1) gauge structure
down to Z2,

56 thus leading to a Z2 spin liquid.
We note that a nearest-neighbor charge-two hopping

can indeed be generated from the Ja hopping process,
or from Ja and J⊥ processes together, as illustrated in
Fig. 3. This motivates us to introduce a charge-two field
with number Nr and phase Θr, which represents a bound
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state of two unit θr gauge charges. We add the following
terms to the Hamiltonian:

δH = u2
∑

r

N2
r
−∆

∑

r

cos(Θr − 2θr) (7)

− t2
∑

〈rr′〉

cos(Θr −Θr
′ + 2arr′)−K

∑

7

cos((∇× a)
7
).

The first term is a repulsive interaction for the new
charge-two field. The second term corresponds to a pro-
cess where two unit charges convert to a single double
charge, and the third term is nearest-neighbor hopping
of double charges. The last term is a Maxwell term for
the U(1) gauge field, where the sum is over honeycomb
hexagons and (∇× a)

7
is the discrete line integral of arr′

around the perimeter of a hexagon. The discrete line in-
tegral of arr′ around the perimeter of a hexagon is defined
as

(∇× a)
7

=
∑

rr
′∈7

	 arr′ . (8)

The Maxwell term suppresses U(1) gauge fluctuations,
and is the leading dynamical term generated in degener-
ate perturbation theory when J⊥, Ja ≪ Jz. While we do
not work in that limit, the fact that the Maxwell term is
generated there makes it reasonable to add it explicitly
to our effective Hamiltonian. For consistency, we also
redefine Qr ≡ nr + 2Nr in Eq. (2).
We now take the ∆ and t2 terms in δH to be large.

The t2 term drives condensation of the charge-two field,
while ∆ is taken large for convenience. Provided K is
sufficiently large, this drives the system into the Z2 QSL
phase and allows us to obtain an effective gauge theory
describing it.
Taking t2 large and treating the cosine as a constraint,

we have

arr′ =
1

2
Θr

′ −
1

2
Θr + αrr

′ , (9)

where αrr
′ takes values 0, π. There is an ambiguity in

multiplying a U(1) phase by 1/2, which is the same as
the ambiguity in defining the square root for complex
numbers. We pick a branch by associating a U(1) phase
φ with the corresponding real number lying in the interval
[−π, π), for which multiplication by 1/2 is defined in the
usual way.
The other effect of treating the t2 term as a constraint

is that only operators commuting with the term survive
in the low-energy Hilbert space. In particular, err′ does
not commute with the constraint, but

σx
rr

′ ≡ exp(iπerr′) (10)

does, and becomes the Z2 electric field. We also define
the Z2 vector potential σz

rr
′ ≡ exp(iαrr

′), which anticom-
mutes with σx

rr
′ on the same link, justifying the Pauli

matrix notation.
Similarly, taking ∆ large gives the constraint

θr =
1

2
Θr + tr, (11)

where tr = 0, π and we define τz
r

≡ exp(itr). We also
introduce τx

r
≡ exp(iπnr), which, unlike nr or Nr, com-

mutes with the ∆ term.
To write the low-energy effective Hamiltonian, those

terms commuting with the constraints can straightfor-
wardly be simplified using Eqs. (9,11). Terms not com-
muting with the constraint need to be replaced by new
terms acting within the low-energy Hilbert space. Rather
than try to determine those terms systematically, we sim-
ply write down the simplest such terms consistent with
symmetry (taking input from Sec. III), and use physical
arguments to further constrain the corresponding param-
eters. The effective Hamiltonian is

Heff = −K
∑

p

Bp − J
∑

〈〈r,r′′〉〉

τz
r
σz
rr

′σz
r
′
r
′′τz

r
′′

− v
∑

〈rr′〉

σx
rr

′ − u
∑

r

τx
r
, (12)

where the first sum is over hexagonal plaquettes p and
Bp ≡

∏

rr
′∈p σ

z
rr

′ . The first term is obtained directly from
the K term in δH, and the J term from the J⊥ and Ja
terms of the original Hamiltonian. The latter two terms
are the simplest symmetry-allowed terms giving dynam-
ics to σz

rr
′ and τz

r
, in accord with the discussion above.

The Z2 gauge constraint is obtained by exponentiating
Eq. (2) and is

∏

r
′∼r

σx
rr

′ = τx
r
. It should be noted that

the background U(1) gauge charge 2ηr has dropped out.
We are free to choose u, v > 0 by making unitary

transformations τx → −τx (σx → −σx) to change the
sign of u (v). Each of these transformations introduces
a minus sign into the gauge constraint, which becomes
∏

r
′∼r

σx
rr

′ = ±τx
r
, with an undetermined sign that we

now fix below by a physical argument.
First, we need to describe the excitations of the Z2

spin liquid phase that the model enters when K is suffi-
ciently large compared to the other terms in Heff. This
puts the Z2 gauge field in its deconfined phase. There
are two types of gapped excitations: spinons carrying
the Z2 gauge charge, and visons carrying the Z2 gauge
flux. τx = −1 (+1) indicates the presence (absence) of a
spinon, so that u controls the spinon gap. Visons reside
on hexagons with Bp = −1.
To fix the sign of the gauge constraint, we recall our

expectation that a VBS state is the most likely possibility
to occur adjacent to the Z2 spin liquid for Ja, J⊥ ≪ Jz,
based on the mapping to the honeycomb quantum dimer
model (see Sec. I). We suppose that this VBS can be
accessed by condensation of either the spinons or visons
of the Z2 spin liquid. In the same limit where VBS oc-
curs, spinons correspond to defect triangles that violate
the up-up-down constraint, and thus have a large energy
gap. Therefore vison condensation is the only option to
access the VBS.
We can integrate out spinons to obtain a pure Z2 gauge

theory, keeping only the K and u terms of Heff , with
gauge constraint

∏

r
′∼r

σx
rr

′ = ±1, corresponding to pres-
ence (−1) or absence (+1) of a background gauge charge.



5

It should be noted that this background charge has no di-
rect connection to the background charge 2ηr in the U(1)
gauge theory. Visons reside on sites of the dual triangu-
lar lattice (honeycomb hexagons), and feel a background
charge as a π flux. With zero flux, the minimum of the
vison dispersion lies at the Γ point of the Brillouin zone,
and we expect visons to condense at zero momentum if
v is made sufficiently large. This leads to a confined
phase without breaking lattice symmetry. On the other
hand, visons hopping in background π flux have degen-
erate dispersion minima at the zone corners (K points),
so that lattice symmetries are necessarily broken when
large enough v drives their condensation, and the con-
fined phase is a VBS. Therefore we take the gauge con-
straint to be

∏

r
′∼r

σx
rr

′ = −τx
r
. (13)

It should be noted that the presence of background
Z2 gauge charge is a non-universal feature of our effec-
tive theory, that in principle can be changed by tuning
parameters (although it is not clear which parameter to
tune in the XYZh model to achieve this). If v is reduced
and eventually made negative, we can make a unitary
transformation σx

rr
′ → −σx

rr
′ to again make the coeffi-

cient of σx negative in Heff , and remove the background
charge from Gauss’ law. This can be done while remain-
ing within the Z2 spin liquid phase, and can be thought
of as simply reversing the sign of the vison hopping ma-
trix element. From this new point in parameter space of
the Z2 spin liquid, it is clearly possible to condense visons
at zero momentum and enter a trivial phase. This shows
that a trivial quantum paramagnet is indeed possible in
the XYZh model, although to access this phase it may
be necessary to add additional symmetry-allowed terms
to the Hamiltonian. We remark that this situation is dis-
tinct from that occurring in effective theories for other Z2

spin liquids. For instance, a gapped Z2 spin liquid in the
S = 1/2 kagome Heisenberg model [with SU(2) symme-
try] necessarily has a background Z2 gauge charge, which
is tied to the odd number of S = 1/2 moments in each
unit cell and to the impossibility of a trivial quantum
paramagnet in such a model.57

We emphasize that the sign of the gauge constraint, as
a non-universal property, does not affect the presence of
vison zero modes at disclinations.

III. SYMMETRY IN THE Z2 SPIN LIQUID

The symmetry group of the XYZh model is G =
ZI
2 × ZT

2 × p6m, where ZI
2 (generated by I) is the Ising

spin symmetry given by a π rotation about the z-axis in
spin space, and p6m is the space group of the kagome
lattice. While the Zeeman field h breaks the usual time
reversal symmetry for spin systems, the XYZh Hamilto-
nian does enjoy a modified time reversal symmetry (ZT

2 ,
generated by T ) that leaves both Sz

r
and S+

r
invariant;

this is the natural time reversal operation if we view the
XYZh model as a hardcore boson system.

Sz
r

S±
r

θr nr a
rr
′ e

rr
′

g Sz
g(r) S±

g(r) ǫgθg(r) ǫgng(r) ǫgag(r),g(r′) ǫgeg(r),g(r′)
I Sz

r
−S±

r
θr nr a

rr
′ + π e

rr
′

T Sz
r

S±
r

−θr nr −a
rr
′ e

rr
′

- - τz
r

τx
r

σz
rr
′ σx

rr
′

g - - τz
g(r) τx

g(r) σz
g(r),g(r′) σx

g(r),g(r′)

I - - τz
r

τx
r

−σz
rr
′ σx

rr
′

T - - τz
r

τx
r

σz
rr
′ σx

rr
′

TABLE I. Action of symmetry operations g, I, T on the oper-
ators of the spin model and U(1) gauge theory (above double
line), and Z2 effective gauge theory (below double line). Here
g is an element of the p6m space group and ǫg = +1 (−1)
when g preserves (exchanges) the A and B honeycomb sub-
lattices. The transformations of Θr and Nr are the same as
those of θr and nr.

Table I shows how the variables of the spin model and
U(1) and Z2 gauge theories transform under symmetry.
Because θr and arr′ are not gauge invariant, there is a
gauge arbitrariness in choosing their symmetry transfor-
mations. We have made particular choices to simplify the
discussion of the effective Z2 gauge theory; it is possible
to make other gauge-equivalent choices, but this has no
effect on the physics and does not lead to different pos-
sible effective theories. The transformations in Table I
can be obtained from the definitions of the operations
quoted for spin operators, by using the expressions that
relate the U(1) and Z2 gauge theory variables to spin
operators and to one another.
With the symmetry transformations in hand, we can

compute the action of symmetry on the spinon and vison
excitations of the Z2 spin liquid. Because these are frac-
tional excitations, their behavior under symmetry is an
instance of symmetry fractionalization.58–61 By comput-
ing the symmetry fractionalization of the spinons and
visons, we characterize the Z2 spin liquid as a symme-
try enriched topological (SET) phase,58,59,62,63 which is
a starting point for determining its universal properties
tied to symmetry.
To characterize the spinon and vison symmetry frac-

tionalization, we first specify the symmetry group in
terms of generators and relations. We choose genera-
tors I, T , Pd, Py, T1 and T2, where the p6m generators
are described graphically in Fig. 2a. The generators obey
the relations

I2 = T 2 = IT IT = 1 (14)

(Pd)
2
= (Py)

2
= (PdPy)

6

= T1T2T
−1
1 T−1

2 = T1PyT
−1
1 Py = 1 (15)

T2 = PdT1Pd;T2Py = PyT1T
−1
2 . (16)

In addition, there are six more relations dictating that
T and I commute with Pd, Py and T1 (it then follows
from the other relations that the internal symmetries also
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commute with T2). Taken together, these relations com-
pletely specify the group multiplication.
We introduce operators Ie and Im, and similarly for

the other generators, giving the action of symmetry on
spinons (e) and visons (m). These operators obey the
same relations up to minus signs, and the pattern of mi-
nus signs for all the relations specifies the symmetry frac-
tionalization of the corresponding excitation. The spinon
and vison symmetry fractionalizations are computed in
Appendix A. For the visons, we find that all the relations
hold with positive signs; that is, the vison has trivial sym-
metry fractionalization. On the other hand, the spinon
has non-trivial symmetry fractionalization; we find

IeP e
y = −P e

yI
e, (17)

while all other relations hold with a positive sign. This
means that, acting on spinons, the Ising symmetry an-
ticommutes with space group operations that exchange
the A and B sublattices, but commutes with operations
not exchanging the sublattices.
There have been many studies of Z2 spin liquids on

the kagome lattice with continuous spin symmetry, ei-
ther U(1) spin rotations about the z-axis, or full SU(2)
symmetry. It is interesting to ask whether the QKI Z2

spin liquid is related to any of these states. In fact, it is
impossible to start with such a state, and obtain the QKI
Z2 spin liquid by weak explicit breaking of the continu-
ous spin symmetry down to ZI

2 . This is so because with
continuous spin symmetry, the I operation can be con-
tinuously deformed to the identity, so that Ie must com-
mute with all the discrete symmetry generators, which is
not consistent with Eq. (17).

IV. VISON ZERO MODES AT DISCLINATIONS

Here, we consider disclination defects of the crystal lat-
tice, and show that the Z2 QSL has symmetry-protected
zero modes bound to these defects. These zero modes are
visons that cost exactly zero energy as long as Ising sym-
metry is preserved. We describe observable signatures
of the vison zero modes that can be probed in future
quantum Monte Carlo studies. We note that very simi-
lar anyon zero modes at symmetry-flux defects of on-site
symmetries, and also at lattice dislocations, have been
described previously in Ref. 64.
Figure 4 shows a π disclination centered at a hexagon.

The disclination is a defect of the lattice where points re-
lated by a π rotation at the disclination center are identi-
fied. Apart from identifying points related by the π rota-
tion, we focus on a special type of disclination where the
Hamiltonian density away from the disclination center is
left unchanged, i.e. the Hamiltonian of the XYZh model
on every site and link is the same as in the defect-free
system. Such a disclination preserves the Ising symme-
try. All of our results continue to hold for more generic π
disclinations, as long as Ising symmetry is preserved, and
as long as the Hamiltonian density is unchanged in the far

❛
❜

❝
❛
✵

✂

❦

❦
✵

FIG. 4. π disclination at a hexagon center of the kagome
lattice, with the dual honeycomb lattice also shown. The
disclination is a defect where the shaded region is cut out,
and sites of the remaining lattice that are related by a π rota-
tion about the disclination center are identified. Equivalently,
rather than cut out the shaded region, we can simply identify
all sites related by a π rotation, such as the kagome sites k
and k′. Similarly, the honeycomb site a is identified with a′.
The hexagonal honeycomb plaquette at the disclination cen-
ter becomes a triangular plaquette with sides ab, bc, ca′ ≃ ca.

field of the defect. Our results also hold for any disclina-
tion that identifies sites in the A sublattice with sites in
the B sublattice (i.e., for ±π/3 disclinations), but not for
±2π/3 disclinations that preserve the bipartite structure
of the honeycomb lattice.

We first consider the effect of a single disclination in
an infinite plane, using the effective Z2 gauge theory of
the Z2 QSL. We go to the exactly solvable point of Heff

deep within the spin liquid phase, by setting J = v = 0.65

At this point, the exact eigenstates are labeled by eigen-
values of the commuting operators τx

r
and Bp, and the

spinon and vison excitations do not propagate. We ob-
serve that all hexagonal plaquettes remain locally un-
changed, except for the hexagon pdis at the disclination
center, which becomes a closed loop of three links. This
implies that Bpdis

is odd under the Ising symmetry, and
in order to preserve Ising symmetry we must set the cou-
plingKdis of this term to zero. Therefore, putting a vison
at the core of the disclination costs zero energy, and we
have a pair of degenerate vison / no-vison states.

Remarkably, this vison zero mode is protected by the
ZI
2 Ising symmetry; this is unusual because normally a

unitary Z2 symmetry cannot lead to symmetry-protected
degeneracies. To see the symmetry protection, consider
an effective 2× 2 matrix Hamiltonian for the doublet of
vison / no-vison states, Hdoublet = axσ

x + ayσ
y + azσ

z.
az corresponds to Kdis and is forbidden by Ising symme-
try. The off diagonal terms ax and ay are also forbid-
den, because no local operator we might use to perturb
the Hamiltonian can create or destroy a vison and flip
between σz eigenstates. The doublet therefore remains
degenerate as long as Ising symmetry is preserved – no
other symmetries are needed for its protection. While
lattice rotation of the defect-free system plays an impor-
tant role, allowing us to introduce the disclination in the
first place, it and other point group symmetries are not
needed to protect the zero mode.
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We now turn to observable signatures of the vison zero
modes. The degeneracy will be lifted if the Ising symme-
try is broken explicitly, because Kdis 6= 0 is then allowed.
Returning to the XYZh model, this can be achieved by
adding a local transverse field

Htransverse = −
∑

r

hx(r)S
x
r
, (18)

where hx(r) non-zero only near the disclination center.
This implies that disclinations contribute a Curie term in
the temperature dependence of the transverse spin sus-
ceptibility χxx(T ). Since only the spins near the defect
contribute to the Curie susceptibility, to detect this effect
it is sufficient to look at the local susceptibility of spins
in some region near the disclination. Indeed, looking at
the local susceptibility is preferable to better separate
bulk and impurity contributions to χxx(T ); away from
the disclination, χxx(T ) goes to a constant as T → 0.
The Curie behavior should be observable within a tem-
perature range Tlow < T < Tgap, where Tgap is the lowest
bulk energy gap of the XYZh model in temperature units,
and Tlow corresponds to the energy scale for interactions
between vison zero modes on nearby disclinations. Such
interactions require visons to tunnel through the bulk
where they are gapped, and thus go to zero exponentially
in the separation between disclinations.
The vison zero modes also have an interesting manifes-

tation in entropy as measured by heat capacity. We con-
sider a finite system without boundary, which has an even
number Ndis of disclinations. Näıvely we might guess the
total degeneracy is 2Ndis , but this is not correct due to
the constraint that the total number of visons in the sys-
tem must be even. This means that the total degeneracy
is in fact 2Ndis−1. In principle, this should be observable
in quantum Monte Carlo by measuring the heat capacity
in a small transverse field, and integrating the resulting
Schottky peak to obtain the entropy of (Ndis − 1) ln 2
associated with the gapless defect modes.
This latter signature is important, as it differentiates

vison zero modes from a collection of local doublets
bound to disclinations (e.g. Kramers doublets), which
would have a degeneracy of 2Ndis . Another way to dif-
ferentiate these two scenarios would be to add pertur-
bations, localized near disclinations, breaking all sym-
metries except ZI

2 .
66 Adding such perturbations will gap

out local doublets (which cannot be protected by Ising
symmetry alone), but will preserve the vison zero modes.
We note that the presence of local doublets can also be
interesting. For example, following Ref. 67, it can be
shown that Kramers doublets bound to disclinations are
a sign of a non-trivial symmetry protected topological
phase, protected by the combination of D6 point group
and time reversal symmetry.68

The vison zero modes should be thought of as a conse-
quence of the symmetry fractionalization of spinons and
visons, and in particular of the non-trivial spinon sym-
metry fractionalization. We make this connection indi-
rectly: Any Z2 QSL in the same phase as the one de-

scribed here can be adiabatically continued so that it is
described by the same effective theory and has robust vi-
son zero modes at disclinations, which are a property of
the quantum phase. This Z2 QSL is characterized as a
SET phase by the spinon and vison symmetry fractional-
ization, and only the spinon symmetry fractionalization
is non-trivial, so by process of elimination it must be re-
sponsible for the vison zero modes. For example, if we
modified the action of Ising symmetry to be trivial on σx

and σz, we would obtain trivial symmetry fractionaliza-
tion, and nothing would forbid Kdis 6= 0, so there would
be no vison zero modes. This argument is indirect, and
it would certainly be desirable to have a more direct and
explicit connection between symmetry fractionalization
and vison zero modes, as obtained in Ref. 64 for on-site
and translation symmetries. We have not currently made
such a connection, which we leave for future work.

V. OTHER PROPERTIES OF THE Z2 SPIN

LIQUID

Here we use our effective theory to discuss other prop-
erties of the Z2 QSL. Some of these properties are likely
challenging to test in quantum Monte Carlo, but may
instead be accessible to other numerical approaches.
First, we focus on direct consequences of the non-trivial

spinon symmetry fractionalization within the spin liquid
phase. Every state in the single-spinon spectrum is at
least doubly degenerate, because a non-degenerate state
is not consistent with anticommuting symmetry gener-
ators as in Eq. (17). While the single-spinon spectrum
cannot be directly probed, its degeneracies lead to char-
acteristic features in the two-spinon continuum. Previous
works elucidated this structure in cases where transla-
tions have non-trivial commutation with other symme-
try generators, and found an enhanced periodicity of the
two-spinon density of states in crystal momentum.69–71

Here, acting on a single spinon, translations commute
with other generators. Nonetheless, similar structure is
present in the density of states, and can be resolved by
point group and Ising quantum numbers.
For simplicity, we focus on Py and I symmetries, and

follow the analysis of Ref. 71. We consider a two-spinon
scattering state |ψ〉, whose energy is such that single
spinon excitations cannot decay (this will always be true
near the bottom of the two-spinon continuum). With-
out loss of generality, we take |ψ〉 to be an eigenstate
of Py and I, with eigenvalues σP = ±1 and σI = ±1,
respectively. The action of symmetry operations on |ψ〉
factorizes into a product of actions on the two individual
spinons, for example

Py|ψ〉 = P e
y (1)P

e
y (2)|ψ〉. (19)

We then consider the effect on σP of transforming just
one of the spinons by the Ising operation,

|ψ′〉 = Ie(1)|ψ〉. (20)
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We have

Py|ψ
′〉 = P e

y (1)P
e
y (2)|ψ

′〉 = −σP |ψ
′〉, (21)

and we see that σP → −σP . Now, |ψ′〉 is an eigenstate
with the same energy as |ψ〉, because Ie(1) is a symmetry
operation, and the two spinons do not interact in a scat-
tering state. Similarly, we can find a state of the same
energy with σI → −σI .
This discussion can be summarized by defining

NσP ,σI
(ω) to be the density of two-spinon scattering

states with Py-eigenvalue σP and I-eigenvalue σI . We
have shown that NσP ,σI

(ω) is independent of σP and σI .
In particular, the low-energy threshold for the two-spinon
continuum is the same in all four symmetry sectors.
Another signature of the spinon symmetry fraction-

alization involves reduction to a one-dimensional SPT
state.72,73 We roll the system into a cylinder, so that
Py acts effectively as an on-site symmetry of the one-
dimensional system, i.e. it does not exchange two ends
of the cylinder. Then I and Py generate a Z2 × Z2 on-
site symmetry, which can protect a single non-trivial SPT
phase, the Haldane phase.74–81 In this phase, there are
degenerate end states acting on which I and Py anti-
commute, just as in Eq. (17). We consider two different
minimally entangled states (MES) of the Z2 spin liquid,
that are related by creating a pair of spinons and drag-
ging them to opposite ends of the cylinder. Equivalently,
we can start with one MES and act on it with the string
operator transporting a spinon along the cylinder. One of
these MES will be in the trivial Z2×Z2 SPT phase, while
the other will be in the Haldane phase, and the difference
can be detected via the entanglement spectrum.77

Now we turn to the properties of continuous quantum
phase transitions that may occur between the Z2 QSL
and nearby conventional ordered phases. To access such
a transition, we can either condense spinons or visons.
The particle that does not condense is gapped at the
transition and plays no role there.
To study condensation of visons, we integrate out

gapped spinon degrees of freedom, which reduces Heff

to a pure Z2 gauge theory obtained from Eq. (12) by
dropping the u and J terms, and replacing the gauge
constraint with

∏

r
′∼r

σx
rr

′ = −1. Condensation of visons
in this theory, which is sometimes referred to as “odd” Z2

gauge theory, has been studied before in [82 and 83]. The
simplest possibility, which is driven by nearest-neighbor
hopping of visons on the triangular dual of the honey-
comb lattice, is for visons to condense at the Brillouin
zone corners (K points), which can lead either to colum-
nar or plaquette valence bond solid (VBS) order, depend-
ing on the sign of an anisotropy term. The transition is in
the XY universality class, where the physical VBS order
parameter is bilinear in the XY field. Ref. 83 also stud-
ied transitions to other types of VBS states that can be
driven by adding additional terms to the gauge theory.
In the present context, VBS order is likely for small Ja

due to the mapping to the honeycomb lattice quantum
dimer model (see Fig. 1). If this order can be found

in quantum Monte Carlo, depending on the type of VBS
order, there could be a continuous transition between the
VBS and Z2 QSL states.
Turning to condensation of spinons, the first step is

to integrate out the gapped vison degrees of freedom.
Before doing that, it is convenient to make a new gauge
choice for the action of Ising symmetry, where

I : σz
rr

′ → σz
rr

′ (22)

I : τz
r
→ −τz

r
, r ∈ A (23)

I : τz
r
→ τz

r
, r ∈ B. (24)

The difference from the form given in Table I is that we
have “moved” (by gauge transformation) the action of I
from the gauge field to the matter fields. Integrating out
visons corresponds to freezing the magnetic fluctuations
of the gauge field, so we set σz

rr
′ = 1, and drop the K

and v terms in Heff . The new gauge choice for Ising
symmetry makes this procedure manifestly compatible
with the symmetries of the problem.
The effective theory thus becomes two decoupled trans-

verse field Ising models, on the A and B triangular sublat-
tices of the honeycomb lattice. For simplicity, we assume
J > 0 so that these Ising models are ferromagnetic. The
two Ising models will be coupled by other allowed terms
not included in Heff , as is easily taken into account upon
passing to a continuum field theory. We denote the con-
tinuum fields for the two Ising models by φA and φB . To
construct a Lagrangian for φA and φB , we need to dis-
cuss the action of microscopic symmetries. Both fields
change sign under global Z2 gauge transformations. On
the other hand, φA changes sign under Ising symmetry
while φB is invariant. Some of the lattice symmetries
(such as Py) exchange A and B sublattices, and therefore
take φA ↔ φB . Taking these symmetries into account,
and working in 2 + 1-dimensional Euclidean space time
with coordinates µ = τ, x, y, the continuum Lagrangian
is

L =
1

2

[

(∂µφA)
2 + (∂µφB)

2
]

+
m

2
(φ2A + φ2B) (25)

+ λ(φ2A + φ2B)
2 + λ′φ2Aφ

2
B . (26)

Here we have included all quadratic terms with two or
fewer derivatives, and all quartic terms with no deriva-
tives.
For λ′ = −2λ, L reduces to two decoupled φ4 field

theories, which are constrained by symmetry to have the
same parameters. One can contemplate an Ising × Ising
transition, but the φ2Aφ

2
B coupling is relevant at this fixed

point, so the Ising × Ising transition can only exist as a
multicritical point.
Setting instead λ′ = 0, we have a XY model. The

λ′ term is a four-fold anisotropy that is known to be
irrelevant at the XY critical point (see [84] and references
therein). This suggests that there can be a continuous
transition in the XY universality class between the Z2

QSL, where 〈φA〉 = 〈φB〉 = 0, and an ordered state with
a φA, φB condensate. To establish this conclusively, it
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would be necessary to consider allowed higher derivative
terms and show they are irrelevant.
The nature of the ordered state depends on the sign of

λ′. For λ′ > 0, the condensate can take on four values,
namely

〈φA〉 = ±φ0, 〈φB〉 = 0 (27)

〈φA〉 = 0, 〈φB〉 = ±φ0. (28)

The overall sign of the condensate is not physical, because
it can be changed by a global Z2 gauge transformation, so
there are two distinct ground states. In this phase, Ising
symmetry is preserved, but those point group symme-
tries exchanging the A and B sublattices are broken. A
microscopic realization of this ordering pattern is a den-
sity wave of S+

r
S+
r
′ on nearest-neighbor kagome bonds,

where 〈S+
r
S+
r
′〉 = c± δ, with the positive (negative) sign

on bonds contained in up-pointing (down-pointing) tri-
angles.
For λ′ < 0, up to Z2 gauge transformations there are

two distinct states, with

〈φA〉 = ±〈φB〉. (29)

Here, Ising symmetry is broken, and all lattice symme-
tries are preserved, so this is the same ferromagnetic state
observed by CHM in the XYZh model.33 There, a first-
order transition was found between the QKI regime and
the ferromagnetic state. Our analysis suggests that this
transition could potentially be made continuous, and in
the XY universality class, by some suitable modification
of the XYZh model.

VI. DISCUSSION

In this paper, we derived an effective Z2 gauge theory
to explore the hypothesis that the QKI state observed
in the XYZh model is a Z2 QSL.33 In addition to other
properties, we found that lattice disclination defects in
the Z2 QSL host vison zero modes, which lead to strik-
ing observable signatures in the spin susceptibility and
entropy. It would be exciting if these predictions can be
tested in future numerical studies of the XYZh model.
The possibility of anyon zero modes at symmetry de-

fects, including flux defects of on-site symmetries and lat-
tice dislocations, has already been pointed out in Ref. 64.
However, it appears that little attention has been given
to such phenomena so far. In part because anyon zero
modes can give rise to striking observable consequences,
as we discussed here, further work on this topic may be
worthwhile.
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Appendix A: Computation of spinon and vison

symmetry fractionalization

In the main text, symmetry fractionalization was de-
scribed in terms of operators giving the action of symme-
try on a single spinon or vison. For exactly solvable toric
code type models, such operators can be explicitly con-
structed, and used to compute the symmetry fractional-
ization of spinons and visons.85 Here, using the fact that
the QKI Z2 spin liquid has a solvable point that is equiv-
alent to a toric code model, we compute the symmetry
fractionalization, largely following Ref. 85.
The Z2 gauge theoryHeff of Eq. (12) is exactly solvable

when J = v = 0, because Bp and τx
r

commute with
Heff and form a complete set of commuting operators.
To make contact with Ref. 85, we now exploit the well-
known mapping between Z2 gauge theories and toric code
models,16 which maps the solvable point of the gauge
theory to a solvable toric code.
The toric code Hilbert space has a single Ising spin on

each link of the honeycomb lattice, for which we write
Pauli operators µz

rr
′ , µx

rr
′ . The Hilbert space is a ten-

sor product of single-spin Hilbert spaces; there are no
gauge constraints. The mapping between gauge theory
and toric code Hilbert spaces is given by

µz
rr

′ = τz
r
σz
rr

′τz
r
′ (A1)

µx
rr

′ = σx
rr

′ . (A2)

It follows that

τx
r
= −

∏

r
′∼r

µx
rr

′ , (A3)

where we used the gauge constraint Eq. (13). From these
mappings and TABLE. I, it is straightforward to deter-
mine the action of symmetry on µz

rr
′ and µx

rr
′ . We have

g : µx,z
rr

′ → µx,z

g(r),g(r′) (A4)

T : µx,z
rr

′ → µx,z
rr

′ (A5)

I : µz
rr

′ → −µz
rr

′ (A6)

I : µx
rr

′ → µx
rr

′ , (A7)

where g is a p6m space group operation.
The gauge theory Hamiltonian Heff maps to the toric

code Hamiltonian

H̃toric = u
∑

r

Ar −K
∑

p

Bp, (A8)

where Ar ≡
∏

r
′∼r

µx
rr

′ and Bp =
∏

rr
′∈p µ

z
rr

′ . The only
difference from the usual toric code on the honeycomb
lattice is the sign of the Ar term. We can change this
sign by making a basis change, using the unitary trans-
formation U =

∏

rr
′ µz

rr
′ , which sends µx → −µx, and
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results in

Htoric = −u
∑

r

Ar −K
∑

p

Bp. (A9)

The action of the symmetry operations on the Pauli op-
erators remains unchanged in the new basis.
To summarize, we have mapped the problem to the

usual toric code model on the honeycomb lattice. Space
group and time reversal act in a trivial way on Pauli
operators, but Ising symmetry acts non-trivially on µz.
We can therefore anticipate that the subgroup p6m×ZT

2

has trivial symmetry fractionalization for both spinons
and visons, and that any non-trivial part of the symmetry
fractionalization must involve the Ising symmetry. We
now outline a more detailed calculation of the symmetry
fractionalization, which confirms this expectation.
Before describing the calculation, we first give a more

detailed description of what is meant by the spinon (“e-
particle”) symmetry fractionalization.59 (The description
for visons is identical.) The generators (I, T , Pd, Py,
T1 and T2) and relations of the symmetry group are de-
scribed in Sec. III. We introduce operators Ie, T e, P e

d ,
P e
y , T

e
1 and T e

2 giving the action of each generator on a
single spinon. These operators obey the same relations as
in the symmetry group, but only up to Z2-valued phase
factors. That is,

(Ie)
2
= σe

I , (T e)
2
= σe

T (A10)

IeT eIeT e = σe
IT (A11)

(P e
d )

2
= σe

pd,
(

P e
y

)2
= σe

py (A12)
(

P e
dP

e
y

)6
= σe

pdpy (A13)

T e
1T

e
2T

e−1
1 T e−1

2 = σe
t1t2 (A14)

T e
1P

e
yT

e−1
1 P e

y = σe
t1py (A15)

T e
1 I

eT e−1
1 Ie−1 = σe

t1I (A16)

P e
dI

eP e−1
d Ie−1 = σe

pdI (A17)

P e
yI

eP e−1
y Ie−1 = σe

pyI (A18)

T e
1 T

eT e−1
1 T e−1 = σe

t1T (A19)

P e
dT

eP e−1
d T e−1 = σe

pdT (A20)

P e
yT

eP e−1
y T e−1 = σe

pyT (A21)

T2 = PdT1Pd (A22)

T2Py = PyT1T
−1
2 . (A23)

Here, each σe parameter can be either +1 or −1. The
generators can be redefined by a minus sign without af-
fecting any physical properties; for example, T e

1 → −T 1
e

is an allowed redefinition. The σe parameters are invari-
ant under such redefinitions, and specifying all 14 σe’s
gives the spinon fractionalization class, which is an ele-
ment of H2(G,Z2) ≃ (Z2)

14. The last two relations have
no σe parameters because the generators can be suitably
redefined to remove any phase factors.
We find that all the σe’s are unity, except σe

pyI = −1.
Since Py is the only p6m generator that exchanges the A

and B honeycomb sublattices, it follows that Ie anticom-
mutes with precisely those p6m operations exchanging
the two sublattices, while it commutes with operations
taking A to A and B to B. For the vison, we find that all
the σ parameters are unity; that is, the vison fractional-
ization class is trivial.
We now describe how the spinon symmetry fraction-

alization is computed. We omit the computation of the
vison symmetry fractionalization, as it can be straight-
forwardly obtained by the same means. We first follow
Ref. 85 to obtain the σe’s involving only unitary opera-
tions. We then determine the σe’s involving time-reversal
by a different argument.
In the ground state of the toric code, Ar = 1, and

spinons reside at honeycomb sites with Ar = −1. To
create a pair of spinons at r1 and r2, we act on the ground
state with a string operator Le

s, where s is a path of links
on the lattice joining r1 and r2, and Le

s is a product of
µz
rr

′ over this path. Such string operators also transport a
spinon from one site to another. We consider two-spinon
states

|ψe(s)〉 = Le
s|ψ0〉, (A24)

where for simplicity we assume the ground state |ψ0〉
is invariant under all symmetry operations. The state
|ψe(s)〉 only depends on the endpoints of the path s.
We let g be a unitary element of the symmetry group,

realized by the operator Ug. Ref. 85 showed that we can
find operators Ue

g
(r) giving the action of g on the spinon

at r, satisfying

Ug|ψe(s)〉 = Ue
g
(r1)U

e
g
(r2)|ψe(s)〉. (A25)

In general,

Ue
g
(r) = fg(r)L

e
sg(r)

, (A26)

where fg(r) ∈ {±1}, and sg(r) is a path joining r to g(r).
Only the action of Ue

g
(r) on states of the form |ψe(s)〉 is

of any consequence, and different choices of Ue
g
(r) having

the same action are considered equivalent. For the toric
code model we are considering here, the choice of path
sg(r) (for fixed endpoints) does not affect the action of
Ue
g
(r) on |ψe(s)〉, so we can completely specify Ue

g
(r) by

fg(r).
It was shown in Ref. 85 that the operators Ue

g
(r) have a

unique action on states |ψe(s)〉 up to projective transfor-
mations Ue

g
(r) → λ(g)Ue

g
(r), where λ(g) ∈ {±1}. Work-

ing in terms of generators and relations, these transfor-
mations simply express the freedom to redefine Ue

g
(r) by

a minus sign for g a generator.
The σe parameters can then be calculated by acting

with appropriate products of Ue
g
(r) on a state |ψe(s)〉.

For example, to calculate σe
py, we write

Ue
Py
[Py(r1)]U

e
Py
(r1)|ψe(s)〉 = σe

py|ψe(s)〉, (A27)

and evaluate the left-hand side.
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As mentioned above, the operators Ue
g
(r) are com-

pletely specified by fg(r). It is not difficult to see that

fg(r) = 1, (A28)

for g any space group operation, including the generators
T1, T2, Py and Pd. For the Ising symmetry, we have

fI(r) =

{

+1, r ∈ A
−1, r ∈ B

. (A29)

With this information, it is straightforward to follow the
prescription described above and determine all the σe

parameters not involving time reversal. We find that
they are all equal to unity except σe

pyI = −1.
It would not be difficult to extend the formalism of

Ref. 85 to incorporate time reversal, but to maximize ef-
ficiency and minimize the introduction of new formalism,
we use a different set of arguments to determine the re-
maining five σe parameters involving T . All of these
parameters are associated with particular symmetry-
protected degeneracies in the single-spinon spectrum that
we now show are not present.

First, we consider σe
T . If this parameter were −1,

spinons would be Kramers doublets, but a spinon local-
ized on the lattice site r is clearly non-degenerate, imply-
ing σe

T = 1. Similarly, we must also have σe
IT = 1, since

otherwise Ie and T e would anticommute, and a spinon
localized to r would have at least a two-fold degeneracy.

The remaining σe parameters involving time reversal
are σe

t1T , σ
e
pdT and σe

pyT . These parameters involve the
space group generators, which in general are not symme-
tries of a spinon localized at r. Instead, it is convenient
to consider single-spinon plane wave states. We perturb
the toric code Hamiltonian by adding δH = −h̃

∑

rr
′ µz

rr
′ ,

which breaks ZI
2 but preserves p6m × ZT

2 . This term
is a nearest-neighbor hopping for spinons, and results
in a spinon dispersion with a non-degenerate minimum
at k = 0. If any of σe

t1T , σ
e
pdT or σe

pyT were equal to
−1, time reversal would anticommute with some space
group operations, which is inconsistent with having a
non-degenerate single-spinon energy eigenstate. There-
fore, all of the σe parameters involving time reversal are
equal to +1.
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