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In an isotropic strongly interacting quantum liquid without quasiparticles, general scaling argu-
ments imply that the dimensionless ratio (kB/~) η/s, where η is the shear viscosity and s is the
entropy density, is a universal number. We compute the shear viscosity of the Ising-nematic critical
point of metals in spatial dimension d = 2 by an expansion below d = 5/2. The anisotropy asso-
ciated with directions parallel and normal to the Fermi surface leads to a violation of the scaling
expectations: η scales in the same manner as a chiral conductivity, and the ratio η/s diverges at

low temperature (T ) as T−2/z, where z is the dynamic critical exponent for fermionic excitations
dispersing normal to the Fermi surface.

I. INTRODUCTION

Recent experiments on graphene1,2 and PdCoO2
3 have

displayed remarkable evidence for nearly-momentum-
conserving hydrodynamic flow of the electron liquid. In
clean Fermi liquids, hydrodynamic flow requires very
clean samples with weak umklapp scattering so that
electron-electron collisions lead to thermalization before
there is significant momentum lost to the crystal3–6.
However, rapid thermalization and hydrodynamics are
natural properties of quantum critical systems7 and
strange metals8–11, and their consequences should be
visible even in moderately clean samples. Graphene
was proposed as a strange metal in which ill-defined
quasiparticles lead to hydrodynamic flow at interme-
diate temperatures12–23: the experiments also display
evidence1,2,20–22 for the viscous drag of such flow. There
have also been studies of viscous flow in high energy
physics24–27 and ultracold atoms28–32.

These experimental advances indicate that the time
is ripe for exploring hydrodynamic electron flow in the
ubiquitous strange metal regimes of the cuprates or the
pnictides. These are metals without quasiparticle excita-
tions, and so should exhibit hydrodynamic flow when im-
purities are dilute. We note the indirect evidence for such
behavior in the photoemission experiments of Rameau et
al.33. To this end, here we examine the simplest model
which realizes a metallic state without quasiparticles in
two spatial dimensions, and compute its shear viscosity,
η. We will study the quantum critical point (QCP) for
the onset of Ising nematic order34–36 using its continuum
field theoretic formulation using patches on the Fermi
surface37,38.

General scaling arguments (reviewed below) for a spa-
tially isotropic system imply that η should scale in the
same manner as the entropy density, s; so

η/s ∼ ~/kB , (1)

where the r.h.s. restores dimensions, and the prefactor is
expected to be of order unity. (In d = 2 hydrodynamic
long time tails can lead to logarithmic corrections to η39

which we ignore here, as we find much larger corrections).
This is also the expectation from holographic studies
of critical quantum liquids24,25,40–44. A relationship of
the form (1) appeared in string-theoretic realizations of
strongly-coupled field theories25, and has been widely
used as a diagnostic of strongly-coupled non-quasiparticle
dynamics in the quark-gluon plasma24–27.

Our main result is that Eq. (1) does not apply to many
of the models of electronic strange metals without quasi-
particles. Even without long-lived quasiparticles, such
models have a Fermi surface at T = 0, which defines
momenta with singular low energy excitations; more pre-
cisely, the Fermi surface is the locus of points at which the
inverse Green’s function vanishes. Although the metal
is globally isotropic, the excitations in the vicinity of
a particular point on the Fermi surface have a highly
anisotropic structure, as shown in Fig. 1: excitations at
a momentum k⊥ perpendicular to the Fermi surface have
a typical energy kz⊥, while excitations at a momentum k‖
parallel to the Fermi surface have a typical energy k2z

‖ ;

here z is the dynamic critical exponent. In the present
paper, we will show that the dispersion of the excitations
parallel to the Fermi surface plays a more fundamental
role in determining the value of the shear viscosity η. As
a result Eq. (1) does not apply, and we find instead a
divergence as T → 0,

η/s ∼ T−2/z. (2)

This surprising violation of (1) in an isotropic system
can be traced directly to the presence of a Fermi sur-
face. Our result implies that holographic duals of strange
metals45–50 do not fully capture the Fermi surface struc-
ture. Instead, it appears that bulk quantum gravity cor-
rections will be required to resurrect the Fermi surface
in the holographic theories51–53, and to obtain the result
corresponding to Eq. (2).

Section II will present a review of scaling arguments
which usually apply the conventional relation in Eq. (1).
The dimensionally extended field theory for the quantum
critical point will be presented in Section III. We will use
this field theory to compute the ‘optical’ shear viscosity
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FIG. 1. Fermi surface and definition of the momentum com-
ponents parallel (k‖) and perpendicular (k⊥) to the Fermi
surface at the two Fermi surface patches in which the low-
energy field theory is defined.

(i.e. the viscosity at frequencies ω � T ) in Section IV.
We will then examine the usual DC viscosity (at frequen-
cies ω � T ) in Section V.

II. SCALING ARGUMENTS

In studies so far of the thermodynamic and transport
properties of strange metals, the anisotropy of the Fermi
surface has had a specific consequence54: the entropy
density, and the electrical and thermal conductivities are
dominated by the energy dispersion perpendicular to the
Fermi surface, while the direction parallel to the Fermi
surface mostly acts as a label which counts the total den-
sity of perpendicular excitations. Consequently, in scal-
ing arguments we find a violation of hyperscaling: this is
the property in which the entropy density of a d dimen-
sional system scales as if it is in d− θ dimensions, with θ
the violation of hyperscaling exponent. For a Fermi sur-
face θ = d−1, because only the dispersion perpendicular
to each point on the Fermi surface is important in the
computation of the entropy. Recent work has shown54

that similar arguments also correctly determine the elec-
trical conductivity and entropy density.

We now review the general scaling arguments for the
universality of η/s. The entropy density invariably scales
as a density, and so has scaling dimension d. From the
arguments just presented above, with the violation of hy-
perscaling in the presence of a Fermi surface, the entropy
density s should have scaling dimension d− θ, and so

s ∼ T (d−θ)/z; (3)

this was confirmed by computations in54. Similar argu-
ments apply to the optical conductivity σQ(ω), where ω
is a frequency; naively, the conductivity has scaling di-
mension d−2, and so we can expect that in the presence
of a Fermi surface, the dimension will be d− θ − 2. The

computation in54 shows that this is indeed the case, and
we have

σQ ∼ T (d−2−θ)/zΥ(ω/T ), (4)

where Υ is a scaling function.
In an isotropic system that obeys hyperscaling, we can

read off the scaling dimension of the stress tensor from
its definition55,

Tµν =
∑
n

( δL
δ(∂µζn)

∂νζn− ∂µ
δL

δ(∂2
µζn)

∂νζn

)
− δµνL, (5)

where ζn denotes all the fields in the theory and L the La-
grangian density. It follows that the spatial components
have the same scaling dimension as the Lagrangian den-
sity, [Tij ] = d + z, and that the mixed temporal-spatial
components have scaling dimension [T0i] = d+ 1. Insert-
ing these scaling dimensions into the Euler equation,

∂tpα = ∂βTαβ , (6)

where pα are the components of the momentum operator,
yields consistent results. We thus obtain

[Txy] = d+ z (7)

in the presence of hyperscaling. Kubo’s formula for the
frequency-dependent shear viscosity reads29,30,

Re η(ω) = lim
q→0

ω−1 ImχTxyTxy (ω, q), (8)

where

χTxyTxy (iωn, q) = 〈Txy(iωn, q)Txy(−iωn,−q)〉 (9)

is the autocorrelation function of the xy-component of
the stress tensor T . Its scaling dimension is

[η] = −z − d− z + 2[Txy] = d (10)

and the d.c. shear viscosity is given by η = limω→0 η(ω).
This is the same scaling dimension as for the entropy
density above. With the violation of hyperscaling in the
presence of a Fermi surface, the examples of the entropy
density and the optical conductivity above suggest that
η should scale just like s in Eq. (3), and hence Eq. (1)
should apply. Our computations in this paper show that
this is not true, and the Fermi surface leads to behavior
genuinely different both from naive scaling assumptions,
and from holographic examples: the T dependence of η
is such that Eq. (2) holds.

III. FIELD THEORY

We now recall the field theory which allow us to formu-
late a systematic and controlled renormalization group
analysis using a convenient dimensional regularization
method. Moreover, this method fully preserves a two-
dimensional Fermi surface with anisotropic dispersion in
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the vicinity of every point on the Fermi surface, and these
features are crucial for our results. We will discuss the
field theory for the Ising-nematic critical point, but sim-

ilar field theories and results also apply to the problem
of a Fermi surface coupled to a gauge field, or to other
long-wavelength order parameters37.

We consider a theory of fermions, ψ, in (2 + 1) dimensions which are coupled to a critical boson, Φ,

S(ψ̄, ψ,Φ) =
∑
s=±

N∑
j=1

∫
d3k

(2π)3
ψ̃†sj(k)(ik0 + skx + k2

y)ψ̃sj(k) +
1

2

∫
d3k

(2π)3
(k2

0 + k2
x + k2

y)Φ(−k)Φ(k)

+
e√
N

∑
s=±

N∑
j=1

∫
d3k

(2π)3

∫
d3q

(2π)3
λsΦ(q)ψ̃†sj(k + q)ψ̃sj(k),

(11)

where e is the fermion-boson coupling constant, s = ±1 labels the two Fermi surface patches, N is the number of
fermionic flavors and λs equals 1 (s) for the Ising-nematic critical point (fermions coupled to a U(1) gauge field). This
model has been studied by many authors, including Refs. 37 and 38. In the following, we restrict ourselves to the
Ising-nematic critical point and set λs = 1.

This model can be studied in a controlled way using the dimensional regularization scheme proposed by Dali-
dovich and Lee38. Increasing the codimension of the Fermi surface by introducing auxiliary time-like directions, the
dimensionally regularized action in (d+ 1) dimensions reads

S(ψ̄, ψ,Φ) =

N∑
j=1

∫
dd+1k

(2π)d+1
ψ̄j(k)[iΓ ·K + iγxδk]ψj(k) +

1

2

∫
dd+1q

(2π)d+1
[Q2 + q2

x + q2
y]Φ(−q)Φ(q)

+
ie√
N

√
d− 1

N∑
j=1

∫
dd+1k

(2π)d+1

∫
dd+1q

(2π)d+1
Φ(q)ψ̄j(k + q)γxψj(k),

(12)

where K = (k0, k1, . . . , kd−2) collects the physical and (d−2) auxiliary frequency variables. We introduced the spinor
notation

ψj(k) =
(
ψ̃+,j(k), ψ̃†−,j(−k)

)T
ψ̄j(k) = ψ†j (k)γ0 (13)

and defined the gamma matrices as γ0 = σy and γx = σx for the spatial and as Γ = (γ0, γ1, . . . , γd−2) for the time-like
directions. Within a patch, we choose kx (ky) perpendicular (parallel) to the Fermi surface, as shown in Fig. 1. The
dispersion in the spatial plane containing the Fermi surface is δk, while the full dispersion is εk with

δk = kx +
√
d− 1k2

y , εk =

(
δ2
k +

d−2∑
i=1

k2
i

)1/2

. (14)

Note the line of zero energy excitations in the plane ki = 0 which represents a patch on the Fermi surface in Fig. 1,
and the relativistic dispersion along the ki directions.

Rescaling momenta as

K = b−1K ′ kx = b−1k′x ky = b−1/2k′y, (15)

the fermionic quadratic part of the action and the contribution ∼ q2
y in the bosonic quadratic part of the action are

invariant under rescaling if fields are scaled as

ψj(k) = bd/2+3/4ψ′j(k
′) Φ(k) = bd/2+3/4Φ′(k′) (16)

The terms proportional to Q2 and q2
x in the bosonic quadratic part are irrelevant under this rescaling. The coupling

scales as

e′ = eb
1
2 (5/2−d), (17)

identifying d = 5/2 as the upper critical dimension. It is irrelevant for d > 5/2 and relevant for d < 5/2. This allows
to access non-Fermi liquid physics perturbatively by using ε = 5/2− d as expansion parameter.
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Keeping only marginal terms, the ansatz for the local field theory reads

S(ψ̄, ψ,Φ) =

N∑
j=1

∫
dd+1k

(2π)d+1
ψ̄j(k)[iΓ ·K + iγxδk]ψj(k) +

1

2

∫
dd+1q

(2π)d+1
q2
yΦ(−q)Φ(q)

+
ieµε/2√
N

√
d− 1

N∑
j=1

∫
dd+1k

(2π)d+1

∫
dd+1q

(2π)d+1
Φ(q)ψ̄j(k + q)γxψj(k),

(18)

where we introduced the momentum scale µ in order to make the coupling e dimensionless. Perturbative corrections
to this action at one-loop level reintroduce dynamics for the bosonic field. The ε = 5/2 − d expansion allows us to
make a renormalized perturbative computation in the dimensionless coupling e. Note that this is not equivalent to a

simple 1/N expansion, which breaks down at the Ising-nematic QCP37, and that the expansion parameter is e4/3

N
38.

(a) (b)

(c)

FIG. 2. Feynman diagrams yielding the renormalization of
the scaling behavior of the viscosity at lowest order in ε: (a)
One-loop contribution, (b) self-energy correction and (c) ver-
tex correction. Lines represent fermionic propagators, wiggly
lines bosonic propagators and curly lines the stress tensor.

IV. OPTICAL SHEAR VISCOSITY

In the following, we focus on the ‘optical’ shear vis-
cosity, evaluated at frequencies ω � T . Its evaluation is
simpler than that for the d.c. viscosity, ω � T , which
will be considered in Section V.

For the Ising-nematic QCP the xy-component of the
stress tensor is proportional to the y-component of the
‘chiral’ current operator,

Txy(q) = i

N∑
j=1

∫
k

(
ky +

qy
2

)
ψ̄j(k + q)γxψj(k)

=
1

2
√
d− 1

Jy(q).

(19)

where
∫
k

=
∫
dkx
2π

∫ dky
2π

∫
dd−1K
(2π)d−1 . Note that the x-

and y-components of the chiral current contain the same
gamma matrix.

The Feynman diagrams describing the renormalization
of the scaling behavior of the viscosity at lowest order in
ε are shown in Fig. 2.

At one-loop level, the stress tensor correlator is given

by

〈Txy(q)Txy(−q)〉1Loop =

= N

∫
k

(ky + qy/2)2 tr
(
γxG0(k + q)γxG0(k)

)
(20)

where

G0(k) =
Γ ·K + γxδk
i(K2 + δ2

k)
(21)

is the bare fermionic Green’s function. Specializing to
q = ωe0,

〈TxyTxy〉1Loop(iω) =

= −2N

∫
dd+1k

(2π)d+1
k2
y

δ2
k −K · (K + Q)

(K2 + δ2
k)
(
(K + Q)2 + δ2

k

) ,
(22)

where Q = ωe0. The further evaluation parallels that of
the optical conductivity54. Shifting kx → kx −

√
d− 1k2

y

eliminates ky from the integrand except in the prefactor
arising from the stress tensor, yielding

〈TxyTxy〉1Loop(iω) =

− 2N

∫
dky
2π

k2
y

∫
dkx
2π

∫
dd−1K

(2π)d−1

k2
x −K · (K + Q)

(K2 + k2
x)((K + Q)2 + k2

x)

= −2N

∫
dky
2π

k2
yI1loop(Q).

(23)

Introducing Feynman parameters, completing squares in
the denominator and shifting K → K − (1 − x)Q, we
obtain

I1loop(Q) =∫
dd−1K

(2π)d−1

∫
dp

(2π)

∫ 1

0

dx
p2 −K2 + x(1− x)Q2

[K2 + p2 + x(1− x)Q2]2

=
πSd−1

(2π)d

∫ ∞
0

dkkd−2

∫ 1

0

dx
x(1− x)Q2

[k2 + x(1− x)Q2]3/2

=
Sd−1

(2π)d
√
πΓ(2− d/2)

Γ(d−1
2 )Γ(d/2)2

Γ(d)
|Q|d−2

(24)
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(Sd = 2πd/2/Γ(d/2)). For d = 5/2−ε, the one-loop result
for the stress tensor autocorrelation function thus reads

〈TxyTxy〉1loop(iω) = −Nu1Loop,ε

∫
dky
2π

k2
y|ω|1/2−ε, (25)

where

u1Loop,ε =
2ε−1/2Γ( 3+2ε

4 )Γ( 5−2ε
4 )2

√
π

5/2−ε
Γ( 5−2ε

2 )
. (26)

The momentum parallel to the Fermi surface, ky, does
not scale due to the emergent rotational symmetry37 of
the low-energy field theory. The latter restricts the mo-
mentum dependence of the fermionic and bosonic prop-
agator to G(K, kx, ky) = G(K, δk) and D(Q, qx, qy) =
D(Q, qy), respectively, which allows to eliminate ky from
the integrand by shifting kx. The ky-integral is cut off by
the Fermi surface curvature. As a consequence, the re-
sult (25) differs from the current-current correlation func-
tion only by the fact that

∫
ky
k2
y appears instead of

∫
ky

54.

Importantly, both results have the same dependence on
frequency.

The two-loop self-energy correction to the optical vis-
cosity is given by

〈TxyTxy〉SE(iω) = 2N

∫
k

(ky + qy/2)2

× tr
(
γxG0(k + q)γxG0(k)Σ1(k)G0(k)

)
,

(27)

where

Σ1(k) = −i(Γ ·Q)
e4/3

N

( µ

|Q|

)2ε/3

uΣ,0ε
−1 +O(ε0) (28)

is the one-loop fermionic self-energy38 (uΣ,0 = (2 ·
61/3π)−1). We obtain

〈TxyTxy〉SE(iω) = e4/3ε−1

∫
ky

k2
y|ω|1/2−ε

( µ

|ω|

)2ε/3

aΣ,0,

(29)
where aΣ,0 = u1Loop,0uΣ,0, after evaluation of the inte-
grals as described in Appendix A. The dependence on
frequency is the same as in the self-energy correction to
the current-current correlation function54.

The two-loop vertex correction is given by

〈TxyTxy〉VC(iω) = −iN
∫
k

(ky + qy/2)

× tr
(
γxG0(k + q)Γxy,1(k, q)G0(k)

)
,

(30)

where Γxy,1 is the one-loop correction to the stress-tensor.
Ward identities due to the conservation of the chiral cur-
rent imply that the vertex correction to the stress tensor
correlation function does not have a pole in ε−1, as for
the optical conductivity38,54. At lowest order in ε, we
thus obtain

〈TxyTxy〉(iω) = −N
∫
ky

k2
yu1Loop,0

× |ω|1/2−ε
{

1− e4/3

Nε

( µ

|ω|

)2ε/3

uΣ,0

}
+ . . .

(31)

for the correlator of the stress tensor. Evaluation of the
coupling e4/3/N at the fixed point using the β function
in O(ε)38, (e4/3

N

)∗
= u−1

Σ,0ε, (32)

and resummation of the frequency dependence yields
〈TxyTxy〉(iω) ∼ |ω|1/2−ε/3 for the correlator and

η(ω) ∼ ω−1/2−ε/3 (33)

for the optical shear viscosity. Repeating the scaling ar-
guments as described in Section II for two spatial dimen-
sions, one time dimension and 1/2− ε auxiliary time di-
mensions, the optical shear viscosity is expected to scale
as

η(ω) ∼ ω(d+(1/2−ε)z−θη)/z, (34)

where θη is a hyperscaling violation exponent. The result
in Eq. (33) corresponds to θη = 3, and thus θη 6= θ. The
origin of this breakdown of the scaling expectation is the
k2
y factor in Eq. (31), which is dominated by contributions

near the cutoff.
Instead, the result in Eq. (33) suggests that the viscos-

ity scales like a conductivity. For the conductivity, the
arguments in Section II imply that for the present di-
mensionally extended system, the scaling law in Eq. (4)
is modified to

σ(ω) ∼ ω(d+(1/2−ε)z−θ−2)/z; (35)

using the values d = 2, θ = 1, and z = 3/(3 − 2ε), this
agrees with Eq. (33). The Ward identity analysis in Ap-
pendix B shows that the identity of the scaling between
the viscosity and the conductivity holds to all orders.

In the above computation, we considered the contri-
butions to the optical viscosity from two patches on the
Fermi surface. In Appendix C, we show that the scaling
is the same if contributions from the full Fermi surface
are taken into account. Moreover, by using Ward iden-
tities we trace the above conclusion back to the emer-
gent rotation invariance of the low energy field theory, or
equivalently to the fact that the Fermi surface curvature
does not flow.

Given the scaling of entropy in the present system

s ∼ T (d+(1/2−ε)z−θ)/z, (36)

our main result in Eq. (2) would follow from Eq. (35)
provided the viscosity scaled in the same manner with
T in the regime ω � T , as it does with ω in ω � T .
We will turn to this important question in the following
section.

V. BOLTZMANN EQUATION AND DC
VISCOSITY

This section presents a Boltzmann equation analysis
which shows that ω/T scaling applies, and that the ω-
dependent results above can be extended to the d.c. vis-
cosity with ω → T . We set N = 1 in this section for
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convenience. The DC viscosity may be derived in linear
response by applying a static source that couples linearly
to Txy, which is equivalent to applying a static source
that couples linearly to Jy for the fermion contribution,
i.e. a chiral electric field.

Since our action is invariant under inversion for the full
Fermi surface, i.e.

ψ̃s(k0, kx, ky) = ψ̃s̄(k0,−kx,−ky), (37)

and this leaves Jy invariant but inverts the total momen-
tum Pi → −Pi, the chiral current has zero overlap with
the conserved total momentum, i.e.

χJyPi ≡
∫ 1/T

0

〈Jy(τ)Pi(0)〉 = 0. (38)

Thus, the DC chiral conductivities and hence the DC vis-
cosities are finite and can be determined using the Boltz-
mann equation. Fig. 3 illustrates how chiral currents can
be excited without changing the total momentum of the
system. This requires oppositely directed electric fields
to be applied to the two patches.

The kinetic part of the fermion Hamiltonian in the

dimensionally regularized theory may be diagonalized as

H0
f =

∫
ddk

(2π)d
ψ̄(k)

[
iΓ̄ · K̄ + iγxδk

]
ψ(k)

=
∑
m=±

∫
ddk

(2π)d
mλ†m(k)ξ(k)λm(k), (39)

where we use k = (kx, ky, K̄), K̄ = (k1, ..., kd−2) and
Γ̄ = (γ1, ..., γd−2), with the dispersion

ξ(k) =
(
K̄2 + δ2

k

)1/2
. (40)

The y-component of the chiral current density becomes

Jy =

∑
m=±

∫
ddk

(2π)d
mδk∂kyδk√

K̄2 + δ2
k

λ†m(k)λm(k)

+ JIIy ,

(41)

where JIIy contains particle-hole terms λ†+λ−, λ
†
−λ+ that

are unimportant for transport in the DC regime of inter-
est13,56. Defining the non-equilibrium on-shell fermion
distribution functions

fmf (t,k) = 〈λ†m(t,k)λm(t,k)〉, (42)

and the non-equilibrium off-shell boson distribution func-
tion fb(t,q,Ω), we can write down the following collision
equations in presence of an applied chiral electric field
E56–58:

(
∂

∂t
+ E · ∂

∂p

)
fmf (p, t) = −e2µε

∑
m′=±

∫
ddq

(2π)d
Mmm′(p,q)Im

[
DR(p− q,mξ(p)−m′ξ(q))

]
×
{
fmf (t,p)(1− fm

′

f (t,q)) + fb(t,p− q,mξ(p)−m′ξ(q))(fmf (t,p)− fm
′

f (t,q))
}
, (43)

[
∂

∂Ω
(2Ω2 − Re[ΣRb (t,q,Ω)])

∂

∂t
+
∂Re[ΣRb (t,q,Ω)]

∂t

∂

∂Ω

]
fb(t,q,Ω) =

4πe2µε
∑

m,m′=±

∫
ddk

(2π)d
Mmm′(k + q,k)δ(mξ(k + q)−m′ξ(k)− Ω)

[
fmf (t,k + q)(1− fm

′

f (t,k))

+ fb(t,q,Ω)(fmf (t,k + q)− fm
′

f (t,k))

]
, (44)

where the interaction matrix elements are

Mmm′(p,q) =
1

2

(
1 +mm′

δpδq − P̄ · Q̄
ξ(p)ξ(q)

)
(45)

(Note that M++ = M−−, M+− = M−+ and Mmm′(p,q) = Mmm′(q,p)), and

DR(k, ω) =
|ky|

|ky|3 + βde2µε(K̄2 − ω2)(d−1)/2
, (46)

where βd depends only on d and is free of poles in ε38. The additional self-energy component appearing in the boson
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collision equation is given by58

Re[ΣRb (t,q,Ω)] = −2e2µε
∑

mm′=±

∫
ddk

(2π)d
Mmm′(k,k + q)

fm
′

f (t,k + q)− fmf (t,k)

mξ(k)−m′ξ(k + q) + Ω
. (47)

Both collision integrals vanish regardless of what DR is when the equilibrium distributions are used due to the identity

nf (x)(1− nf (y)) + nb(x− y)(nf (x)− nf (y)) = 0. (48)

We parameterize the deviations of the distributions from equilibrium in frequency space

fmf (ω,p) = 2πδ(ω)nf (mξ(p))− Tn′f (ξ(p))ϕm(ω, δp, P̄)E(ω) · ∇pξ(p),

fb(ω,q,Ω) = 2πδ(ω)nb(Ω) + u(ω,q,Ω)|E(ω)|. (49)

Using these, we linearize the collision equations with E = Ey êy as we are interested in Jy. In the DC limit, we
obtain (since limω→0(−iω + 0+)ϕm(ω, δp, P̄) and limω→0(−iω + 0+)u(ω,q,Ω) are expected to vanish in the presence
of interactions)

2mδp
√
d− 1py

ξ(p)
n′f (ξ(p)) = −e2µε

∑
m′=±

∫
ddq

(2π)d
Mmm′(p,q)Im

[
DR(p− q,mξ(p)−m′ξ(q))

]
×
{2δq

√
d− 1qy
ξ(q)

ϕm
′
(δq, Q̄)Tn′f (ξ(q))nf (mξ(p))− 2δp

√
d− 1py
ξ(p)

ϕm(δp, P̄)Tn′f (ξ(p))(1− nf (m′ξ(q)))

+ nb(mξ(p)−m′ξ(q))

(
2δq
√
d− 1qy
ξ(q)

ϕm
′
(δq, Q̄)Tn′f (ξ(q))− 2δp

√
d− 1py
ξ(p)

ϕm(δp, P̄)Tn′f (ξ(p))

)
+ sgn(Ey)u(p− q,mξ(p)−m′ξ(q))(nf (mξ(p))− nf (m′ξ(q)))

}
. (50)

where we have suppressed the now zero frequency argument on the ϕ’s and u’s. For the boson collision equation we
obtain

u(q,Ω) = sgn(Ey)
I1[ϕ,q,Ω]

I2(q,Ω)
,

I1[ϕ,q,Ω] = 4πe2µε
∑

mm′=±

∫
ddk

(2π)d
Mmm′(k + q,k)δ(mξ(k + q)−m′ξ(k)− Ω)

×

[{2δk
√
d− 1ky
ξ(k)

ϕm
′
(δk, K̄)Tn′f (ξ(k))nf (mξ(k + q))

− 2δk+q

√
d− 1(ky + qy)

ξ(k + q)
ϕm(δk+q, K̄ + Q̄)Tn′f (ξ(k + q))(1− nf (m′ξ(k)))

}
+ nb(Ω)

{2δk
√
d− 1ky
ξ(k)

ϕm
′
(δk, K̄)Tn′f (ξ(k))− 2

δk+q

√
d− 1(ky + qy)

ξ(k + q)
ϕm(δk+q, K̄ + Q̄)Tn′f (ξ(k + q))

}]
,

I2(q,Ω) = −4πe2µε
∑

mm′=±

∫
ddk

(2π)d
Mmm′(k + q,k)δ(mξ(k + q)−m′ξ(k)− Ω)

×
{
nf (mξ(k + q))− nf (m′ξ(k))

}
. (51)

Since the driving term for the fermions in Eq. (44) is of opposite signs for the + and − quasiparticles, we expect
ϕm(δp, P̄) = mϕ(δp, P̄). Then, using the properties of the matrix elements M noted previously and that nf,b(x) +
nf,b(−x) = ±1, one can see that u is an odd function of Ω and hence that the same ϕ(δk, K̄) can be used to solve the
collision equations for both branches of quasiparticles.

In the (convergent) boson collision integrals in Eq. (51), we shift kx → kx−
√
d− 1k2

y and integrate over ky. In the
(also convergent) fermion collision integral Eq. (50), after inserting u derived from the boson collision equation we
shift qx → qx −

√
d− 1q2

y followed by qy → qy + py, and then integrate out qy after dividing through by 2
√
d− 1py.
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Terms that are odd in qy drop out, and we are left with

mδp
ξ(p)

n′f (ξ(p)) = −e
2µε

2

∑
m′=±

∫
dd−1q

(2π)d

(
1 +mm′

δpqx − P̄ · Q̄
ξ(p)

√
Q̄2 + q2

x

)

× Im

 4π√
27

βde2µε

(
(P̄− Q̄)2 −

(
mξ(p)−m′

√
Q̄2 + q2

x

)2
)(d−1)/2

−1/3


×

{
qx√

Q̄2 + q2
x

ϕm
′
(qx, Q̄)Tn′f

(√
Q̄2 + q2

x

)
nf (mξ(p))

− δp
ξ(p)

ϕm(δp, P̄)Tn′f (ξ(p))

(
1− nf

(
m′
√

Q̄2 + q2
x

))
+ nb

(
mξ(p)−m′

√
Q̄2 + q2

x

)(
qx√

Q̄2 + q2
x

ϕm
′
(qx, Q̄)Tn′f

(√
Q̄2 + q2

x

)
− δp
ξ(p)

ϕm(δp, P̄)Tn′f (ξ(p))

)

− H1[ϕ, P̄− Q̄,mξ(p)−m′
√

Q̄2 + q2
x]

H2(P̄− Q̄, |mξ(p)−m′
√

Q̄2 + q2
x|)

(
nf (mξ(p))− nf

(
m′
√

Q̄2 + q2
x

))}
, (52)

where

H1[ϕ, Q̄,Ω] =
∑
mm′s

∫
dd−1k

(2π)d
|m′
√

K̄2 + k2
x + Ω|Θ((m′

√
K̄2 + k2

x + Ω)2 − (K̄ + Q̄)2)(
(m′
√

K̄2 + k2
x + Ω)2 − (K̄ + Q̄)2

)1/2

×

1 +mm′
s
(

(m′
√

K̄2 + k2
x + Ω)2 − (K̄ + Q̄)2

)1/2

kx − (K̄ + Q̄) · K̄

|m′
√

K̄2 + k2
x + Ω|

√
K̄2 + k2

x


×

[
ϕm(s((m′(K̄2 + k2

x)1/2 + Ω)2 − (K̄ + Q̄)2)1/2, K̄ + Q̄)
s((m′(K̄2 + k2

x)1/2 + Ω)2 − (K̄ + Q̄)2)1/2

|m′
√

K̄2 + k2
x + Ω|

× Tn′f (m′(K̄2 + k2
x)1/2 + Ω)

{
1− nf (m′(K̄2 + k2

x)1/2) + nb(Ω)
}

− ϕm
′
(kx, K̄)

kx√
K̄2 + k2

x

Tn′f (m′(K̄2 + k2
x)1/2)

{
nf (m′(K̄2 + k2

x)1/2 + Ω) + nb(Ω)
}]
,

H2(Q̄,Ω) =
∑
mm′s

∫
dd−1k

(2π)d
|m′
√

K̄2 + k2
x + Ω|Θ((m′

√
K̄2 + k2

x + Ω)2 − (K̄ + Q̄)2)(
(m′
√

K̄2 + k2
x + Ω)2 − (K̄ + Q̄)2

)1/2

×

1 +mm′
s
(

(m′
√

K̄2 + k2
x + Ω)2 − (K̄ + Q̄)2

)1/2

kx − (K̄ + Q̄) · K̄

|m′
√

K̄2 + k2
x + Ω|

√
K̄2 + k2

x


×
{
nf

(
m′
√

K̄2 + k2
x + Ω

)
− nf

(
m′
√

K̄2 + k2
x

)}
. (53)

If we choose ϕm(δp, P̄) = ϕ(δp, P̄) with ϕ(δp, P̄) = C(T )(δ2
p + P̄2)1/2/δp, the right hand side of Eq. (52) vanishes

due to the identity

n′f (x)(nf (y)− 1) + nf (x)n′f (y)− nb(x− y)(n′f (x)− n′f (y)) = 0. (54)

This is the zero mode of the collision equation, and will lead to an infinite conductivity if excited. However, this mode
cannot be excited by the chiral electric field as it produces the same (instead of opposite) deviation in the + and −
quasiparticle distributions. This mode will be excited by a normal electric field, and is responsible for the infinite DC
charge conductivity of the system. The modes excited by the chiral electric field obey ϕm(δp, P̄) = mϕ(δp, P̄) and
are orthogonal to the zero mode, yielding a finite chiral conductivity (or viscosity).
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We have

η ∼ σyy =
Jy
Ey

= 8(1− d)T

∫
dpyp

2
y

∫
dd−1p

(2π)d
p2
x

P̄2 + p2
x

n′f ((P̄2 + p2
x)1/2)ϕ(px, P̄), (55)

FIG. 3. Elementary excitations due to the chiral electric field
that carry a net chiral current at zero total momentum rel-
ative to the filled band in a two-patch system. The chiral
current can decay via the emission of bosons of opposite mo-
menta on the two patches. Since the individual bosons carry
nonzero momentum, the boson distribution responds to the
applied chiral electric field and is no longer in equilibrium
unlike in a particle-hole symmetric system like those studied
in Refs. 56 and 58, where the bosons required to relax the
elementary excitations have zero momentum.

where we shifted px → px −
√
d− 1p2

y. Counting pow-
ers in Eq. (52), we obtain

ϕ(ξ(p), P̄) = β
1/3
d e−4/3µ−2ε/3T−2(d−1)/3−1ϕ̃(ξ(p)/T, P̄/T ).

(56)
Inserting this into Eq. (55) and using the fixed point val-
ues of z∗ = 3/(2(d − 1)) and e∗4/3 ∝ ε38, we have, to
leading order in ε,

η ∼ 1

ε
T−1/z+d−2

∫
dpyp

2
y, (57)

which is the expected quantum critical scaling.

If the Boltzmann analysis at this order is performed
directly in d = 2, then the collision equations are solved
exactly by using the collisionless momentum-independent

solution for ϕ, and thus collisions with the boson do not
induce a finite DC viscosity. The reason for this is purely
kinematic, stemming from the special structure of the
patch dispersions in d = 2 which have Galilean invari-
ance in the y direction and a constant x velocity and was
noted earlier in Ref. 59. The quantum critical scaling
could possibly be restored by appropriately resumming
contributions at higher orders in perturbation theory.

VI. CONCLUSIONS

This paper has exposed the unconventional scaling of
the shear viscosity in a theory with a critical Fermi sur-
face. For the Ising-nematic QCP in d = 2, we com-
puted the optical and DC viscosities in an expansion
in ε = 5/2 − d below the upper critical dimension, and
showed that the viscosity scales differently than expected
from that of a critical point with an effective reduced di-
mensionality of (d−1)-dimensional excitations transverse
to the Fermi surface. As a consequence, the ratio η/s
diverges at low temperatures as T−2/z instead of satu-
rating the universal bound like in other strongly-coupled
field theories in the literature. We expect that this is a
general phenomenon of metallic quantum critical states
where hyperscaling is violated due to the presence of a
critical Fermi surface, including states described by Fermi
surfaces coupled to gauge fields. However, we do expect
that metallic critical points associated with singular ‘hot
spots’ on the Fermi surface58 will have a finite η/s, up to
logarithmic factors.
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Appendix A: Optical viscosity: two-loop computations

The two-loop self-energy correction to the stress tensor autocorrelation function is given by

〈TxyTxy〉SE(iω) = 2N

∫
dd+1k

(2π)d+1
k2
y tr
(
γxG0(k + q)γxG0(k)Σ1(k)G0(k)

)
= 4e4/3uΣ,0ε

−1

∫
dd+1k

(2π)d+1
k2
y

( µ

|K|

)2ε/3 2δ2
kK

2 + K · (K + Q)(δ2
k −K2)(

(K + Q)2 + δ2
k)(K2 + δ2

k)2
,

(A1)

where we only kept the pole contribution to the self-energy and set ε = 0 in the prefactor uΣ,ε=0 = (2 · 61/3π)−1. The
self-energy correction can be computed using Feynman parameters. The integral is first rewritten as

〈TxyTxy〉SE(iω) = 4(e2µε)
2
3uΣ,0ε

−1

∫
dd+1k

(2π)d+1
k2
y

∫ 1

0

dx
1− x
|K| 2ε3

2δ2
kK

2 + K · (K + Q)(δ2
k −K2)[

x(K + Q)2 + (1− x)K2 + δ2
k

]3 . (A2)

Eliminating ky from the fraction by a variable shift of kx and subsequent integration over kx yield

=
Γ(3)

4
(e2µε)

2
3uΣ,0ε

−1

∫
dky
2π

k2
y

∫
dd−1K

(2π)d−1

∫ 1

0

dx
1− x
|K| 2ε3

×
[ 3K2 + K ·Q[

K2 + x(2K ·Q + Q2)
] 3

2

− 3K2(K2 + K ·Q)[
K2 + x(2K ·Q + Q2)

] 5
2

]
.

(A3)

Again using Feynman parameters to rewrite the products in the integrand, we obtain

=
Γ(3)

4Γ( ε3 )
(e2µε)

2
3uΣ,0ε

−1

∫
dky
2π

k2
y

∫
dd−1K

(2π)d−1

∫ 1

0

dx

∫ 1

0

dy
[Γ( 9+2ε

6 )

Γ( 3
2 )

(1− x)y
ε
3−1(1− y)

1
2 (3K2 + K ·Q)[

K2 + x(1− y)(2K ·Q + Q2)]
3
2 + ε

3

−
Γ( 15+2ε

6 )

Γ( 5
2 )

3(1− x)y
ε
3−1(1− y)

3
2K2(K2 + K ·Q)[

K2 + x(1− y)(2K ·Q + Q2)
] 5

2 + ε
3

]
.

(A4)

Completing squares in the denominator as

K2 + x(1− y)(2K ·Q + Q2) = (K + x(1− y)Q)2 + x(1− y)(1− x+ xy)Q2, (A5)

shifting K →K−x(1−y)Q, and neglecting terms that vanish due to symmetries when performing the K-integration,
we obtain

=
Γ(3)

4Γ( ε3 )
(e2µε)

2
3uΣ,0ε

−1

∫
dky
2π

k2
y

∫
dd−1K

(2π)d−1

∫ 1

0

dx

∫ 1

0

dy(1− x)y
ε
3−1

×
{Γ( 9+2ε

6 )

Γ( 3
2 )

(1− y)
1
2

3K2 − x(1− y)(1− 3x(1− y))Q2[
K2 + x(1− y)(1− y + xy)Q2

] 3
2 + ε

3

−
Γ( 15+2ε

6 )

Γ( 5
2 )

3(1− y)
3
2[

K2 + x(1− y)(1− x+ xy)Q2
] 5

2 + ε
3

[
K4 − x(1− y)(1− 2x(1− y))K2Q2

− 2x(1− y)(1− 2x(1− y))(K ·Q)2 − x3(1− y)3(1− x(1− y))Q4
]}

(A6)

The remaining integrals can easily be computed using Mathematica. First integrating over K and subsequently over
x and y, the pole contribution to the two-loop self-energy correction reads

〈TxyTxy〉SE(iω) = e4/3ε−1

∫
dky
2π

k2
y|ω|

1
2−ε
( µ

|ω|

)2ε/3

aΣ,0, (A7)

where aΣ,0 = u1Loop,0uΣ,0, after setting ε to zero in the numerical prefactors.

Appendix B: Relating conductivities and viscosities using Ward identities

The result in the main text, that the optical viscosity and optical conductivity scale in the same way, is not
consistent with hyperscaling with an effectively reduced dimension. In order to substantiate this result, in the
following we establish relations between the two transport quantities based on Ward identities.
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The action for the patch theory of the Ising-nematic QCP in d = 2, Eq. (11), is invariant under an emergent
rotational symmetry37,

Φ(q0, qx, qy)→ Φ′(q0, qx, qy) = Φ(q0, qx −Θqy, qy) (B1)

ψ̃sj(k0, kx, ky)→ ψ̃′sj(k0, kx, ky) = ψ̃sj

(
k0, kx −Θky − s

Θ2

4
, ky + s

Θ

2

)
. (B2)

We will show that this symmetry restricts the scaling behavior of transport properties as a function of frequency.
Starting from this transformation law, we derive a Ward identity for the generating functional of connected correlation
functions60,

G[η†, η, φ] = lnZ[η†, η, φ] (B3)

Z[η†, η, φ] =

∫
D(ψ̃†, ψ̃)D(Φ)e−S[ψ̃†,ψ̃,Φ]−

∫
k

∑
s,j(ψ̃

†
sj(k)ηsj(k)+η†sj(k)ψ̃sj(k))−

∫
q

Φ(−q)φ(q), (B4)

where η(†) and φ are Grassmann and real source fields, respectively. Invariance under the above rotational symmetry
implies

G[η′†, η′, φ′] = G[η†, η, φ], (B5)

where the source fields transform as the physical fields. Differentiation with respect to Θ yields

d

dΘ
G[η′†, η′, φ′] = 0, (B6)

which leads to the functional Ward identity∫
d3k

(2π)3

∑
s,j

{[(
ky∂kxη

†
sj(k)− s

2
∂kyη

†
sj(k)

)δZ[η†, η, φ]

δη†sj(k)
+
(
ky∂kxηsj(k)− s

2
∂kyηsj(k)

)δZ[η†, η, φ]

δηsj(k)

]
−
∫
q

qy∂qxφ(q)
δZ[η†, η, φ]

δφ(q)

}
= 0.

(B7)

In the following we are only interested in Ward identities for fermionic correlation functions and thus set φ = 0 from
the outset.

As an example how this functional Ward identity restricts correlation functions, we derive the Ward identity that
follows from rotational symmetry for the fermionic Green’s function. After computing suitable functional derivatives,
we obtain

(
py∂px −

s

2
∂py
) δ2Z[η†, η, 0]

∂ηsj(p)∂η
†
sj(p)

∣∣∣
η=η†=0

= −
(
py∂px −

s

2
∂py
)
Gs(p) = 0, (B8)

where Gs(p) is the full fermionic Green’s function. This is a partial differential equation for the momentum dependence
of the latter. It can easily be verified that the Ward identity is fulfilled for Gs(p) = Gs(p0, spx + p2

y), as expected.
For q = q0e0 6= 0, the current-current correlation functions for the chiral current can be written as

〈Jx(q)Jx(−q)〉 =

∫
d3k

(2π)3

∫
d3k′

(2π)3

∑
j,s,j′,s′

〈ψ̃†js(k + q)ψ̃js(k)ψ̃†j′s′(k
′ − q)ψ̃j′s′(k′)〉

= Z−1

∫
d3k

(2π)3

∫
d3k′

(2π)3

∑
j,s,j′,s′

δ4Z[η†, η, 0]

δηjs(k + q)δη†js(k)δηj′s′(k′ − q)δη†j′s′(k′)

∣∣∣
η=η†=0

(B9)

〈Jy(q)Jy(−q)〉 = 4〈Txy(q)Txy(−q)〉

= 4

∫
d3k

(2π)3

∫
d3k′

(2π)3

∑
j,s,j′,s′

ss′kyk
′
y〈ψ̃
†
js(k + q)ψ̃js(k)ψ̃†j′s′(k

′ − q)ψ̃j′s′(k′)〉

= 4Z−1

∫
d3k

(2π)3

∫
d3k′

(2π)3

∑
j,s,j′,s′

ss′kyk
′
y

δ4Z[η†, η, 0]

δηjs(k + q)δη†js(k)δηj′s′(k′ − q)δη†j′s′(k′)

∣∣∣
η=η†=0

.

(B10)
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Applying functional derivatives to the functional Ward identity Eq. (B7), we obtain a Ward identity for two-particle
Green’s functions,

[
(ky∂kx −

s

2
∂ky ) + (k′y∂k′x −

s′

2
∂k′y )

] δ4Z[η†, η, 0]

δηjs(k + q)δη†js(k)δηj′s′(k′ − q)δη†j′s′(k′)

∣∣∣
η=η†=0

= 0. (B11)

Using the method of characteristics, we can show that this Ward identity restricts the dependence of two-particle
Green’s function on spatial momenta as

δ4Z[η†, η, 0]

δηjs(k + q)δη†js(k)δηj′s′(k′ − q)δη†j′s′(k′)

∣∣∣
η=η†=0

= Fjs;j′s′(k0, k
′
0, q0; skx + k2

y, s
′k′x + k′2y , s

′ky − sk′y), (B12)

analogously to the Ward identity for the one-particle Green’s function.
Inserting this result in Eqs. (B9) and (B10), shifting and renaming integration variables, we obtain for the Jx

correlator

〈Jx(q0)Jx(−q0)〉 = Z−1

∫
d3k

(2π)3

∫
d3k′

(2π)3

∑
j,s,j′,s′

Fjs;j′s′(k0, k
′
0, q0; skx + k2

y, s
′k′x + k′2y , s

′ky − sk′y)

= Z−1

∫
d3k

(2π)3

∫
d3k′

(2π)3

∑
j,s,j′,s′

Fjs;j′s′(k0, k
′
0, q0; kx, k

′
x, ky). (B13)

Note that k′y does not appear in the integrand. For the Jy correlator we obtain

〈Jy(q0)Jy(−q0)〉 = 4Z−1

∫
d3k

(2π)3

∫
d3k′

(2π)3

∑
j,s,j′,s′

ss′kyk
′
yFjs;j′s′(k0, k

′
0, q0; skx + k2

y, s
′k′x + k′2y , s

′ky − sk′y)

= 4Z−1

∫
d3k

(2π)3

∫
d3k′

(2π)3

∑
j,s,j′,s′

kyk
′
yFjs;j′s′(k0, k

′
0, q0; kx, k

′
x, ky − k′y)

= 2Z−1

∫
d3k

(2π)3

∫
d3k′

(2π)3

∑
j,s,j′,s′

(ky + k′y)k′yFjs;j′s′(k0, k
′
0, q0; kx, k

′
x, ky)

+ 2Z−1

∫
d3k

(2π)3

∫
d3k′

(2π)3

∑
j,s,j′,s′

ky(ky + k′y)Fjs;j′s′(k0, k
′
0, q0; kx, k

′
x,−k′y) (B14)

where in the last step we shifted ky → ky + k′y and k′y → k′y + ky in the first and second term, respectively. Replacing
k′y → −k′y and subsequently renaming ky ↔ k′y in the second term, the contributions ∼ kyk

′
y cancel and we hence

obtain

= 4Z−1

∫
d3k

(2π)3

∫
d3k′

(2π)3

∑
j,s,j′,s′

k′2y Fjs;j′s′(k0, k
′
0, q0; kx, k

′
x, ky). (B15)

Using the Ward identity for the emergent rotational symmetry of the patch theory, we have thus established that

〈Jx(q0)Jx(−q0)〉 =

∫ dky
(2π)

4
∫ dky

(2π) k
2
y

〈Jy(q0)Jy(−q0)〉 =

∫ dky
(2π)∫ dky

(2π) k
2
y

〈Txy(q0)Txy(−q0)〉. (B16)

As the Ward identity imposes restrictions only on the momentum dependence of the two-particle Green’s function,
this result is also valid in d = 5/2 − ε. The above result implies that the optical viscosity and the optical (chiral)
conductivity have the same frequency dependence,

σ(ω) ∼ η(ω). (B17)

Using the results from Ref. 54, we obtain

σ(ω) ∼ η(ω) ∼ ω−1/2−ε/3 ε=1/2
= ω−2/3, (B18)

in agreement with the field theoretic result in Eq. (33).
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Appendix C: Contributions from the full Fermi surface

The result Eq. (B18) for the scaling of the optical viscosity was derived in the patch theory. The question arises
whether the scaling could be different for the full Fermi surface, for example due to some preferred direction. In this
section we show that this is not the case, using d = 2 for simplicity.

We first analyze how the Txy correlator transforms under the emergent rotation symmetry of the patch theory37.
In d = 2, Txy is given by

Txy(q) =
∑
j,s,s′

∫
k

(
ky +

qy
2

)
ψ̃†sj(k + q)σz,ss′ ψ̃s′j(k). (C1)

We obtain

〈TxyTxy〉1Loop(q)
q=ωe0

= −N
∫
k

k2
y tr
(
G0(k0 + ω,k)G0(k0,k)

)
(C2)

for the correlation function, where we exploited in the last step that G0 and σz commute. Rotation of the Fermi
momentum, with respect to which the patch theory is defined, by a small angle θ yields

〈TxyTxy〉1Loop(q) = −N
∫
k

∑
s

(
ky + s

θ

2

)2

G0,s(k0 + ω,k)G0,s(k0,k), (C3)

where

kx → kx − θky − s
θ2

4
, ky → ky + s

θ

2
. (C4)

The Green’s functions are independent of θ due to the emergent rotation symmetry. We can therefore eliminate ky
from the Green’s functions by shifting kx → kx − sk2

y. Then θ only appears in the integrand of the ky integral, which

is just a multiplicative prefactor, and can be eliminated by shifting ky → ky − s θ2 . Nearby patches thus contribute
equally to the Txy correlator.

This result can be complemented by an analysis of the stress tensor correlation function for a continuum model.
For an isotropic system we can start from the Lagrangian

L(x) = ψ†(x)∂τψ(x) + ∇ψ†(x) ·∇ψ(x)− µψ†(x)ψ(x), (C5)

where we omitted the interaction and the bosonic contribution. The xy-component of the stress tensor reads

Txy(q) =

∫
k

(
(kx + qx)ky + (ky + qy)kx

)
ψ†(k + q)ψ(k). (C6)

At one-loop level, the Txy autocorrelation function for q = 0 is then given by

〈TxyTxy〉1Loop(iω) = −4

∫
k

k2
xk

2
yG0(k + q)G0(k) (C7)

where q = ωe0.
We can subdivide the vicinity of the Fermi surface into (finite) patches, which are labeled by φ, and obtain

〈TxyTxy〉1Loop(iω) = −4
∑

Patches

∫
k′

(k′x cosφ− k′y sinφ)2(k′x sinφ+ k′y cosφ)2 tr
(
G0(k′0 + ω,k′)G0(k′0,k

′)
)
, (C8)

where the integral over k′ is over a specific patch. The sum over patches (or φ-integration) sums up the contributions
from individual patches. The Green’s functions do not depend on φ because they are the same in each local patch
coordinate system (Fig. 4) and are just given by the patch theory action in the supplement. Shifting k′x → kF + k′x
in order to make the Fermi momentum explicit, we obtain

(k′x cosφ− k′y sinφ)2(k′x sinφ+ k′y cosφ)2 → 1

4

(
2kF k

′
y cos(2φ) + k2

F sin(2φ)− k′y
2

sin(2φ)
)2

+
1

4
k′x

2
(

6kF k
′
y sin(4φ) + 6k2

F sin2(2φ) + k′y
2
(3 cos(4φ) + 1)

)
+

1

2
k′x

(
3k2
F k
′
y sin(4φ) + kF k

′
y

2
(3 cos(4φ) + 1) + 2k3

F sin2(2φ)− k′y
3

sin(4φ)
)

+ k′x
3

sin(2φ)
(
kF sin(2φ) + k′y cos(2φ)

)
+ k′x

4
sin2 φ cos2 φ. (C9)
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The terms in the first line of the right hand side do not depend on k′x and yield the scaling that we determined from the
patch theory as k′y and kF do not scale. The terms on the other lines contain additional powers of k′x ∼ ω1/z and are
hence subleading. The above argument takes care of the 1-loop and self-energy corrections. In the vertex corrections,

FIG. 4. Transformation of coordinates used to determine the contribution of different patches to the Txy - Txy correlator.

the additional powers of k′x and k′y do not influence the absence of poles in ε−1. Hence all patches contribute the same
scaling at leading order in ω.

The expressions in Eqs. (C2) and (C7) are directly related only for the patches in the kx or the ky direction. In the

former case, evaluating the factor k2
xk

2
y in the integrand close to the Fermi surface yields (kF +k′x)2k′y

2 ≈ k2
F k
′
y

2
. After

rescaling of momentum variables, this yields the factor of k2
y that appears in the stress tensor correlation function

of the patch theory in Eq. (C2). For other directions additional terms appear, which are not present in the patch
theory, for example terms in Eq. (C9) which are proportional to k4

F . As kF and ky do not scale, such terms are
equally relevant to the terms that appear in the patch theory and thus do not change the scaling behavior. The
argument employing the emergent rotational symmetry does not generate such terms, but nevertheless leads to the
correct scaling behavior.
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