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Interplay of Pomeranchuk instability (spontaneous symmetry breaking of the Fermi surface) and d-
wave superconductivity is studied for the repulsive Hubbard model on the square lattice with the dy-
namical mean field theory combined with the fluctuation exchange approximation (FLEX+DMFT).
We show that the four-fold symmetric Fermi surface becomes unstable against a spontaneous dis-
tortion into two-fold near the van Hove filling, where the symmetry of superconductivity coexisting
with the Pomeranchuk-distorted Fermi surface is modified from the d-wave pairing to (d+ s)-wave.
By systematically shifting the position of van Hove filling with varied second- and third-neighbor
hoppings, we find that the transition temperature TPI

c for the Pomeranchuk instability is more sen-
sitively affected by the position of van Hove filling than the superconducting T SC

c . This implies that
the filling region for strong Pomeranchuk instability and that for the T SC

c dome can be separated,
and that Pomeranchuk instability can appear even if the peak of TPI

c is lower than the peak of T SC
c .

An interesting finding is that the Fermi surface distortion can enhance the superconducting T SC
c in

the overdoped regime, which is explained with a perturbational picture for small distortions.

I. INTRODUCTION

High-Tc cuprate superconductors harbor many fun-
damental questions, which challenge elaborate numer-
ical analysis on superconductivity, magnetism and
other properties. Specifically, there is growing real-
ization that various instabilities can exist along with
superconductivity1, and the relation between various
charge instabilities and superconductivity in the cuprates
is now being intensively studied2–5. Also, some experi-
ments suggest a spontaneous breakdown of the four-fold
symmetry of electronic states in the tetragonally struc-
tured cuprates, which is viewed as a kind of “electronic
nematicity”6–8. There are some explanations for the ne-
maticity, e.g. in the context of fluctuating stripe orders9.
Pomeranchuk instability, a spontaneous breaking of four-
fold symmetry of the Fermi surface without lattice dis-
tortion, is evoked as another possible candidate for ne-
maticity in cuprate superconductors10.
The presence of Pomeranchuk instability in two-

dimensional lattice models has been suggested in
Refs. 11,12, where the forward scattering was found
to develop to induce Pomeranchuk instability. Subse-
quently, properties of this instability were studied pri-
marily in mean-field models (“f-model”), where the elec-
trons interact only via forward scattering13,14. For the
two-dimensional (2D) Hubbard model on the square lat-
tice, a representative model for cuprates, the existence of
this instability is yet to be fully clarified microscopically.
Functional renormalization group (fRG) calculations sug-
gest that the superconducting fluctuation is stronger
than Pomeranchuk instability15, while other numerical
renormalization-group approaches suggest Pomeranchuk
instability to be stronger around van Hove fillings16.
Gutzwiller wave functions combined with an efficient di-

agrammatic expansion technique (DE-GWF) obtained a
ground state with a coexistence of the nematic order and
superconductivity in 2D Hubbard model17, which is also
observed with the renormalized perturbation theory for
the weak-coupling case18. Also, the dynamical cluster
approximation (DCA) and cellular dynamical-mean-field
theory (CDMFT) showed large responses against small
distortions of the lattice19,20, from which a possibility of
spontaneous symmetry breaking is suggested to occur at
lower temperatures or for larger cluster sizes. While these
results suggest that the 2D repulsive Hubbard model has
a strong tendency toward the Pomeranchuk instability,
whether or not this instability has higher transition tem-
perature (TPI

c ) than that of superconductivity (T SC
c ) has

yet to be elaborated. More importantly, the relation be-
tween the Pomeranchuk instability and superconductiv-
ity (e.g., whether they are cooperative or competing) is
an intriguing question. While a mean-field study for a
phenomenological model suggests that they are compet-
ing with each other with T SC

c suppressed in the coexis-
tence region21, the relation should be clarified by going
beyond mean-field approaches.

Given the situation, we study in the present pa-
per superconductivity and Pomeranchuk instability
in the intermediate correlation regime by evoking
FLEX+DMFT22,23, a diagrammatic extension of the dy-
namical mean field theory (DMFT)24–26, which takes ac-
count of the spin and charge fluctuation effects on top of
the DMFT local self-energy, and can reproduce the dome
structure in T SC

c
23. The advantages of this method are

first, there is no finite-size effects unlike in DCA and
CDMFT, which should be important for capturing small
Fermi surface deformations, and second, we can calcu-
late finite-temperature regions in contrast to DE-GWF to
capture the effect of this nematicity on the superconduct-
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ing T SC
c . This also enables us to systematically exam-

ine the relation between superconductivity and Pomer-
anchuk instability when the electron band filling and the
second and further neighbor hoppings (t′, t′′) are var-
ied. After confirming the existence of Pomeranchuk in-
stability around the van Hove filling consistently with
the previous works, we shall study the superconduct-
ing phase, which reveals that the symmetry of the gap
function is changed from the ordinary d-wave pairing to
(d + s)-wave17,19. Interestingly, the Fermi surface dis-
tortion can enhance the superconductivity in the over-
doped (or strongly frustrated) regime with larger t′, t′′.
We shall explain this T SC

c enhancement with a pertur-
bation picture for small Fermi-surface distortions, and
also with the random phase approximation (RPA) in the
weak-coupling regime.
Another finding here is that the Pomeranchuk in-

stability temperature TPI
c is more sensitive to (t′, t′′),

hence the Fermi surface warping, than the superconduct-
ing T SC

c . This contrasts with the previous mean-field
calculations21 that showed almost the same filling depen-
dence for the two transition temperatures. This should
come from the fact that the present formalism takes ac-
count of the filling dependence of the pairing interaction
beyond mean-field levels. The result also implies that
the superconducting Tc dome and that for Pomeranchuk
instability can be separated.

II. FORMULATION

We consider the standard repulsive Hubbard model on
the square lattice with a Hamiltonian,

H =
∑

k,σ

ǫ(k)c†
k,σck,σ + U

∑

i

ni,↑ni,↓, (1)

where c†
k,σ creates an electron with wave-vector k =

(kx, ky) and spin σ, U is the on-site Coulomb repulsion,

and ni,σ = c†i,σci,σ. In the presence of second-neighbor

(t′) and third-neighbor (t′′) hopping parameters, the 2D
band dispersion is given as

ǫ(k) = −2t(cos kx + cos ky)

− 4t′cos kx cos ky − 2t′′(cos 2kx + cos 2ky)− µ, (2)

where t is the nearest-neighbor hopping (the unit of en-
ergy hereafter), and µ the chemical potential. We basi-
cally adopt t′ = −0.20t, t′′ = 0.16t, which are determined
to fit the band calculation for a typical hole-doped single-
layer cuprate, HgBa2CuO4+δ

27,28.
For the numerical procedure, we employ

FLEX+DMFT method, which is a kind of diagrammatic
extension of DMFT, where the fluctuation exchange
approximation (FLEX)29 and the DMFT are combined
with a double self-consistency loop. This kind of scheme
has been considered in Refs.22,30, and has recently
been formulated through Luttinger-Ward functional

with applications to superconducting states in Ref.23.
The latter can describe a T SC

c dome against the band
filling along with a spectral weight transfer. These are a
virtue of FLEX+DMFT that corrects the overestimated
local-FLEX self-energy in a filling-dependent manner.
In FLEX+DMFT, the self-energy is calculated through
the FLEX self-energy and DMFT self-energy (Σimp) as

Σ(k) = ΣFLEX(k)− Σloc
FLEX(k) + Σimp(ωn), (3)

where the FLEX self-energy ΣFLEX(k) is given as

ΣFLEX(k) =
1

Nkβ

∑

k′

[3

2
U2 χ0(k − k′)

1− Uχ0(k − k′)

+
1

2
U2 χ0(k − k′)

1 + Uχ0(k − k′)
− U2χ0(k − k′)

]

G(k′). (4)

Here Nk and β are the total number of k-points and in-
verse temperature, respectively, k ≡ (ωn,k) with ωn the
Matsubara frequency for fermions, G(k) Green’s func-
tion, and

χ0(q) = −
1

Nkβ

∑

k

G(k + q)G(k) (5)

is the irreducible susceptibility. The local part of
the FLEX self-energy, Σloc

FLEX, is computed by replac-
ing Green’s function G with the local one, Gloc ≡
(1/Nk)

∑

k
G(k), in Eqs. (4) and (5).

For calculating the DMFT self-energy, Σimp, we need
to solve the impurity problem in DMFT. Here we em-
ploy the modified iterative perturbation theory (modified
IPT) as the impurity solver. In this method, the origi-
nal IPT is modified for the systems having no particle-
hole symmetry31, thus applicable to frustrated or non-
half-filled cases. This is not computationally expen-
sive, which enables us to scan over various parameter
regions. We have checked, by using ALPS library32,33,
that the continuous-time quantum Monte Carlo (CT-
QMC) impurity solver34,35 gives similar results even away
from half-filling in the intermediate-coupling regime [see
Fig. 1(a)].
After obtaining Green’s function, we plug it into the

linearized Eliashberg equation,

λ∆(k) = −
1

Nkβ

∑

k′

Veff(k − k′)|G(k′)|2∆(k′), (6)

where ∆(k) is the anomalous self-energy, while

Veff(k) = U +
3

2
U2 χ0(k)

1− Uχ0(k)
−

1

2
U2 χ0(k)

1 + Uχ0(k)
(7)

is the effective pairing interaction, and λ the eigenvalue
of Eliashberg’s equation. Superconducting T SC

c is de-
termined as the temperature at which λ = 1. In the
right-hand side of Eq. (6), we have neglected the local
DMFT vertex contribution, whose validity is discussed
in Appendix A.
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To allow the Pomeranchuk instability to occur, we in-
troduce a seed to deform the Fermi surface in the ini-
tial input for the self-energy as Σinitial = 0.05t(cos kx −
cos ky). While we linearize the anomalous part of Green’s
function as being infinitesimal, we can deal with finite
Pomeranchuk order parameters, so that we can discuss
superconductivity for finite distortions in this formalism.

III. RESULTS

A. Pomeranchuk instability

The Pomeranchuk order parameter η can be defined,
for the originally four-fold cosine bands, as

η =
∑

k

(cos ky − cos kx)
〈

c†
k
ck

〉

, (8)

and we display the result against temperature and band
filling in Fig. 1(a),(b), respectively. We can see that
the order parameter starts to grow continuously with
decreasing temperature, which indicates a second-order
phase transition. If we turn to the filling dependence,
we observe the order parameter abruptly grows around
the edges of the Pomeranchuk phase, indicative of trans-
ferring to a first-order phase transition consistently with
the previous work13. Hereafter, we focus on the filling
region around the peak of TPI

c , where the transition is of
second order.
If we look at the Fermi surface in Fig. 1(c) for U/t = 4.0

and n = 0.66, we can see that the Fermi surface, iden-
tified as the ridges in the spectral function A(k, ω = 0)
obtained with the Padé approximation, indeed becomes
distorted at lower temperatures, T < TPI

c .
The phase diagram is displayed in Fig. 2(a), where

we can see that the Pomeranchuk instability tempera-
ture TPI

c , which is determined as the temperature at
which η becomes nonzero, is peaked around n = 0.66
for the present parameter set (U/t = 4.0, (t′, t′′) =
(−0.20, 0.16)). An yellow arrow indicates the van Hove
filling in the interacting system at which the spectrum is
peaked at the Fermi energy, see Fig. 2(b), in which we
have obtained the density of states with the Padé approx-
imation and confirmed the peak position does not change
for T > TPI

c . The fact that the Pomeranchuk instabil-
ity tends to be strong near this filling is consistent with
the previous results13,21. The peak in the Pomeranchuk
dome does not precisely coincide with the van Hove fill-
ing, which may be an effect of the asymmetric density of
states13 as in Fig. 2(b). By contrast, the superconducting
T SC
c in the present result is a monotonically decreasing

function of the hole doping around the van Hove filling.
This contrasts with the previous mean-field

calculations21 which ignore the filling dependence
of the effective pairing interaction, where both T SC

c

and TPI
c are peaked around the van Hove filling. Thus

the present result indicates that the filling dependence
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FIG. 1: (Color online) (a) Temperature dependence and (b)
filling dependence of the Pomeranchuk order parameter η for
U/t = 4.0, (t′, t′′) = (−0.20, 0.16). In (a), the circles (squares)
represent the results of FLEX+DMFT with the modified IPT
(CT-QMC) as a DMFT impurity solver. (c) Fermi surface [as
represented by the color-coded spectral weight A(k, ω = 0)]
with n = 0.66, U/t = 4.0, (t′, t′′) = (−0.20, 0.16), for T =
0.0333t > TPI

c (βt = 30; left) and T = 0.0286t < TPI
c (βt =

35; right).

of the effective interaction has an important effect of
rendering distinction of optimal doping levels between
Pomeranchuk TPI

c dome and superconducting T SC
c dome.

To confirm this, let us systematically vary the second-
and third-neighbor hopping parameters (t′, t′′) in Fig. 3,
which change the Fermi surface warping as well as the
van Hove filling. We can see that, for a fixed n = 0.80,
the change in the parameters shifts the distance of the
filling from the van Hove filling as represented by the
blurring of the spectral function around (0, π), (π, 0).
Left panels in Fig. 3 plot the phase diagrams for three
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FIG. 2: (Color online) (a) Phase diagram against temperature
T/t and band filling n for U/t = 4.0, (t′, t′′) = (−0.20, 0.16).
Shown are the superconducting T SC

c with undistorted Fermi
surface (green circles), superconducting T SC

c with Fermi sur-
face distortion (purple circles), and Pomeranchuk TPI

c (black
squares). The dotted line represents TPI

c when we ignore the
superconductivity. The yellow arrow indicates the van Hove
filling in the interacting system. (b) Density of states at the
filling indicated by the yellow arrow in (a) for βt = 20, U/t =
4.0, (t′, t′′) = (−0.20, 0.16).

typical cases with different Fermi surface warping. We
find that the Pomeranchuk TPI

c drastically changes
along with the van Hove filling (yellow allows), while the
superconducting T SC

c is much less sensitive.

We can thus conclude that, despite both of supercon-
ductivity and Pomeranchuk instability being Fermi sur-
face instabilities affected by the spectral weight at the
Fermi energy, the Pomeranchuk instability is much more
sensitive to the Fermi surface shape (distance from the
van Hove filling). This implies that we can separate the
dominant regions for the two instabilities by changing
the position against the van Hove filling (dominated by
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FIG. 3: (Color online) The superconducting and Pomer-
anchuk phase boundaries for U/t = 4.0 (left panels) and
the spectral weight A(k, ω = 0) for n = 0.80, βt =
20, U/t = 4.0 (right) are shown for (t′, t′′) = (−0.20, 0.16) (a),
(−0.175, 0.14) (b), and (−0.15, 0.12) (c). The symbols are the
same as in Fig. 2(a), and yellow allows indicate respective van
Hove fillings in the interacting system.

t′, t′′).

B. Superconductivity under Fermi surface

distortions

Now, an intriguing issue is how superconductivity be-
haves in the presence of the Pomeranchuk Fermi-surface
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FIG. 4: (Color online) (a) Momentum dependence of the
gap function for T = 0.0286t < TPI

c with n = 0.66, U/t =
4.0, (t′, t′′) = (−0.20, 0.16) (left panel), which can be decom-
posed into a d-wave part and an (extended) s-wave (four-fold
symmetric) part (right). (b) Difference in the pairing inter-

action with the Fermi surface distortion (V η 6=0

eff
) and with-

out (V η=0

eff
), for n = 0.66, βt = 31, U/t = 4.0, (t′, t′′) =

(−0.20, 0.16).

distortion. If we look at the superconducting order pa-
rameter in Fig. 4(a), the pairing symmetry is seen to be
distorted from the ordinary d-wave to d+(extended)s-
wave. Here, an interesting observation is that the super-
conducting T SC

c can be enhanced by the Pomeranchuk
distortion of the Fermi surface. Indeed, if we go back
to Fig. 2, we have also plotted the superconducting T SC

c

(green dots) when the four-fold Fermi surface is artifi-
cially imposed below Pomeranchuk TPI

c . We can see the
T SC
c with the distorted Fermi surface (purple dots) is ac-

tually higher.

To identify the origin of this enhancement, we can
compare the pairing interaction between the cases of
Pomeranchuk-distorted and the four-fold-imposed Fermi
surfaces. Figure 4(b) plots the difference of the two
cases for the same parameters (U/t = 4.0, n = 0.66 and
βt = 31). We can see that the Pomeranchuk instability
distorts the pairing interaction, where the difference has
a d-wave-like sign reversal.

To pin-point the origin of the distortion effect on the
superconducting T SC

c , we can consider the perturbational
effect for small distortions, based on a general linearized
gap equation,

λφ(k) = −
1

Nkβ

∑

k′

K(k, k′)φ(k′), (9)

where φ(k) = |G(k)|∆(k), while K(k, k′) is the ker-
nel, given as K(k, k′) = |G(k)|Veff(k − k′)|G(k′)| in
FLEX+DMFT (as seen by multiplying |G| to both sides
of Eq. (6)). If we consider small d-wave-like distortions
[as displayed in Fig. 4(b)] for this kernel,

K(k, k′) → K(k, k′) + δKd(k, k′), (10)

the first-order perturbation for the maximum eigenvalue
λmax satisfies

δλ(1)
max =

∑

k,k′

φ∗
max(k)δK

d(k, k′)φmax(k
′) = 0, (11)

where φmax is the eigenvector for λmax. Namely, δλ
(1)
max

identically vanishes due to the d-wave nature of the δKd,
so that the leading term is the second-order one,

δλ(2)
max =

∑

i,k,k′

|φ∗
max(k)δK

d(k, k′)φi(k
′)|2

λmax − λi

> 0, (12)

where i is the index for the eigenvalue λi and eigenvec-
tor φi of the kernel matrix K. Since this expression is
positive-definite, small d-wave deformations of the kernel
in the linearized gap equation always enhance the super-
conducting T SC

c . This explains the T SC
c enhancement in

Fig. 2(a), and can provide a new pathway for enhancing
superconducting T SC

c in terms of Fermi surface distor-
tion.
However, it should be difficult to achieve purely d-wave

like distortions for the kernel, and the terms having some
other symmetries should in general arise even from purely
d-wave distortions of the Fermi surface. We can elabo-
rate this by introducing a parameter gk, where gk repre-
sents either (i) a spontaneous distortion of the electronic
states [δgk = G(k)−Gundistorted(k)], or (ii) a small d-wave

modulation of the Hamiltonian (δH =
∑

k,σ δgkc
†
k,σck,σ).

Then we can expand the interaction kernel in gk, which
gives, up to the second-order,

K(k, k′) → K(k, k′) +
∑

p

δK

δgp
δgp +

1

2

∑

p,q

δ2K

δgpδgq
δgpδgq,

(13)
and the effect on the eigenvalue λ reads

δλ(2)
max =

∑

i,k,k′

|φ∗
max(k)

∑

p
δK
δgp

δgpφi(k
′)|2

λmax − λi

−
∑

k,k′

φ∗(k)
1

2

∑

p,q

δ2K

δgpδgq
δgpδgqφ(k

′). (14)

We can see that whether T SC
c can be enhanced depends

on the second term on the right-hand side of Eq. (14).
From this we expect that the enhancement tends to occur
when the second-largest eigenvalue is close to the largest
one, for which the first term on the right-hand side of
Eq. (14) becomes dominant.
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FIG. 5: (Color online) Comparison of the eigenvalue λ cal-
culated with RPA between the four-fold symmetric Fermi
surface (ǫ = 0) and the distorted Fermi surface (ǫ = 0.01)
with red (black) dots representing the case of λǫ=0 < λǫ=0.01

(λǫ=0 > λǫ=0.01) for βt = 5, U/t = 2.0. The horizontal axis
corresponds to the band filling, while the vertical axis is t′/t,
with t′′ = −0.8t′ (which includes the parameter set used in
Fig. 3).

We can in fact check this argument in the weak-
coupling case. To obtain qualitative tendencies, we have
performed a RPA calculation at a relatively high tem-
perature for various values of parameters to compare
the four-fold symmetric case with the distorted Fermi
surface by making the nearest-neighbor hopping slightly
anisotropic, tx = 1+ ǫ, ty = 1− ǫ, by hand with the first
line in Eq. (2) becoming ǫ(k) = −2txcos kx − 2tycos ky.
In the RPA, we ignore the self-energy effect in the Eliash-
berg Eq. (6).
When we compare the eigenvalue under a distortion

λǫ=0.01 with λǫ=0 for the symmetric case, the result in
Fig. 5 for U/t = 2.0, βt = 5 shows that we do have a
region (marked with red circles representing λǫ=0.01 >
λǫ=0) in which the distortion enhances the eigenvalue.
This effect tends to occur away from half-filling, and for
larger values of distant-neighbor hopping t′, t′′ (i.e., more
frustrated cases). Thus we can confirm that the enhance-
ment of the superconductivity by small distortions indeed
occurs in the weak-coupling limit where we can ignore the
self-energy effect.
It has been known that the gap symmetry (for the

leading eigenvalue) tends to be changed for higher dop-
ing or more frustrated cases36. The present result sug-
gests that the T SC

c enhancement arising from the dis-
tortion tends to occur around the boundary for the gap
symmetry to change where the leading and sub-leading
eigenvalues are close to each other. This is also con-
sistent with the above result for the t′ dependence in
FLEX+DMFT (Fig. 3), where the enhancement of T SC

c

occurs for (t′, t′′) = (−0.20, 0.16). We also notice that
the structure of Eq. (14) is reminiscent of the pseudo
Jahn-Teller effect, in which a Jahn-Teller-like distortion
occurs without degeneracies due to the second-order ef-
fect of the distortion37. In this context we can also recall
a well-known property that, if the eigenvalues are degen-

erate (e.g. for p + ip-pairing), T SC
c can be enhanced by

the strain effect38. From these, the present result may
also be viewed as a possibility for this kind of T SC

c en-
hancement revealed even for the (non-degenerate) d-wave
regime in 2D square lattice Hubbard model.

IV. SUMMARY AND DISCUSSIONS

We have employed FLEX+DMFT approach to study
the interplay of Pomeranchuk instability and supercon-
ductivity in correlated electron systems. We have re-
vealed that the superconductivity with the distorted
Fermi surface has the symmetry of the gap function
changed from d-wave to d+ s, consistent with the previ-
ous studies17,19. We have found that the Fermi surface
distortion can enhance the superconducting T SC

c in the
overdoped regime. We have explained this enhancement
in terms of the perturbation for small distortions, and
also with RPA in the weak-coupling regime. The Pomer-
anchuk TPI

c is found to be much more sensitive to Fermi
surface warping and the position of the van Hove filling
than the superconducting transition temperature.

In the main parameter set for the present calcula-
tion, the Pomeranchuk Tc-dome appears in the over-
doped region, while experimentally the electronic ne-
maticity is mainly observed in the underdoped regime.
If the nematicity in the cuprates comes from the Pomer-
anchuk instability, then the present result suggests that
it should strongly depend on the component materials
that can have various values of second- (t′) and third-
neighbor (t′′) hoppings: For instance, La2−xSrxCuO4

with smaller t′, t′′ has the van Hove filling sitting around
20% doping28,39,40, which is close to the situation given
in Fig. 3(c), where the Pomeranchuk Tc-dome appears
around the optimal to underdoped regimes.

If we comment on the method, FLEX+DMFT, despite
being an improvement over FLEX or DMFT, still over-
estimates the non-local self-energy effect. For more ac-
curate estimates, other methods (e.g. diagrammatic ex-
pansion in two-particle level as in DΓA41 or dual fermion
method42) will be needed. Also, we have assumed here
translationally invariant systems, while the study of the
interplay between superconductivity and charge instabil-
ities involving finite wave vectors will be another inter-
esting future work.
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Appendix A: Effect of the DMFT vertex ΓDMFT

According to the formulation in Ref.23, we should con-
sider the local anomalous self-energy ∆loc coming from
the DMFT functional. Then the linearized Eliashberg
equation becomes

λ∆(k) = −
1

Nkβ

∑

k′

[Veff(k − k′) + ΓDMFT(ωn, ωm)]

× |G(k′)|2∆(k′), (A1)

where ΓDMFT = δ∆loc/δF is the functional derivative of
the local anomalous self-energy. While this term can be
ignored for studying pure d-wave pairing as in the pre-
vious paper23, we examine its effect on the d+ s pairing
here. We consider this effect to be small, because the
additional term is an extended s-wave (nonlocal) pairing
rather than the ordinary s-wave, so that a cancellation
should occur in the momentum summation. To check
this along the argument in the main text, we can cal-

culate the lower bound for the maximal eigenvalue when
ΓDMFT is considered without calculating ΓDMFT directly.
From the eigenvector ∆max of Eq. (6), we extract the part
of the gap function that is not affected by ΓDMFT as

∆′(k) = ∆max(k)−

∑

k
|G(k)|2∆max(k)
∑

k
|G(k)|2

. (A2)

Then a quantity,

λ′ = −

∑

k,k′ ∆′∗(k)|G(k)|2Veff(k − k′)|G(k′)|2∆′(k′)
∑

k ∆
′∗(k)|G(k)|2∆(k)

,

(A3)
gives the lower bound for the maximal eigenvalue when
ΓDMFT is considered. We have actually confirmed that
the difference between λ′ and λ (without ΓDMFT) is very
small, (λ−λ′)/λ < 0.01. Thus we can conclude the effect
of the DMFT vertex ΓDMFT does not significantly change
the the result for the T SC

c enhancement.
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